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ABSTRACT

TarO (http://www.compbio.dundee.ac.uk/taro) offers
a single point of reference for key bioinformatics
analyses relevant to selecting proteins or domains
for study by structural biology techniques. The
protein sequence is analysed by 17 algorithms
and compared to 8 databases. TarO gathers
putative homologues, including orthologues, and
then obtains predictions of properties for these
sequences including crystallisation propensity, pro-
tein disorder and post-translational modifications.
Analyses are run on a high-performance computing
cluster, the results integrated, stored in a database
and accessed through a web-based user interface.
Output is in tabulated format and in the form of an
annotated multiple sequence alignment (MSA) that
may be edited interactively in the program Jalview.
TarO also simplifies the gathering of additional
annotations via the Distributed Annotation System,
both from the MSA in Jalview and through links
to Dasty2. Routes to other information gateways
are included, for example to relevant pages from
UniProt, COGand theConservedDomainsDatabase.
Open access to TarO is available from a guest
account with private accounts for academic use
available on request. Future development of TarOwill
include further analysis steps and integration with
the Protein Information Management System (PIMS),
a sister project in the BBSRC ‘Structural Proteomics
of Rational Targets’ initiative

INTRODUCTION

Target selection for structural biology encompasses a
variety of analyses, and may include optimisation of
the protein target for successful progress in the structure

determination pipeline. The evaluation of putative homol-
ogues and/or alternative constructs is a key aspect of the
optimisation process (1,2). One useful metric that may be
applied to this end is estimated crystallisation propensity
(3,4). This approach aims to increase the odds of success
in the face of attrition rates that typically exceed 90% in
structural genomics consortia (5–7). However, target
optimisation is also commonplace as a salvage strategy
following difficulties with the originally selected protein.

Numerous bioinformatics analyses can be applied
during target optimisation, including searching various
databases (8–11) and sequence-based prediction of protein
properties, such as protein disorder (1). However, the
generation, integration and management of results from
these analyses are not trivial (1,12). There are many
publicly available servers that run individual bioinfor-
matics analysis steps. Websites are also available to
provide a single point of access to individual analysis
tools, for example Expasy (13), Entrez (14) and
OPAL (12). However, target optimisation using these
sites is laborious and there is little facility to integrate the
results of numerous analyses across many sequences. A
greater level of integration over a user-supplied multiple
sequence alignment (MSA) is provided by MACSIMS
(15), which also propagates annotations by homology
inference. However, MACSIMS is not focused on target
optimisation and does not generate any ranking of
sequences. Also, MACSIMS returns a limited set of
annotation types and only annotation that is amenable to
display on a MSA is given in a user-friendly format.
Servers that focus on target selection are available, such as
SGTarget (16), and the more recent XtalPred (17). These
provide some integration of data for the user, but are
limited in terms of the number of annotation types and the
server features. Neither SGTarget nor XtalPred provide
an annotated MSA.

We have developed a system (TarO) that offers a single
point of reference for key target optimisation analyses.
TarO features include gathering and annotation of
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putative orthologues and homologues, searching the
protein input against the Protein DataBank (18) with
PSIBLAST (19), generation of annotated MSA, and
presentation of integrated results to the user. TarO was
originally developed for the Scottish Structural
Proteomics Facility (SSPF) (www.sspf.ac.uk), and plays
a key role in the SSPF bioinformatics platform. To date,
TarO has processed more than 720 queries and is used by
several different research groups outside the SSPF.

METHODS

Overview of TarO

TarO takes a protein sequence as input, which is used to
search for putative orthologues and homologues. The
input and associated sequences are analysed in a number
of annotation steps, and the results stored in a database.
The TarO website (www.compbio.dundee.ac.uk/taro)
provides access to results, and integrates the Jalview
(20,21) program to visualise complex annotation over
a MSA. All analyses are run on a local computer cluster.
Figure 1 gives a summary of the processes involved
in TarO.

Detection and annotation of functionally related sequences

Detection of functionally and structurally similar proteins
helps in the selection of sequences that are more amenable
to structural studies. Orthologues frequently share
substantial functional similarity, and this assumption
may be cautiously extended to all homologues (22,23).
Part of the assessment of functional relationships involves
examination of the patterns of annotation and conserved
residues, or ‘functional signatures’, on the sequences.

This process is assisted by an annotated MSA constructed
from the input sequence and the putative orthologues/
homologues. The annotated MSA is displayed in Jalview
(20,21). Scores from BLAST (19) sequence alignments also
provide a rough metric for estimating functional similarity
in TarO.
TarO detects putative orthologues by searching the

input sequence against COG/KOG (11) with BLASTP
(19). Matches for both the orthologue and homologue
searches are defined from thresholds selected to infer
protein structural similarity (24). In addition, all matches
must have BLAST expectation values of 10�3 or better.
The top-scoring COG/KOG match forms the basis to
infer a COG/KOG orthologue cluster; all sequences in the
relevant orthologue cluster are thus assigned as putative
orthologues of the input protein. Subsequently, the input
sequence as well as any putative orthologues are searched
against the UniRef100 (8) database with PSIBLAST
(three iterations, default values) (19).
The input sequence and any putative orthologues/

homologues found are searched against the Protein
DataBank (PDB) (18) with PSIBLAST and BLASTP,
respectively. The input and associated sequences are also
searched against TargetDB (25) with BLASTP, thereby
highlighting any similar targets that have been registered
by Structural Genomics consortia. The searches of
TargetDB and the PDB both use the thresholds for
structural similarity (24) and expectation value as
described above. RPSBLAST (19) is also used to search
all query-associated sequences against the Conserved
Domains Database (CDD) (26,27), which includes profiles
from Pfam (9,10), SMART (28,29) and COG/KOG (11).
RPSBLAST matches to domain profiles are defined by an
expectation value threshold of 10�3. Elementary chemical
properties [e.g. average GES hydrophobicity (30)] are
calculated with custom perl code, Bioperl (31) and
PEPSTATS (32). Sequences are assigned to phylogenetic
classifications in order to allow for SignalP (33) prediction
of signal peptide (default parameters). This classification is
based on the data provided by COG/KOG and
UniRef100. Where phylogenetic classification is not
available, SignalP is run using all of the possible classi-
fications. Only the first 70 amino acids of each sequence
are taken as input to SignalP in order to reduce false
positives. Additionally, predictions for the input and all
associated sequences are obtained for NetOglyc (34),
NetPhos (35), RONN (36), Disembl (37), Globplot (38),
Jpred (39,40) and NetNglyc (http://www.cbs.dtu.dk/
services/NetNGlyc/), with the default settings for each
algorithm. It is important to note that NetNglyc and
NetOglyc glycosylation predictions should be treated with
caution when a signal peptide is not also predicted (34)
http://www.cbs.dtu.dk/services/NetNGlyc/. TarO gives a
warning when displaying the list of predicted glycosylation
sites for a sequence without a predicted signal peptide.
The MSA is generated from the input and associated
sequences by running MUSCLE (41). Reliably generating
a MSA from automatically obtained search results can
be difficult, so sequences are only included in the MSA if
their BLAST alignment to the input sequence has an
expectation value �10�20, and if their sequence length

Figure 1. Overview of TarO Processes. Given a protein sequence, TarO
searches the COG database (11) to identify putative orthologues. Any
matched COG sequences and the input sequence are then searched
against UniRef100 (8) to identify putative homologues. The input,
COG and UniRef100 sequences are then subject to a number of
annotation steps (detailed in Table 1). The annotated sequences are
electronically ranked according to crystallisation propensity score (4)
and BLAST (19) expectation value. The TarO website, which
incorporates the Jalview (20,21) program, facilitates human interpreta-
tion of the data. The final ranking is therefore semi-automated,
combining electronic and human interpretation of the data.
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is no more than 125% of the input sequence length.
Also, sequences are chosen for inclusion into the MSA
according to the order of priority: input> putative
orthologues> putative homologues. This order is fol-
lowed until the user-specified maximum number of
sequences is reached (default 100), or until all of the
query-associated sequences have been examined. We plan
further development of the strategy for generating the
MSA which will be incorporated into later releases
of TarO.
TarO also annotates the input and associated sequences

with information that is useful through the course of
‘wet-lab’ stages in the structure determination pipeline.
The predicted extinction coefficient at 280 nm is calculated
by PEPSTATS (32), to assist with protein purification.
Counts of the amino acids histidine, cysteine and
methionine are given, which may be relevant for protein
purification and deriving phases by anomalous scattering
approaches. Other information in this category includes
molecular weight, sequence length, hydrophobicity and
isoelectric point. Table 1 summarises the various algo-
rithms and databases currently employed in TarO.

The TarO database and external database
update management

The results of the various analyses run by TarO, including
searches of external databases, are parsed with custom
perl code and stored in a relational database. The TarO
web server queries this database when presenting results to
the user. External databases (Table 1) are stored as flat
files and searched locally on a high-performance compute
cluster as part of the process of running a TarO query.
These external databases are updated on a weekly basis
with custom scripts based around the ‘wget’ Unix
command. As a consequence, the information gathered
by TarO is no more than one week old at the time of
running a given query. Results associated with a TarO
query reflect the information available at the time that
the search was performed. The TargetDB database

‘target status’ information is a special case in this
regard, because it is regularly updated into the TarO
database. Therefore, the TargetDB ‘target status’ dis-
played in TarO is updated every week for any matched
TargetDB sequence, regardless of the date and time at
which the TarO query was run. However, all matches
between TarO and TargetDB sequences are identified
from a search of the TargetDB database available at the
time that the TarO query is run. Regular searches of
completed TarO queries are not run against any database,
partly because a TarO query is not necessarily an active
target. However, the option of periodically searching
certain databases (e.g. TargetDB, PDB) may be incorpo-
rated in a future release.

USAGE

Submitting a TarO query

Open access to TarO is available for any user, via a
‘Guest’ area that can be easily accessed from a link on the
TarO home page. The ‘New Query’ link in the ‘Guest’ area
navigates to a form that will accept TarO queries in
‘FASTA’ format. Queries can be uploaded to the server as
a file or pasted into a textbox. There is an input option to
specify the maximum number of sequences to include in
the MSA (default value is 100). There is also a ‘functional
description’ textbox which allows users to more easily
identify their submitted queries. Some algorithms do not
accept non-standard amino acid characters, and so these
are removed from the query sequence input when
appropriate. Queries submitted by the ‘Guest’ user are
visible to anyone and deleted from the server after a
minimum of 8 days. However, free private accounts are
available for academic use; see the TarO website
(www.compbio.dundee.ac.uk/taro) for further details.
We ask that users wait for the results of a submitted
query before making a further submission to the server.
We estimate that an ‘average’ query will require approxi-
mately 100 cpu hours, though these are spread over

Table 1. Summary of algorithms and databases included in TarO

Brief description Algorithm(s) Database(s) searched (as applicable)

Search for orthologues BLASTP (19) COG, KOG (11)
Search for homologues PSIBLAST (19) UniRef100 (8)
Search structural genomics targets BLASTP TargetDB (25)
Search known structures PSIBLAST, BLASTP PDB (18)
Search domain profiles RPSBLAST (19) Pfam, CDD, COG, KOG, SMART (9–11,26–29)
Multiple sequence alignment MUSCLE (41) –
Protein disorder/order prediction Disembl, RONN, GlobPlot (36–38) –
Signal peptide prediction SignalP (33) –
Transmembrane region prediction TMHMM2 (45) –
Glycosylation site prediction NetOGlyc, NetNGlyc

(34, http://www.cbs.dtu.dk/services/NetNGlyc/)
–

Phosphorylation site prediction NetPhos (35) –
Secondary structure prediction JPred (39,40) –
Isoelectric point (pI), Molecular weight Bioperl-based code (31) –
Sequence length, #Met/Cys/His,
Hydrophobicity, pI/Hydrophobicity
cluster

Custom perl code –

Extinction coefficient PEPSTATS (32) –
Crystallisation propensity prediction ParCrys, OB-Score (3,4) –
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a compute cluster. Given a typical load on the cluster,
throughput is in excess of 70 queries per week and a
typical query is completed within 4–12 hr.

Tracking query progress and access to results

Figure 2 shows an example of the query sequence
information page, which serves as a hub for each TarO
query. Tabulated annotation details for the input sequence
are available from this page. Several links are also
provided, to allow display of the annotated MSA, access
to pages describing putative orthologues/homologues,
access to more details for matches to external databases
[e.g. TargetDB (25)], and access to gateways such as
UniProt (8), Dasty2 (42), COG (11) and CDD (26,27).
The query status table on this page summarises the
various steps in the annotation process and provides
progress information for each annotation step. Each row
in the query status table changes colour according to a
‘traffic lights’ system, to reflect progress of the correspond-
ing annotation step. The pages for putative orthologues
and homologues provide tabulated annotation details
and related links, ranked according to ParCrys (4)
crystallisation propensity scores. The ranking scheme

also incorporates the estimated similarity of the ortholo-
gue/homologue to the input protein sequence, currently
based on BLAST expectation values. All TarO pages
provide user guidance as context-sensitive help upon
mouse over, and further information is provided via
links to a help page. The help page also provides an
introduction to the TarO system and is accessed from
http://www.compbio.dundee.ac.uk/taro/TarO_help.html.

DISCUSSION

Structural biology projects are highly variable and so there
is not a universally applicable target optimisation strategy.
However, certain criteria are generally useful. Target opti-
misation frequently draws upon overlapping information
for the evaluation of both alternative constructs and
putative homologues. Although NMR is an important
technique for structure determination, as of January 2008
85% of all structures in the PDB (18) had been solved by
X-ray crystallography. As a consequence, obtaining cry-
stals is a key stage in most structural biology pipelines.
Modifying the construct sequence may influence crystal-
lisation propensity, and alternative homologues may be

Figure 2. Query sequence information page. This page serves as a hub for each TarO query. The table at the top has 47 columns and so extends to
about three times the width of the figure. This table includes basic sequence statistics, as well as details of the top-scoring match from COG/KOG
(11), the PDB (18), TargetDB (25) and UniRef100 (8). Several links are available within in this table, notably to display ranked annotations for
putative orthologues and homologues of the input sequence, respectively displayed as the characters ‘O’ and ‘H’. There are also links to relevant
pages of the COG/KOG, Dasty2 (42), CDD (26,27) and UniProt (8) websites, as well as links to results of RPSBLAST (19) searches of domain
profiles. Clicking on the grey rectangle below this table displays the annotated MSA in the Jalview (20,21) applet (Figure 3). The ‘Query
Status’ table allows tracking of the query progress through the various annotation stages, according to a ‘traffic lights’ system. Stages that have
started are shown in Amber, Red is used to indicate a failed step, and completed analyses are shown in Green. Inset shows an example ‘Query
Status’ table for a query that is in progress. There is extensive context-sensitive help throughout TarO, and the table headings also provide links to
the relevant section of the help document. An example query sequence information page is given at http://www.compbio.dundee.ac.uk/taro/cgi-taro/
targpipe_display_query_seqs.pl?query=657&funcdesc=Test_Guest1.
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examined since protein families commonly have members
with a wide range of estimated crystallisation propensity
(3). The OB-Score (3), ParCrys (4) and Hydrophobicity/pI
clustering (43) are all harnessed by TarO to estimate
crystallisation propensity, and so guide the evaluation of
homologues. Proteins with transmembrane regions or
significant disordered sequence are frequently problematic
(1,17). Also, posttranslational modifications (PTMs) are
commonly associated with protein disorder (44). TarO
assists with identification of sequences that are likely to
contain these potentially troublesome, but biologically
interesting, features. Transmembrane regions are pre-
dicted by TMHMM2 (45), whilst protein disorder predic-
tions are obtained from Disembl, GlobPlot and RONN
(36–38). Phosphorylation sites, as well as O-linked and
N-linked glycosylation are, respectively, predicted by the
programs NetPhos (35) NetOglyc (34) and NetNglyc
(http://www.cbs.dtu.dk/services/NetNGlyc/).

TarO also assists with the identification of protein
domain boundaries, facilitated by an annotated MSA that
is viewed in Jalview (20,21). The MSA annotations include
matched domains from Pfam (9,10) and the conserved
domains database (CDD) (26,27), combined with pre-
dicted protein disorder. Predicted transmembrane regions,
signal peptide [SignalP (33)], PTMs and secondary struc-
ture [JPred (39,40)] are also annotated on the MSA. Other
useful information associated with the MSA is provided
by the Jalview program. For example, Jalview automati-
cally provides a display of residue conservation at each
position of the alignment. In addition, Jalview provides
the facility to query numerous Distributed Annotation
System (46) servers, and to display any returned annota-
tion on the MSA. The various annotations associated with
the MSA are useful to assist with the design of optimised
constructs and identification of functionally important
residues. Building upon this, a likely future development

Figure 3. Visualisation of complex annotation. An annotated MSA is shown, viewed in Jalview (20,21). Sequence identifiers are listed along the left-
hand side of the alignment. The different colours on the aligned sequences correspond to different annotation types; for example, lilac corresponds to
the overlap of matched Pfam (9,10) and CDD (26,27) domains. Predicted GlobPlot (38) disorder is shown in slate blue; light and dark orange show
DISEMBL (37) ‘Hotloops’ and the overlap of DISEMBL ‘Hotloops’/‘REM465’ disorder, respectively. Green shows the overlap of Gloplot and
Disembl ‘Hotloops’ disorder. The predicted post-translational modifications (PTMs), phosphorylation (NetPhos (35)) and N-linked glycosylation
(NetNglyc http://www.cbs.dtu.dk/services/NetNGlyc/) are respectively shown in red and blue. Jpred (39,40) predicted secondary structure for the
input sequence is shown on the line entitled ‘jnetpred’ that runs towards the bottom of the figure. Related annotations are grouped and may be
selectively displayed in order to enable visualisation and interpretation of the information. The TarO annotation groupings are viewed inside the
Jalview ‘Sequence Features’ box. For example, DISEMBL and GlobPlot disorder are grouped together, whilst the Pfam/CDD domains and RONN
(36) disorder are in a separate group. There is also a group for protein disorder predicted by DISEMBL and RONN. From the ‘Sequence Features’
box, the user can change the display of the various groups in order to customise the presence or absence of annotations on the MSA. The order of
annotations displayed is also specified within the ‘Sequence Features’ box. For example the annotation layer for PTMs is displayed over the other
annotations in this figure. Therefore the slate blue GlobPlot disorder annotation on the sequence region ‘TGGTTG’ is displayed underneath the red
predicted phosphorylation site annotation on the second threonine residue of the ‘TGGTTG’ sequence. The row at the bottom of the figure shows
the alignment conservation and is automatically calculated by Jalview.
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in TarO is the automated design and ranking of optimised
construct sequences. Of course, the design of optimised
construct sequences may also benefit from information
provided by experimental methods such as limited
proteolysis (47).

Retaining the functional features that originally stimu-
lated interest in the target is an important consideration
during target optimisation. For example, removing part of
an enzyme’s active site might make crystals easier to
obtain; although the resultant protein structure would be
relatively ineffective for studies of the molecular mecha-
nism of catalysis! The range of functional information
provided by TarO aims to assist with identification and
comparison of functional regions in protein sequences.
A possible future direction is the automated evaluation
of sequence features to provide more sophisticated
prediction and analysis of the functional conservation
for a given protein pair. These predictions could be useful
in the context of target optimisation, for example by
enabling more advanced protein ranking systems.
Different projects have different sets of functional proper-
ties that are required to be retained in the optimised target
sequence. However, all putative orthologues and homo-
logues currently identified in TarO pass thresholds
that aim to preserve a reasonable level of structural
similarity (24).

As a screening mechanism to avoid duplication of
effort, the protein input and associated sequences are
searched against the PDB (18) and TargetDB (25). The
discovery of a similar structure in the PDB or TargetDB
may be sufficient grounds to eliminate a potential target.
On the other hand, identification of a known and related
structure could be important; this may provide a model
for molecular replacement calculations, or inform on
components of multi-domain or multi-subunit systems.

In summary, TarO enables selection of sequences that
are likely to be more amenable to structural studies and
share functional similarity with the input sequence.
Additionally, TarO provides information relevant for
many of the structure determination pipeline stages,
including design of optimised constructs. The use of
TarO accelerates progress in structural proteomics by
efficiently providing bioinformatics data to inform deci-
sion-making on the prioritisation and optimisation of
potential targets. TarO simplifies the gathering, storage
and retrieval of data and so frees up research time to make
use of the information and to think creatively. Please cite
TarO as well as the underlying algorithms and databases,
as appropriate. Active development of TarO is continuing
to include further analysis steps, improvements to the user
interface, and integration with the Protein Information
Management System (PIMS) a sister project in the
BBSRC Structural Proteomics of Rational Targets
(SPoRT) initiative. We also plan to make available a
distribution of the TarO source code. We feel that
community interactions with the TarO project can lead
to further advancement and dissemination of best prac-
tices for target optimisation. Access to TarO is from
www.compbio.dundee.ac.uk/taro and we are grateful to
receive feedback from users.
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