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Background: Left ventricular size and shape are important for quantifying cardiac remodeling in response to cardiovascular
disease. Geometric remodeling indices have been shown to have prognostic value in predicting adverse events in the clinical
literature, but these often describe interrelated shape changes. We developed a novel method for deriving orthogonal
remodeling components directly from any (moderately independent) set of clinical remodeling indices. Results: Six clinical
remodeling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection fraction, apical conicity, and
longitudinal shortening) were evaluated using cardiac magnetic resonance images of 300 patients with myocardial
infarction, and 1991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares (PLS) regression
of left ventricular shape models resulted in remodeling components that were optimally associated with each remodeling
index. A Gram-Schmidt orthogonalization process, by which remodeling components were successively removed from the
shape space in the order of shape variance explained, resulted in a set of orthonormal remodeling components. Remodeling
scores could then be calculated that quantify the amount of each remodeling component present in each case. A one-factor
PLS regression led to more decoupling between scores from the different remodeling components across the entire cohort,
and zero correlation between clinical indices and subsequent scores. Conclusions: The PLS orthogonal remodeling
components had similar power to describe differences between myocardial infarction patients and asymptomatic subjects
as principal component analysis, but were better associated with well-understood clinical indices of cardiac remodeling.
The data and analyses are available from www.cardiacatlas.org.
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Left ventricular (LV) remodeling refers to the process by which
the heart adapts its size, shape, and function in response
to disease processes, or under the influence of mechanical,
neurohormonal, and genetic factors [1]. Remodeling can be com-
pensatory, for example, increased concentric hypertrophy in hy-
pertension; or adverse, for example, increased end-systolic vol-
ume after myocardial infarction. Adverse LV remodeling char-
acteristics after myocardial infarction provide important diag-
nostic and prognostic information for the therapeutic manage-
ment of disease progression [2-5]. Clinical studies have identi-
fied quantitative geometric parameters (termed clinical remodel-
ing indices in this paper) that describe recognized clinical pat-
terns of remodeling with prognostic value for predicting adverse
events. For example, increased LV end-diastolic volume index
has been shown to be an important predictor of mortality after
myocardial infarction [6]. Increased LV sphericity has also been
linked with decreased survival [5S]. Relative LV wall thickness
[1] and apical conicity [7] are also important indices of adverse
remodeling after myocardial infarction. Functional parameters
such as ejection fraction (EF), which is the most common index
of cardiac performance in clinical practice, are also heavily in-
fluenced by the degree of LV remodeling [8, 9]. LV longitudinal
shortening is another sensitive marker of LV functional remod-
eling [10].

Although these clinical remodeling indices have validated
prognostic value, they are often coupled so that it is difficult to
separate the relative effects on heart shape. For example, end-
diastolic volume is often correlated with EF in patients with
myocardial infarction. It is therefore difficult to tease out the
relative effects of dilatation (structural) from contraction (func-
tional). In computational shape analysis, it is desirable to char-
acterize the space of possible heart shapes in terms of orthog-
onal shape components. A shape component is a unit vector in
shape space, and orthogonal components have zero dot product
between different components. An orthogonal decomposition of
heart shape, in which each component is related to a remodel-
ingindex with clear clinical importance, would assist clinical in-
terpretation of the relative effects of different physiological pro-
cesses underlying the development of disease. In addition, such
an orthogonal decomposition would enable computational anal-
ysis of each component of remodeling present in various forms
of heart disease. In particular, an orthogonal basis for shape en-
ables robust calculation of the contribution of each component
independently to the overall shape. Also, regressions using or-
thogonal shape components as independent variables do not
suffer from the problem of multicolinearity. Thus, when analyz-
ing the combined effects of different remodeling characteristics,
it is preferred to have an orthogonal basis in a linear space.

Principal component analysis (PCA) [11] is a powerful and
widely used shape analysis technique that provides an orthog-
onal linear shape basis. In previous work, PCA analysis of LV ge-
ometry has achieved more powerful descriptions of LV shape,
and their relationships with risk factors, than traditional mass
and volume analysis [12]. In a large population study, the first
and second PCA LV shape components were associated with LV
size and sphericity, respectively [13]. However, PCA shape com-
ponents are not designed to be related to any particular clinical
remodeling index, and the clinical interpretation of PCA shape
components is often difficult. Previous work has shown that LV
PCA shape components do not have clear clinical interpretation
beyond the first two [12]. This is a common problem with PCA
shape components, since they are designed to efficiently char-

acterize shape variation without regard to possible underlying
mechanisms of disease processes. Remme et al. [14] developed
a method to decompose shape changes into modes with clear
clinical interpretation. However, these modes were not orthogo-
nal.

Decomposition of the shapes into orthogonal components
enables calculation of scores as projections of each patient’s
shape onto the corresponding component (see Appendix). These
scores quantify the amount of each shape component present in
the patient’s heart. One advantage of PCA shape components is
that the resulting scores have zero correlation across the pop-
ulation (see Appendix). This is desirable in some applications;
that is, if the scores can be related to underlying processes, then
low correlation between scores implies that the processes have
different effects within the population.

Previously, orthogonal remodeling components were gener-
ated from clinical remodeling indices using an ad hoc approach
[24]. For each clinical index, a subset of cases was chosen outside
two standard deviations from the mean, that is, those with very
high and very low values of the clinical index. The remodeling
component was then derived from these cases by fitting a line
between the two groups. The problem with this method is that
it relies on extremes of the distribution of the clinical index and
ignores the majority of cases. This may lead to difficulties in the
interpretation of the remodeling component. Therefore, the cur-
rent paper sought to provide the following novel contributions:
(i) calculation of remodeling components directly from regres-
sion coefficients, (ii) use of the entire distribution of the clini-
cal index to formulate the remodeling component, and (iii) re-
duction of correlation among resulting remodeling component
scores.

In this paper, we used partial least squares (PLS) regression to
sequentially construct an orthogonal shape decomposition that
is optimally related to clinical remodeling indices. Clinical re-
modeling indices of EDVI, sphericity, EF, relative wall thickness,
conicity, and longitudinal shortening, known from the literature
to have important prognostic information in the management
of myocardial infarction, were used to create corresponding or-
thogonal shape components. By using a single PLS latent fac-
tor per clinical index, the resulting component scores were less
correlated with each other and had zero correlation with those
clinical indices previously removed.

LV shape models of 300 patients with myocardial infarction
and 1991 asymptomatic study subjects were obtained through
the Cardiac Atlas Project [15]. The cohort data have been de-
scribed previously [12, 16] and are available from the Cardiac At-
las Project (http://www.cardiacatlas.org). Briefly, myocardial in-
farction patients (n = 300, age 3186, mean age 63, 20% women)
had clinical history of myocardial infarction with EF > 35% and
infarct mass >10% of LV myocardial mass. All had stable my-
ocardial infarction (i.e., no acute cases). Asymptomatic subjects
(n = 1991, age 45—84, mean age 61, 52% women) did not have
physician-diagnosed heart attack, angina, stroke, heart failure,
or atrial fibrillation and had not undergone procedures related
to cardiovascular disease, at the time of recruitment [12, 16].
Finite element shape models were customized to cardiac MRI
exams in each case using a standardized procedure [12]. The
shape models were evenly sampled on the epicardial and en-
docardial surfaces at sufficient resolution to capture all shape
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features, which resulted in 1682 Cartesian (x, y, z) points in ho-
mologous anatomical locations for each LV model.

Clinical remodeling indices included EDVI, EF, relative wall thick-
ness, sphericity, apical conicity, and longitudinal shortening.
Volumes were calculated by the summation of surface triangle
volumes [17]. LV mass was calculated by subtracting endocar-
dial from epicardial volumes multiplied by 1.05 g/ml [18]. EDVI
was calculated as endocardial surface volume at end-diastole
(EDV) divided by body surface area. EF was calculated as (EDV-
ESV)/EDV, where ESV is the endocardial surface volume at end-
systole. Relative wall thickness was defined as twice the pos-
terior wall thickness divided by the end-diastolic diameter [19]
at mid-ventricle. Sphericity was calculated as the EDV divided
by the volume of a sphere with a diameter corresponding to the
major axis at end-diastole in LV long axis view [20]. Apical conic-
ity was calculated as the ratio of the apical diameter (defined
as the diameter of the endocardium one-third above the apex)
over the basal diameter [7] at end-diastole. Longitudinal short-
ening was calculated as the difference of the distance between
the centroid of the most basal ring of points to the most api-
cal point at end-systole divided by the distance at end-diastole.
These indices were not intended as a comprehensive list and
were limited to geometric indices (i.e., ratios that correct for size
in some sense), which have either been studied for many years
(e.g., relative wall thickness as a measure of concentric versus
eccentric hypertrophy), or can be readily calculated from several
different imaging modalities (e.g., 3D echocardiography, MRI, or
CT). Attempts were made to include only indices that are mod-
erately independent (e.g., end-systolic volume index was not in-
cluded since it can be derived from end-diastolic volume index
and EF).

In this paper, we use partial least squares (PLS) regression
[21, 22] to explain each response variable (remodeling index)
Y e RN*! with a linear combination of predictor variables (LV
surface points) X € RN*P | so that

Y = XB' +Ey, 1)

where g’ € RP*? is a vector of regression coefficients and Ey is
the residual vector. In this paper, the dimensions N and P de-
note the number of cases and the number of shape features (3D
surface point coordinates), respectively.

Details of the PLS regression method in comparison with
principal component regression are given in the Appendix. PLS
regression calculates the regression coefficients g’ as a linear
combination of M latent factors, where M < P. The latent factors
are chosen to maximize the covariance between response and
predictor variables.

In this paper, we use centered Y and X so that the intercept is
zero. We define the normalized vector of regression coefficients
(ignoring the intercept term) as the “remodeling component” as-
sociated with the corresponding remodeling index Y. By analogy
with PCA shape components, the remodeling component is a
unit length vector in shape space (column space of X). We define
“remodeling scores” by analogy with PCA scores, as the projec-

tion of each case onto the remodeling component:
Yscore = X, (2)

where B is the normalized regression coefficients. The esti-
mated remodelling indices can be calculated from Ys.ore by scal-
ing by the norm of g’ and adding the mean index.

Orthogonal remodeling components are calculated following
the flow chart in Fig. 1. First, the remodeling index with the
highest variance is chosen (EDVI). The corresponding remodel-
ing component is calculated by PLS regression. Then a residual
data matrix is generated by subtracting the projections of all
cases onto the remodeling component:

X(i+1) — Xi _ Xiﬂi(ﬂi)T7 (3)
fori=1,... K, whereKis the number of indices. The residual data
matrix is then used in the next iteration to calculate the next
remodeling component, associated with the remodeling index
with the next highest variance in the data set (in this case the
second index is sphericity). This process is repeated for allK =6
remodeling indices (Fig. 1). The resulting orthonormal remodel-
ing components [81, 2, ..., BX] form an orthogonal basis for a
linear subspace of X. Each g+ is orthogonal to the preceding
B! because the residual data matrix X+ is orthogonal to g .
With this approach, the order of the response variables is im-
portant. We ordered the remodeling indices based on their vari-
ance in remodeling scores over the population. This is a measure
of the shape variance explained by each index. The order of re-
modeling indices was: (1) EDVI, (2) sphericity, (3) EF, (4) relative
wall thickness, (5) conicity, and (6) longitudinal shortening.

Selection of the number of latent factors M has a fundamen-
tal effect on the resulting remodeling components. In the cur-
rent context, there is no standard method to choose the number
of latent factors. In the context of prediction, cross-validation
is commonly used to examine estimation error in the response
variable [23]. We compared remodeling components and scores
calculated from one-factor PLS (M = 1) to multi-factor PLS up to
M = 30 (see Fig. 2). Standard 10-fold cross-validation was per-
formed to test estimation error, showing that the mean squared
error in estimating Y did not substantially improve after 10 la-
tent factors. In terms of remodeling components, results for M >
10 were similar to M = 10. Experiments for 1 <M < 10 gave inter-
mediate results. Therefore, in the following, we only compared
two regression models: one-factor PLS (M = 1) and multi-factor
PLS (M = 10).

We demonstrate the clinical applicability of our proposed shape
decomposition method by examining how these clinically mo-
tivated remodeling components were associated with myocar-
dial infarction, compared to the clinical indices themselves, or
PCA shape components. Logistic regression models were used
to evaluate the discriminatory power of the orthogonal remod-
eling components to characterize LV remodeling due to myocar-
dial infarction. Logistic regression is a common clinical tool for
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Figure 1: Data processing flow chart. X, shape space; Y, response variable.

examining relative effects on disease, and relative strengths of
associations with disease can be quantified using odds ratios.
Confounding factors (age, sex, body mass index, diastolic blood
pressure, smoking status, and diabetes history) were included in
each regression model as baseline variables (covariates), since
they were significantly different between groups in Table 1. This
was done to control for the effects of these confounding factors
in each of the logistic regression models. Four logistic regres-
sion models were examined. Model 1 consisted of the baseline
variables and the first 6 PCA component scores. This was used
as a reference for comparison. Model 2 consisted of the baseline
variables and the 6 clinical remodeling indices. Model 3 included
the baseline variables and the orthogonal remodeling compo-
nent scores derived from one-factor PLS. Model 4 included the
baseline variables and the orthogonal remodeling component
scores derived from multi-factor PLS. In each case the presence

X

— Longitudinal
shortening

or absence of symptomatic disease was defined by the depen-
dant variable as 1 or 0, respectively.

Codes were implemented in Matlab (Mathwork, Natick, MA) and
R (The R Foundation, Vienna, Austria) programming languages
and are available from the Cardiac Atlas Project web sitel. The
Matlab implementation requires the plsregress function from
the Statistics and Machine Learning Toolbox. The R implemen-
tation requires the pls package [25]. We used SIMPLS algorithm
[22] to compute the PLS regression in both versions due to its fast
calculation. We compared the PLS regression coefficients using
different methods provided by the pls package from R, that is,

1 http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/
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Figure 2: Mean squared error predictions of PLS regression coefficients using dif-
ferent number of latent factors (M). 10-fold cross validations were applied.

kernel, wide kernel, and classical orthogonal scores algorithms,
and the results were very similar in the regression coefficients
obtained.

Root mean square (RMS) errors in the angle between remodeling
component unit vectors were used to quantify the differences
arising from different training data sets: (1) asymptomatic cases
from 100 to 1900, versus all asymptomatic cases, and (2) bal-
anced data set (300 asymptomatic and 300 myocardial infarc-
tion) versus the full data set (1991 asymptomatic and 300 my-
ocardial infarction).

For the logistic regression, the independent variables (com-
ponents and baseline variables) were included simultaneously
and the models were computed using SAS. A P value of <0.05
was considered significant. Four commonly used measures were
used to quantify the goodness-of-fit of the regression models:
deviance, Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), and the area under the receiver operat-
ing characteristic curve (AUC) [12]. Smaller deviance, AIC, and
BIC, and larger AUC are indicative of better goodness-of-fit. Sta-
tistical tests to determine whether the AUC of a model is sig-
nificantly greater or less than another model were performed
using one-sided paired nonparametric tests for AUC values [26],
implemented in the pROC package [27]. A P value < 0.05 was
considered as statistically higher or smaller AUC value.

Unless otherwise stated, all experiments were performed in-
cluding all cases (asymptomatic and MI patients). Participant
characteristics are summarized in Table 1. Some demographic
characteristics were significantly different between the asymp-
tomatic subjects and the myocardial infarction cases, including
gender ratio, age, height, weight, blood pressure, and diabetes
history. Clinical LV remodeling indices were also significantly
different, as expected. The myocardial infarction patients had
larger LV EDVI, increased sphericity, thicker walls, less conic-
ity, smaller EF, and reduced longitudinal shortening than the
asymptomatic subjects.

The orthogonal PLS components corresponding to EDVI,
sphericity, EF, relative wall thickness, conicity, and longitudinal
shortening are visualized in Fig. 3 (M = 1) and Fig. 4 (M = 10).
These visualizations are useful in understanding the effect of
each component on shape.

Linear correlation coefficients (Pearson) were calculated be-
tween the clinical indices and the component scores in the com-
bined population. Correlation coefficients between PLS remod-
eling scores and clinical indices are reported in Table 2 for M =
1 and in Table 3 for M = 10. A single latent factor resulted in
zero correlation between the remodeling scores and the indices
corresponding to all the components previously removed in the
Gram-Schmidt procedure (Table 2). Using more latent factors re-
sulted in better correlation between each remodeling score and
its corresponding index (diagonal elements are higher in Table 3
than in Table 2). Correlation coefficients between clinical indices
and scores of the first 6 PCA components of the original dataset
are shown in Table 4 for comparison.

The correlation coefficients among the clinical indices are
shown in Table 5. These show strong correlations between sev-
eral clinical indices. The decreasing diagonal correlations in Ta-
bles 2 and 3 are likely due to this interdependence between clin-
ical indices. Thus, RWT and LS are related to indices previously
removed by the orthogonalization process (RWT is related to
EDVI and sphericity, LS is related to EF, etc.).

Correlations between the PLS remodeling scores are shown
in Table 6 for M = 1 and in Table 7 for M = 10. The minimum
correlation between remodeling scores was achieved with M =
1 (Table 6).

Table 1: Demographics and clinical remodeling indices for asymptomatic subjects and patients with myocardial infarction (mean + SD). BMI,

Body mass index.

Variable Unit Asymptomatic MI cases P value
Sex F/M 1034/975 60/238 <0.01

Age years 61.47 +10.15 62.76 + 10.76 0.043
Height cm 165.98 + 9.99 173.82 £9.77 <0.001
Weight kg 76.75 £+ 16.50 90.06+14.14 <0.001
BMI 27.77 £5.09 29.73+5.57 <0.001
SBP mmHg 126.28 + 21.98 126.36 &+ 17.50 >0.05

DBP mmHg 71.49 £+ 10.33 73.26 £9.82 0.006
Diabetes history % 13.11 35.67 <0.001
Smoking status % 12.51 11.33 >0.05

EDVI 67.83 +13.29 96.53 &+ 25.03 <0.001
Sphericity 0.38 £ 0.08 0.41 £+ 0.09 <0.001
RWT % 39.71+9.49 35.21 +£8.38 <0.001
Conicity 0.74 £ 0.08 0.70 £ 0.08 <0.001
EF 0.63 £0.07 0.41+0.11 <0.001
LS 0.13 £ 0.04 0.08 £ 0.03 <0.001
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Figure 3: Plot of the PLS clinical components (M = 1). Viewpoint is from the posterior with the septum on the left. ED, end-diastole; ES, end-systole. Full animations of
each clinical component are shown http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes.

A series of experiments was performed to compare remod-
eling components between the full data set (1991 asymptomatic
+ 300 myocardial infarction) with symmetric datasets, that is,
300 asymptomatic and 300 MI patients) with 50 trials of ran-
domly selected asymptomatic subsets. In this case, similar re-
modeling components are reflected by the same unit B vectors,
which can be measured by angle differences (derived from the
dot product) between two B vectors. Fig. 5a shows the root mean
square errors of B vector differences between the subset and
the full models. Only the first component (EDVI) showed <5 de-

grees difference, butincreasing differences in other components
were observed. This was expected since the characteristics of
the cases included in the training set have an influence on the
results.

Considering only the asymptomatic cases, we investigated
the differences in the remodeling components with different
number of samples. Fig. 5b shows the RMS errors of randomly
sampled cases (50 trials each) with respect to the full 1991 cases.
At least 1100 cases were needed to get below 10 degrees differ-
ence with the full cohort in all components.
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Figure 4: Plot of the PLS clinical components (M = 10). Viewpoint is from the posterior with the septum on the left. ED = end-systole; ES = end-diastole.

The results of logistic regression models to characterize re-
modeling associated with myocardial infarction using the or-
thogonal remodeling scores are shown in Table 8. For the one-
factor PLS remodeling scores, the odds ratio of EDVI, spheric-
ity, EF, wall thickness, and conicity indicate that myocardial
infarction patients tend to have larger and more spherical
LV shapes with thinner walls and a less conical shape. The
multi-factor PLS remodeling scores showed somewhat differ-
ent results, with EDVI, EF, conicity, and longitudinal shorten-
ing scores being significant. This may be due to the increased
multi-colinearity between remodeling scores in the multi-factor
case.

Table 9 shows the comparisons of the regression models. All
four regression models showed significant improvement com-
pared with the baseline variables alone. The logistic regression
based on one-factor PLS orthogonal remodeling scores showed
the best deviance, AIC and BIC, and AUC. The AUC (Fig. 6) for the
one-factor remodeling scores was significantly greater than the
multi-factor remodeling scores and the original clinical indices,
but was not significantly different from the PCA model.

The standardized coefficients of the logistic regression model
were used to create a linear combination of the PLS (M = 1) com-
ponents generating a combined remodeling score, called the lo-
gistic regression score, separating the two groups. The F logistic



Table 2: Correlation coefficients between the clinical indices and the PLS remodeling component scores (M = 1).

EDVI score Sphericity score EF score RWT score Conicity score LS score
EDVI 0.82 0 0 0 0 0
Sphericity 0.03 0.83 0 0 0 0
EF -0.75 0.03 0.61 0 0 0
RWT —0.20 —0.16 —0.04 0.53 0 0
Conicity —-0.14 —0.28 0.30 0.21 0.72 0
LS —0.45 0.03 0.61 —-0.17 0.20 0.53
Table 3: Correlation coefficients between the clinical indices and the PLS remodeling component scores (M = 10).
EDVI score Sphericity score EF score RWT score Conicity score LS score
EDVI 0.94 0.27 —0.34 —0.64 —-0.13 —-0.31
Sphericity 0.30 0.97 —0.15 —0.16 —-0.25 —-0.13
EF —-0.41 —0.28 0.90 0.22 0.25 —0.02
RWT —0.65 —0.12 0.26 0.99 0.25 0.53
Conicity —-0.13 —-0.22 0.38 0.25 0.97 0.24
LS —0.32 —-0.13 0.02 0.56 0.25 0.98
Table 4: Correlation coefficients between the clinical indices and the first six PCA shape components.
PC1 PC2 PC3 PC4 PC5 PC6
EDVI 0.80 —-0.01 —0.74 —0.18 —-0.13 —0.45
Sphericity —0.26 —0.80 0.19 0.19 0.30 0.06
EF —-0.01 0.09 —-0.11 0.03 —0.09 —0.20
RWT 0.10 0.24 —-0.21 —-0.25 —-0.25 —0.18
Conicity 0.10 0.13 —-0.15 —-0.11 —-0.15 —-0.14
LS 0.21 0.02 0.03 —-0.15 0.50 0.37
Table 5: Correlation coefficients among the clinical indices.
EDVI Sphericity EF RWT Conicity LS
EDVI 1 0.28 —0.60 —-0.37 —-0.11 —0.29
Sphericity 0.28 1 —-0.11 —0.28 —0.22 —0.13
EF —0.60 -0.11 1 0.18 0.26 0.57
RWT —-0.37 —0.28 0.18 1 0.32 0.00
Conicity -0.11 -0.22 0.26 0.32 1 0.26
LS —0.29 —0.13 0.57 0.00 0.26 1
Table 6: Correlation coefficients among the PLS remodeling scores (M = 1).
EDVI score Sphericity score EF score RWT score Conicity score LS score
EDVI score 1 —-0.29 —-0.15 0.22 —0.15 —0.08
Sphericity score —-0.29 1 0.001 —0.04 0.01 0.22
EF score —-0.15 0.001 1 0.09 0.09 0.47
RWT score 0.22 —0.04 0.09 1 —0.08 0.002
Conicity score -0.15 0.01 0.09 —0.08 1 0.16
LS score —0.08 0.22 0.47 0.002 0.16 1

regression scores (Model 3) for all cases were calculated, and the
median shapes were calculated by projecting the coefficients of
the PLS components estimated in the logistic regression model
back on the population shape space. These are plotted in Fig.
7. This graphically shows the shape changes that best distin-

guish the two groups with baseline variables adjusted, show-
ing that LV remodeling due to myocardial infarction is associ-
ated with larger volume, more spherical shape, and thinner wall
thickness. Since the logistic regression coefficients refer to con-
tributions from remodeling components, the amount of each



Table 7: Correlation coefficients among the PLS remodeling scores (M = 10).

EDVI score Sphericity score
EDVI score 1 0.29
Sphericity score 0.29 1
EF score —0.68 -0.17
RWT score —-0.37 -0.15
Conicity score —-0.15 -0.25
LS score —0.34 -0.14

remodeling component contributing to the logistic regression
score could be quantified. This gives an intuitive explanation of
the logistic regression score in terms of remodeling components
associated with clinical remodeling indices.

Patients with myocardial infarction exhibit significant shape
changes with respect to the normal population due to cardiac
remodeling. An atlas-based analysis of cardiac remodeling has
previously shown better characterization of remodeling due to
myocardial infarction than traditional mass and volume anal-
ysis in large data sets [12]. The framework consisted of three
steps: (1) fitting a finite element model to the LV MR images, (2)
shape component extraction from the aligned shapes, and (3)
quantification of the association between the components and
disease using logistic regression. Although PCA provides orthog-
onal shape components, which describe the maximum amount
of variation for the fewest number of components, these compo-
nents typically do not correspond with clinical indices of cardiac
remodeling. To avoid this problem and give the components a
clear clinical interpretation, while maintaining the advantages
of orthogonality, we developed a method to generate orthogonal
shape components from any set of clinical indices using PLS.

In this paper, we generated a linear orthogonal shape ba-
sis from the full finite element shape parameters. Clinical in-
dices, such as EDVI, sphericity, EF, relative wall thickness, conic-
ity, and longitudinal shortening, were derived from the finite el-
ement shape model. Similar to PCA, the shape components de-
rived from PLS regression are orthogonal. In PCA, the resulting
component scores also have zero correlation across the popula-
tion cohort, but this is not the case with PLS. Table 7 shows that
PLS component scores with M = 10 were significantly correlated,
similar to the original clinical indices in Table 5. This is expected
since M = 10 results in strong correlations between scores and
indices (Table 3). PLS components using both M = 10 and M =
1 obtain effective shape representation for each clinical index,
as evidenced by the correlation coefficients with the clinical in-
dices (diagonal terms in Tables 2 and 3), compared to the first six
components of PCA (Table 4).

We found that the correlations between the scores of differ-
ent indices for PLS with M = 1 become smaller than the original
indices and scores of PLS with M = 10. For example, the corre-
lation between EDVI and EF was originally —0.60 (Table 5), then
became —0.68 from PLS with M = 10 (Table 7); however it was
—0.15 from PLS with M = 1 (Table 6). Not only did a single latent
factor result in the least correlation between component scores
(Table 6), but it also resulted in zero correlation between com-
ponent scores and previously removed indices (upper triangle
of Table 2). This result is a feature of one-factor PLS applied in
this context. One-factor PLS computes a single latent factor that
maximizes the cross-correlation between X and Y. The result-

EF score RWT score Conicity score LS score
—0.68 —-0.37 -0.15 —0.34
-0.17 -0.15 —-0.25 -0.14

1 0.27 0.25 0.53
0.27 1 0.31 —-0.01
0.25 0.31 1 0.24
0.53 —0.01 0.24 1

ing remodeling component is a vector in the same direction as
this single latent factor (in fact 8 o« XTY ). Subtracting this com-
ponent from the shape space leads to zero correlation between
the residual shapes and Y. For multi-factor PLS, the resulting re-
modeling component is a combination of all the latent factors
and no longer has this property.

These orthogonal components derived from traditional re-
modeling indices may be used to partition shape into contribu-
tions from each component, independent of the others. Corre-
lation analysis shows that these clinically derived components
have high correspondence with traditional remodeling indices
(diagonals in Tables 2 and 3), either virtually following the clin-
ical indices’ original correlation (Table 5) in M = 10 (Table 3) or
by sacrificing some of the diagonal correlations in exchange for
decoupling with previous indices in M = 1 (Table 2). Remodeling
scores at M = 10 are more correlated with the original clinical
indices than M = 1 but at the expense of their ability to explain
variance in the original shape space. It can therefore be argued
that M = 10 generates more ‘specific’ shapes with lesser repre-
sentative power.

Previous studies have also used PLS to derive information on
cardiac remodeling [28]. Lekadir et al. [28] used PLS to character-
ize myocardial infarction using class labels as the response vari-
able and the data matrix as the predictor variables. They found
that running the regression with a range of latent factors and
combining the estimations with a median operator could obtain
better performance. In the current paper, logistic regression was
used (instead of PLS in [28]) with the class labels as the response
variable, because this is a commonly used clinical tool to exam-
ine associations with disease, and it is simple to calculate rela-
tive effects of the components on the response variable as odds
ratios. The current paper also differs from [28] in the use of PLS
to derive orthogonal remodeling components and the finding
that a single latent factor reduces correlations in the resulting
remodeling scores.

The results also show that clinically derived components
quantitatively characterize remodeling associated with myocar-
dial infarction with similar power as PCA components. Three lo-
gistic regression models based on the clinical indices, PCA com-
ponents, and orthogonal remodeling components derived from
clinical indices were all similar in terms of goodness of fit. Sig-
nificance tests on areas under the ROC curves (AUC) revealed
that the one-factor PLS model showed significantly greater AUC
compared with the multi-factor PLS model and the clinical in-
dices model, but not significantly different from the PCA model.
Hence the single latent factor remodeling components charac-
terized myocardial infarction similarly to PCA, while having the
added advantage of having clear clinical interpretation with re-
spect to their corresponding clinical indices, as well as being an
orthogonal decomposition of shape space.

Coefficients of the remodeling components estimated in the
logistic regression model were projected back on the population
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Figure 5: Root mean squared error (RMSE) in terms of angle differences between remodeling components. (a) Root mean squared errors between randomly sampled
balanced data sets (300 ASYMP and 300 MI) and full data set (1991 ASYMP and 300 MI). Average of 50 trials. (b) Root mean squared errors varying number of asymptomatic

subjects compared with the full data set (1991 samples). Average of 50 trials.

shape space. Fig. 7 visualizes the shape changes characterizing
presence of disease. This combined component can be used for
tracking individual patients over time in future studies, by quan-
tifying the degree to which their LV shapes compare with the
remodeling spectrum.

In this study, we included all of the available cases (1991
asymptomatic and 300 myocardial infarction), since we were
primarily interested in the proof of concept. Having a balanced
data set is preferable to enable the analysis of differences be-
tween “asymptomatic remodeling” and “symptomatic remod-
eling”, which would be of considerable interest in terms of
physiological driving factors. However, Fig. 5b indicates that

over 1000 cases would be required for robust identification
of remodeling components. Also, physiological functions be-
tween different pathological groups can be quite different.
For example, comparing the remodeling components of 1991
asymptomatic subjects only with remodeling components of
1991 asymptomatic + 300 myocardial infarction revealed dif-
ferences of 9.1 degrees in EDVI, 6.4 degrees in sphericity, 15.1
degrees in EF, 7.0 degrees in RWT, 9.5 degrees in conicity,
and 8.4 degrees in longitudinal shortening. Hence, the my-
ocardial infarction patients, which were only 24 % from all
samples, had a significant influence on all the remodeling
components.



Table 8: Four logistic regressions for myocardial infarction.

Standard
Variable Coefficient error P value
Model 1: PCA shape components + baseline variables
PC1 2.644 0.177 <.0001
PC2 —0.605 0.102 <.0001
PC3 0.071 0.112 0.524
PC4 2.031 0.153 <.0001
PC5 0.391 0.106 <.0001
PCé6 -0.113 0.119 0.342
Model 2: Clinical indices + baseline variables
EDVI 0.041 0.008 <.0001
Sphericity 0.002 0.014 0.870
EF —0.164 0.015 <.0001
RWT 0.002 0.014 0.875
Conicity —-0.037 0.016 0.018
LS —0.148 0.037 <.0001
Model 3: PLS remodeling scores (M = 1) + baseline variables
EDVI score 2.859 0.191 <.0001
Sphericity score 0.895 0.125 <.0001
EF score —1.540 0.148 <.0001
RWT score -1.289 0.146 <.0001
Conicity score 0.331 0.124 0.007
LS score —0.041 0.140 0.769
Model 4: PLS remodeling scores (M = 10) + baseline variables
EDVI score 0.823 0.161 <.0001
Sphericity score —0.189 0.114 0.098
EF score —1.843 0.180 <.0001
RWT score 0.087 0.128 0.495
Conicity score -0.393 0.122 0.001
LS score —0.665 0.141 <.0001

Standardized Odds OR 95 % Confidence
coefficient ratio (OR) Interval
1.455 14.066 9.942 19.901
—-0.334 0.546 0.447 0.666
0.039 1.074 0.863 1.336
1.111 7.625 5.652 10.287
0.215 1.478 1.200 1.821
—0.062 0.893 0.708 1.127
0.412 1.042 1.027 1.058
0.010 1.002 0.975 1.030
—0.966 0.849 0.825 0.874
0.012 1.002 0.975 1.030
-0.161 0.963 0.934 0.994
-0.325 0.862 0.802 0.927
1.574 17.444 11.997 25.365
0.492 2.446 1.915 3.124
—0.846 0.214 0.160 0.287
—0.710 0.275 0.207 0.367
0.181 1.392 1.093 1.774
—0.023 0.960 0.729 1.263
0.454 2.277 1.661 3.120
—0.103 0.828 0.662 1.036
—-1.016 0.158 0.111 0.225
0.048 1.091 0.849 1.403
-0.216 0.675 0.531 0.858
—0.365 0.514 0.390 0.678

All the models are adjusted for age, gender, BMI, DBP, smoking status, and diabetes history. Bold rows indicate P < 0.05.

Table 9: Comparison of the four logistic regression models. Smaller deviance, AIC and BIC, and larger AUC are indicative of better goodness-

of-fit. Bold row indicates best performance

Deviance
Baseline 1560
Indices 710
PCA scores 607
PLS scores (M = 1) 569
PLS scores (M = 10) 683

Supervised dimension reduction techniques such as infor-
mation maximizing component analysis and linear discriminate
analysis have also been used to extract a single remodeling com-
ponent that can best characterize myocardial infarction using
surface sampling [29]. In the current study, the shape compo-
nents of each clinical index were obtained first and then com-
bined using logistic regression. The shape changes due to my-
ocardial infarction obtained by this logistic regression model can
therefore be more easily explained as a combination of well-
understood shape components through the logistic regression
coefficients.

This method can be applied to any set of (moderately in-
dependent) clinical measures, enabling visualization and quan-
tification of the corresponding shape components, thereby fur-
ther exploiting shape information in a clinically meaningful
fashion.

AIC BIC AUC
1574 1615 0.7415
727 802 0.9594
633 708 0.9725
595 669 0.9739
709 784 0.9598

The cross-sectional nature of these data limits the understand-
ing that can be gained on the physiological factors underlying
remodeling processes. However, the methods developed in this
work can be applied to future studies to track patients over time,
or to epidemiological studies such as the Multi-Ethnic Study of
Atherosclerosis [30] and the UK Biobank [31]. We also limited the
clinical remodeling indices examined in this paper to those ge-
ometric indices that have been well established in the clinical
literature. These indices are also readily available from several
imaging modalities such as 3D echo and CT. The order the in-
dices are included in the basis has an effect on the resulting re-
modeling components. While we used the variance of the cor-
responding remodeling scores (a measure of shape variance ex-
plained), other methods are possible and this requires further
research. Finally, we did not include structural information on
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Figure 6: ROC curves for the five logistic regression models. The right figure shows a zoomed-in view to demonstrate the differences between the four models. ROC,

receiver operating curve.

Asymptomatic

MI Patients

ED ES

ED ES

Figure 7: Visualization of shape changes between asymptomatic volunteers and MI patients, using the combined PLS (M = 1) components. Viewpoint is from the
posterior with the septum on the left. Plots show the shapes associated with the median logistic regression score for the asymptomatic and MI patient groups
respectively. MI patients show larger ventricles, less ejection, and thinner walls. ED, end-diastole; ES, end-systole

the location and size of the infarct. While more information is
becoming available on the interesting effects of infarct size and
transmurality, this is left for future work. Also, many patients
have comorbidities such as valvular disease, which was not ex-
amined in the current study.

Potential implications

An orthogonal decomposition of shape in relation to remod-
eling indices of known prognostic value will enable multi-
dimensional characterization of the ways in which the heart
adapts with the progression of disease, for example, after my-
ocardial infarction. The remodeling components were able to
characterize disease as well as standard methods, with the
added advantages of having clear clinical interpretation with
respect to their corresponding clinical indices, as well as be-
ing an orthogonal decomposition of shape space. The resulting
remodeling scores can be used to track the progression of re-
modeling over time, against reference populations. This would
enable automatic computation of z-scores giving precise infor-
mation on how the patient’s heart compares against the ref-
erence population. Although the remodeling components were
generated from a largely asymptomatic population in this work,
we showed how they describe the shape changes undergone
in myocardial infarction relatively well. We also showed how
the amount of each remodeling component could be quanti-
fied in association with the presence of clinical disease, high-

lighting significant contributions of ventricular size, sphericity,
and relative wall thickness. These methods enable new knowl-
edge to be derived from medical imaging examinations on the
underlying mechanisms driving the adaptation of the heart in
response to disease. Future work can also examine how the re-
modeling scores are related to future adverse events, for exam-
ple, using clinical outcomes.

Availability of supporting data and materials

All data and results are available from www.cardiacatlas.org.
The data are not publicly available due to IRB restrictions on the
contributing studies; however, data are made available on ap-
proval of a research application submitted under the Cardiac At-
las Project data sharing policy (www.cardiacatlas.org). Data fur-
ther supporting this work are available in the GigaScience repos-
itory, GigaDB [32].
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Let X € RN*? be a data matrix of predictor variables where each
row is a case (shape vector) and each column a shape feature
(in our case [x y z] coordinates of sampled points). There are N
cases and P shape features. We first “column center” the data by
subtracting the mean across cases.

PCA decomposes X into an othonormal matrix ® € RP*M
containing eigenvectors of the covariance matrix X'X. The
columns of @ define “shape components”. M is the number of
shape components used to approximate X, typically M < P, by

Xest = T®T (A1)
T = Xo, (A2)

where T € RN*M s a matrix of “scores.” Each case is thus ap-
proximated by a linear combination of shape components. The

weights of the combination (rows of T) are the amount of each
shape component present in that case, and are calculated by
projecting each shape vector onto the shape component.

In principal component regression (PCR), the response or de-
pendent variable Y (at present we consider a single response
variable being a centered remodeling index such as EDVI) is re-
gressed against the principal component scores (scores being
used as predictor variables):

Yest = TBpcr, (A.3)

where Bpcr is a vector of regression coefficients.

The advantage of this method is that the regression co-
efficients do not suffer from the well-known multicolinear-
ity problem, in which the regression coefficients can be ill-
defined if the independent variables are correlated, leading to
instability in future predictions. Note that in PCA the result-
ing scores T are orthogonal, so the resulting scores have zero
correlation within the dataset between different component
scores.

The PCR can be written as
Yest = TBpcr = X®Bpcr :Xﬂ’pCR (A.4)

Here X are the predictor variables and the regression coefficients
are calculated from the PCR as Bpcx = ®Bpcr - This vector of re-
gression coefficients can be thought of as the linear combination
of shape components that best predict the response variable.
We define a “PCR remodeling component” 8, by normalizing
Bocr (note the data and response are centered so we exclude
the zero intercept). The PCR remodeling scores are defined as
follows: ,
X‘?PCR = XBrcr (A.5)
|Brcrl

The remodeling score for each case is then a projection (inner
product) of the shape vector on the remodeling component. The
remodeling component is defined by analogy to PCA shape com-
ponents as a unit length direction in shape space. Remodeling
scores are defined by analogy to shape scores in PCA; we can get
the estimated remodeling index from Ypcrscore by scaling by the
norm of 3.z and adding the mean.

YPC Rscore =

A problem with PCR is that the independent variables are cho-
sen by their ability to explain variance in X, not Y. PLS regression
solves this problem by finding the “latent factors” that best ex-
plain the covariance between Y and X. These are ranked from
largest to smallest covariance, so the first factor explains the
most covariance, the second factor for the second largest covari-
ance, and so on.
PLS finds a linear decomposition of X and Y such that

X=Tw" 4 Ex (A.6)

Y = UQT + Ey, (A7)
where T e RNM  and U e RN*M are PLS scores for predic-
tor and response variables, respectively. Similarly, ¥ e RP*M
and @ e RE*M (K = 1 for a single response variable) are the
PLS loadings for the predictor and response variables. Unlike
PCR, ¥ and @ are not orthogonal and not normalized. The
parameter M <P is the number of latent factors, typically
determined by examining the percentage variance explained
inY.



PLS derives the g regression coefficients as linear combina-
tions of the latent factors, which are chosen to maximize cor-
relation between response and predictor variables. Several vari-
ants exist in the literature, differing in the calculation of T [21,
22]. However, similar to PCR, we can define PLS remodeling com-
ponents and remodeling scores as

Xﬂ,PLS
{ﬂ/PLS|

YpLsscore = = XPBrLs (A.8)

As for PCR, the estimated Y can be derived from the scores
by scaling by |85, 5| and adding the mean.

The orthogonalization process given in (3) can be applied to the
results of PCR or PLS regression. PLS regression is always more
efficient than PCA regression, in that fewer terms are required
to capture the variance of the response variable. However, if all
PCA components are included in the PCR, and all latent factors
in the PLS, the two methods are equivalent. One-factor PLS (i.e.,
M = 1in the PLS regression) has particular properties that may
make it attractive in some applications. For example, one-factor
PLS has been shown to be equivalent to rescaled ridge regression
as the ridge parameter tends to infinity [22].

For K > 1, that is, more than one response variable included
inY, the PLS regression finds latent factors that explain the most
covariance between the X and Y matrices simultaneously. This
was not considered for the current work, because the resulting
regression coefficients are not orthogonal.
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