
Multidrug resistance in group B streptococcus causing urinary tract infection exposes an erythromycin-driven protective effect against oxidative stress

Devika Desai 1* , Kelvin G. K. Goh 1* , Sandon Ranadeera 1 , Ellen Copeman 1,2 , Matthew J. Sullivan 1,2 , and Glen C. Ulett 1†

¹School of Pharmacy and Medical Sciences, and Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, QLD, Australia 4222

²School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom

Supplemental Material.

Supplementary Figure 1: Effect of erythromycin (ERY) on H₂O₂-driven attenuation of growth of GBS strain 267 and GBS strain 760. The bacteria were grown in THB medium (black line) and compared to THB + ERY (black dashed), and THB + H₂O₂ (blue line) (A). Beyond 9h, bacterial growth in media with H₂O₂ (blue line) was compared to growth in media with both H₂O₂ and ERY (B). The concentrations of ERY and H₂O₂ used were 0.0625 μg/mL and 0.5 mM, respectively. Lines and shading show mean and SEM for twelve independent assays; growth curves were compared using area-under-the-curve analysis followed by student's *t* tests to compare test conditions to control conditions (e.g., for effect of ERY on growth of MDR GBS exposed to H₂O₂. There was no significant effect of ERY on H₂O₂-driven attenuation of growth of several other GBS strains (data not shown).