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Bridging infectious disease vaccines with cancer
immunotherapy: a role for targeted RNA based
immunotherapeutics
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Abstract

Tumor-specific immunotherapy holds the promise of eradicating malignant tumors with exquisite precision without
additional toxicity to standard treatments. Cancer immunotherapy has conventionally relied on cell-mediated
immunity while successful infectious disease vaccines have been shown to induce humoral immunity. Efficacious
cancer immunotherapeutics likely require both cellular and humoral responses, and RNA based cancer vaccines are
especially suited to stimulate both arms of the immune system. RNA is inherently immunogenic, inducing innate
immune responses to initiate cellular and humoral adaptive immunity, but has limited utility based on its poor in vivo
stability. Early work utilized ‘naked’ RNA vaccines, whereas more recent efforts have attempted to encapsulate RNA
thereby protecting it from degradation. However, feasibility has been limited by a lack of defined and safe targeting
mechanisms for the in vivo delivery of stabilized RNA. As new cancer antigens come to the forefront with novel RNA
encapsulation and targeting techniques, RNA vaccines may prove to be a vital, safe and robust method to initiate
patient-specific anti-tumor efficacy.
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Introduction
Tumor-specific immunotherapy is a burgeoning field
targeting tumor antigens in the form of peptides, nucleic
acids, and cell lysates to induce host-immunity [1]. The
exquisite specificity of the immune system and the
recent demonstrated efficacy of immune-based treatment of
advanced cancers upholds immunotherapy as a promising
therapeutic modality; however, the immune correlates
necessary to guide successful intervention remain elusive
[2-7]. While further testing is necessary, both humoral and
cell-mediated immunity are likely paramount for successful
cancer immunotherapeutics [4,8-11]. To bypass the
complexity of cellular therapeutics, cancer vaccinations
have been advanced to recruit adaptive responses, but
have suffered from their weak immunogenicity in human
clinical trials [11]. This has prompted the development
of RNA cancer vaccines designed to mimic infectious
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challenge, thereby stimulating the innate immune system
to augment cellular and humoral immunity [12].
Although some infectious disease vaccines are capable

of inducing cell-mediated immunity, humoral immune
responses remain the hallmark of effective infectious
disease vaccination strategy [13]. These vaccination strat-
egies can be broken down into anti-bacterial immunizations
using inactivated prokaryotic proteins, capsular or
conjugated polysaccharides, and anti-viral immunizations
utilizing inactivated killed virions or live attenuated viral
vaccines [14]. A better understanding of infectious vaccine
approaches and immunological responses may bolster
current RNA cancer immunotherapeutic strategies.
Review
Efficacious infectious disease vaccines
Bacterial immunizations for diphtheria, tetanus, pertussis,
(collectively known as DTaP- diphtheria-tetanus-acellular
pertussis vaccine), all utilize aluminum (alum) containing
adjuvants, and demonstrated efficacious and prophylactic
immune responses prompting their adoption into the
primary vaccination series in children [15]. Inactivated
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protein antigens from these bacteria are injected with
alum salts, initiating inflammation that recruits dendritic
cells (DCs) to process bacterial antigens for MHC
class II presentation to CD4+ T lymphocytes initiating
Th2 responses that induce humoral immunity [15-18].
Additionally, polysaccharide antigens have been utilized to
induce humoral responses; these include the 23 valent
capsular polysaccharide vaccine against pneumococcus
(Pneumovax), and the 4 valent polysaccharide vaccine
against meningiococcus (MPSV-4) [9]. Since polysaccharide
vaccines primarily induce a B-cell-dependent immune
response, preventing bacteremia but not fully protecting
against pneumococcal or meningococcal infections,
conjugation of capsular polysaccharides with a highly
immunogenic protein, (i.e. a non-toxic diphtheria toxoid),
has been shown to induce B- and T-cell helper responses
for more complete protection [19]. This has been employed
in the development of conjugated polysaccharide vaccines
including Prevnar-13 for pneumococcus, and MCV-4
(Menactra) for meningiococcus [9].
Similar to inactivated bacterial vaccines, viral vaccines in-

duce humoral immunity through a Th2 dependent
response; however there is growing evidence that Th1 medi-
ated immunity plays a prominent role in the induction of
antigen specific CD8+ T cells after administration of live
RNA viral vaccines [19-30]. For example, influenza A is an
RNA virus that can be prepared as both a live attenuated, or
killed whole-virion vaccine [31,32]. Unlike killed influenza
viruses which contain the inactive viral glycoprotein
(hemagglutinin) for the induction of humoral immunity, the
attenuated influenza virus contains a live single stranded
RNA genome [31,32]. This RNA-genome activates plasma-
cytoid DCs (pDCs) through TLRs inducing type I IFN pro-
duction, while activating conventional DCs and stromal cells
through retinoic acid-inducible gene I (RIG-I) dependent
sensors thereby eliciting potent Th1 T cell immunity
[31-37]. Additional examples include the yellow fever RNA
whole viral vaccine (YF-17D), which activates DCs through
concomitant TLR and RIG I activation, inducing prominent
type I interferon (IFN) and CD8+ T cell responses [22-24].
Similarly, the DNA vaccinia virus for smallpox may stimu-
late several pathogen recognition receptors (PRRs) eliciting
the induction of CD8+ T cell expansion, IFN production,
and memory formation [24-26,28,30]. Longitudinal analyses
of T cell responses responding to the live yellow fever virus
and smallpox vaccines demonstrated brisk and specific pri-
mary effector CD8+ T cell responses that ultimately differ-
entiated into long-lived highly functional memory cells
[38]. Despite these observations, Bacille Calmette–
Guérin (BCG), a live attenuated strain closely related
to Mycobacterium tuberculosis, is one of the only licensed
vaccines thought to work primarily through Th1 T-cell
responses [29,39]. The immunogenicity of BCG is attributed
to TLR recognition of the bacterial cell wall and nucleic
acid-sensing PRRs; however, CD8+ T-cell responses are
highly variable rendering the efficacy of BCG vaccines
unreliable in a clinical setting [40-42].
Thus, while infectious vaccine strategies have had

tremendous success, notwithstanding BCG, they have
historically relied on humoral immune responses. RNA
viruses administered as whole viral vaccines, evidenced by
attenuated influenza and yellow fever conjugates, can
induce combinatorial Th1 and Th2 responses suggesting
that a synergistic approach between cellular and humoral
immunity may mediate efficacy in malignancies and
resistant infectious diseases.

Cancer immunotherapeutic RNA vaccines
RNA is recognizable by pathogen-associated molecular
patterns (PAMPs), which are potent stimulators of PRRs
such as TLR receptors 7/8 thereby activating DCs to initiate
anti-tumor responses [43-46]. The activation of these
antigen presenting cells (APCs) induces Th1 and Th2
type responses through type I IFN signaling via PAMP
recognition by PRRs [12].

Nucleic acid vaccines
Based on their propensity for inducing both antibody
and T cell responses, nucleic acids encoding for cancer
antigens are an attractive immunotherapeutic platform
for the transfection of APCs [47]. The magnitude of
these responses has been lower in DNA vaccines, which
are hampered by inadequate delivery mechanisms and
mired with constraints of crossing both cell and nuclear
membranes [20,47]. The etiology for DNA’s poor immuno-
genicity remains unclear, but may involve lower expression
of DNA-sensing machinery, differing expression patterns of
nucleic acid-sensing PRRs or issues related to DNA delivery
and processing in different cell types [47-49]. These con-
cerns, along with the potential for oncogenesis through
genomic integration, have ignited RNA vaccine research as
a promising alternative [47]. RNA vaccines are advanta-
geous since they require only cytoplasm for entry, cannot
be integrated into the genome, and are easy to produce and
store [50]. RNA can be derived from limited tumor
specimens, amplified to generate copious amounts of
patient-specific tumor antigens, and be delivered to
patients using ex vivo priming of autologous DCs or
in vivo delivery to target APCs [51-53].

‘Naked’ RNA cancer vaccines
The initial experiments with RNA vaccines demonstrated
that direct injection of messenger RNA (mRNA) into
murine skeletal muscle induced in vivo gene expression
[54]. These initial observations provided the foundation
for later experiments exploring the anti-tumor immunity
elicited from mRNA expression of cancer antigens [55].
One of the first mRNA polynucleotide vaccines was
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constructed using mRNA transcripts encoding for the hu-
man carcinoembryonic antigen (CEA), which con-
ferred protective immunity in mice challenged with
CEA-expressing tumor cells [55]. RNA transcripts in
these experiments were stabilized through 5′ end capping,
3′ end polyadenylation and through incorporation of the
human beta-globin 5′ and 3′ untranslated regions (UTRs)
[55]. Direct injection of naked mRNA stabilized with beta-
globin UTRs has been shown to prime Th2 responses that
can be shifted to Th1 responses after administration of
GM-CSF in mice [56]. Given the short in vivo half-life of
RNA from local and systemic administration, other
studies have focused on direct injection of RNA into
target organs [57-59]. Direct injection of human alpha-1
antitrypsin mRNA into mouse epidermis using gene gun
treatment elicited potent antibody responses with increas-
ing titers after subsequent vaccinations [57]. Additionally,
gene gun-based immunization using RNA coding for the
melanocytic self-antigen TRP2 linked to EGFP demon-
strated effective induction of anti-tumor immunity in a
murine melanoma model [58]. Other methods of direct
injection have included intranodal injection of RNA
directly into secondary lymphoid organs inducing
anti-tumor immunity in a murine melanoma model
[59]. Interestingly, systemic administration of FLT3
ligand prior to intranodal injection of RNA dramatically
enhanced priming and expansion of antigen-specific
CD8(+) T cells in lymphoid organs, T-cell homing to
melanomas, and anti-tumor efficacy [59,60].
Much of this pre-clinical data has led to the translation

of naked RNA vaccination into phase I trials for refractory
malignancies [61,62]. In a phase I/II trial, total tumor-
derived RNA from melanomas, administered intradermally
in conjunction with GM-CSF, was safe, but of uncertain
efficacy [61]. These patients were vaccinated with autolo-
gous amplified tumor mRNA that could be produced in
unlimited amounts from a personalized cRNA library
representing a tumor specific transcriptome [63]. In a
phase I/II trial for patients with renal cell carcinoma
(RCC), naked RNA encoding for tumor-associated RCC
antigens was co-administered with GM-CSF and was
shown to precipitate anti-tumor immunity [62]. These
vaccines generated CD8+ and CD4+ immune responses
with no severe side effects and induced fifteen stable
disease responses out of thirty evaluable patients with
RCC [62].
Alternatively, strategies have focused on making

‘naked’ RNA vaccines self-replicating [64-66]. In these
strategies, viral structural genes are replaced by mRNAs
encoding for cancer antigens, which can be synthesized
and replicated by the virus’ non-structural machinery
[64,66-69]. Immunizations with a self-replicating RNA
immunogen derived from the Semliki forest virus, elicited
antigen-specific antibody and CD8+ T-cell responses
against model antigens and prolonged the survival of
mice with established tumors [64]. In a human phase
I trial against colorectal cancer metastases, tumor
RNA packaged into alphaviral vectors were capable of
efficiently infecting DCs and induced clinically relevant T
cell and antibody responses [70]. Despite these attempts,
viral engineering of RNA vaccines requires targeted
approaches, and contains safety and feasibility issues such
as bypassing the induction of vector-specific neutralizing
antibodies [70].
Other methods have focused on condensing ‘naked’

RNA to enhance its stability and immunogenicity. RNA
can be stabilized through incorporation of polypeptide
cations such as protamines which function to condense
nucleic acid [46]. These mRNA-protamine complexes
have been shown to be a potent immune stimulus
activating murine cells through a MyD88, TLR7
dependent pathway and induced anti-tumor immunity
in a murine glioma model after direct intratumoral
injection [46,71-73]. They have also been shown to provide
balanced cell mediated and humoral immunity when co-
delivered with naked uncomplexed mRNA [44,74]. In a
phase I/II trial for patients with metastatic melanoma,
intradermal injection of protamine-stabilized mRNAs
coding for melanoma antigens was shown to be safe and
feasible with one complete remission [75]. Additionally,
the use of protamine condensed RNA has allowed for the
development of novel self-adjuvanted vaccines containing
nucleotide modifications to mRNA transcripts [44,72].
Whereas protein and peptide-based tumor vaccines re-
quire strong adjuvants to induce immunity, non-coding
long chain RNA-based adjuvants were shown to induce
enhanced immunostimulatory effects over poly(I:C)
and may further enhance the immunogenicity of self-
adjuvanted mRNA cancer vaccines [76]. Currently,
self-adjuvanted mRNA cancer vaccines encoding for
commonly expressed tumor associated antigens are in
clinical trials for patients with stage IV non-small cell
lung cancer (NSCLC) and prostate cancer [77,78].

RNA encapsulated vaccines
While the initial attempts using naked RNA have been
promising, RNA degradation remains a concern limiting
the amount of RNA available for cellular internalization
[56]. To protect and deliver RNA to target cells, the deliv-
ery mechanism must be safe, feasible, clinically translatable,
and amenable to ‘off the shelf ’ manufacturing and distribu-
tion for the population at large. Based on these criteria,
liposomes have been studied as vehicles for RNA vaccines
and have been shown to induce antigen-specific cytotoxic
T lymphocytes in vivo [79]. Since liposomes deliver their
contents intracellularly via receptor-mediated endocytosis,
the contents of the endosome are frequently shunted
into lysosomal degradation pathways prompting the



Sayour et al. Journal for ImmunoTherapy of Cancer  (2015) 3:13 Page 4 of 7
development of pH sensitive liposomes triggering antigen
release for MHC processing at low pH levels [80]. These
specialized liposomes have been shown to load DCs
in vitro with mRNA coding for tumor associated antigens,
elict cytotoxic T cell responses in murine models, and
induce suppression of metastatic spread in a murine
melanoma model [81-84]. Liposomes can be combined
with polymers to form lipopolyplexes and have been
formulated with a polyethylene glycol (PEG)ylated
derivative of histidylated polylysine to encapsulate MART1
antigens inducing protective anti-tumor immunity in a
murine melanoma model [66,85]. They can also be com-
bined with self-amplifying RNA or protamine condensed
RNA [65,86]. Self-amplifying RNA liposomes were shown
to elicit antigen-specific interferon-γ-producing CD4+ and
CD8+ T-cells in a murine model for respiratory syncytial
infection [65]. Similarly, protamine condensed RNA
liposomes coding for the model antigen beta-galactosidase
induced cytotoxic T cell and antibody mediated immunity
in an in vivo model [65,86]. In addition to encapsulating
novel RNA designs, liposomes can be combined with viral
envelopes forming virosomes (liposomes containing
viral envelopes) for the encapsulation and delivery of
tumor antigens [87]. Fusion-active virosomes have
been shown to deliver protein encapsulated ovalbumin
(OVA) to DCs for MHC class I presentation at picomolar
OVA concentrations [87]. Although liposomes have an
attractive safety profile, many of the these approaches
remain limited by decreased targeting efficiency, and
reticular endothelial elimination thereby mitigating the
potency of the immune response [80].

Targeting RNA vaccines
Future vaccine strategies will build on the success of pre-
vious advances while ameliorating the limitations of the
immunogenic but highly degradable naked RNA vaccines,
and the limitations of the protected but inefficient delivery
of RNA-liposomal vaccines. The safety and stability profile
of liposomes is attractive, and the immunogenicity of
RNA is appealing for initiating prolific immune responses.
Since RNA-liposomes cannot hone to targeted cells,
engineering targeting ligands and moieties may be utilized
to transfect desired cells. Pre-clinical studies have shown
that IgG-coated liposomes are efficiently taken up and
presented to T cells by dendritic cells via Ig FcR while
mannosylated liposomes enhance uptake and activation of
DCs [88,89]. Meanwhile, single chain antibody fragments
(scFv) have been developed against DC receptors CD11c
or DEC-205 attached to liposome surfaces, demonstrating
efficient DC targeting and anti-tumor immunity [90].
Alternatively, DCs can be ex vivo transfected with RNA
through liposomal transfection or electroporation before
in vivo re-introduction [91,92]. These RNA loaded DCs
have been shown to stimulate polyclonal T cell responses
against antigens expressed in RCC and metastatic colon
cancer [53,93,94]. In a phase I trial for metastatic prostate
tumors, autologous dendritic cells transfected with
prostate-specific antigen RNA stimulated PSA specific
cytotoxic T lymphocyte responses [21]. Similarly, in a
phase IB study in pretreated advanced melanoma pa-
tients, vaccination with monocyte-derived DCs, electro-
porated with mRNA coding for melanoma-associated
antigen combined with immunostimulatory RNAs (isR-
NAs) (i.e. CD40 ligand, TLR 4 and CD70), induced tumor
associated antigen (TAA) CD8+ immunity [95,96]. In
these pretreated advanced melanoma patients, two of fif-
teen patients achieved a complete response and two
achieved partial response [95]. While these findings are
encouraging, the advancement of ex vivo generated cellular
vaccines through multi-institutional clinical trials and
eventual distribution for widespread clinical utility has
proven to be fraught with developmental challenges
prompting others to prioritize the advancement of
RNA-loaded nanoparticle vaccines as an attractive,
“off-the-shelf” targeted therapeutic platform.

RNA-loaded nanoparticles
Nanomaterials have been utilized to deliver drugs
directly to malignant tissues, bypassing their systemic
toxicity [97]. Given the unique physical properties of
nanoparticles (NPs) (i.e. size, charge, biocompatibility,
solubility), they can be manipulated to increase circulation
half-life, accumulation, and drug cargo inside tumors [97].
Nanoscale drug payloads can be associated with targeting
ligands and encapsulation techniques to prevent deg-
radation and can be further designed into multi-functional
delivery systems with tumor-specific targeting moieties,
therapeutic payloads, and diagnostic tools [97-101]. In
cancer therapy, NPs have a multitude of various advantages
including bypassing multi-drug resistance mechanisms,
accessing solid tumors, and engineering the tumor
microenvironment [97]. Several pre-clinical studies have
investigated the immunogenicity of novel RNA-NP
designs. Lipid-like materials, termed “lipidoids,” were
shown to deliver immunostimulatory RNA (isRNA) to
TLR-expressing cells inducing potent anti-ovalbumin
humoral and cell-mediated responses [102]. Similarly,
pluronic-stabilized polypropylene sulfide nanoparticles
were developed to target antigens in the lung and were
shown to deliver their contents to pulmonary DCs
inducing potent protective mucosal and systemic CD8(+)
T-cell immunity in murine models [103]. Other examples
of targeted RNA-nanoparticle immunotherapeutics in-
clude mannosylated and histidylated lipopolyplexes
loaded with mRNA; these nanoparticles were shown to
enhance in vivo DC transfection and anti-tumor immunity
against a murine melanoma model [104].
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Despite this active area of research, the arrival of
approved nano-drugs to the market has been slow
with only a handful of FDA-approved agents [97,105].
Before nanomaterials can be used in cancer treatments,
biodistribution and toxicity must be addressed which
depend on the NP size, shape, deformability and surface
chemistry (i.e. charge, and pH), all of which are poorly
understood in a complex in vivo system containing plasma
proteins that may alter a nanomaterial’s surface property
and affect its biocompatibility [106]. These challenges
make each particle, and its toxicity, unique and difficult to
investigate as each falls under a diffuse realm of categories
including drugs, devices, and biological agents [106-109].
Based on these inherent complications, FDA approval
of NPs has stagnated, and most approved agents have
only been used in the context of drug delivery where
toxicity has traditionally been secondary to the drug as
opposed to the biocompatible nanomaterial [109,110].

Conclusion
Cancer vaccines can meet the challenge of targeted
cancer care, but require strong adjuvants to re-direct
a ‘tolerant’ immune system. We can look to infectious
disease vaccines as a model for successful immunization
strategies. While most infectious disease vaccines function
through induction of humoral immunity, RNA viral vac-
cines such as influenza and yellow fever have been shown
to generate robust cellular and humoral immunity. To
leverage successful cancer immunotherapeutic RNA vac-
cination strategies, traditional methods in conjunction
with novel adaptations are requisite in developing safe and
effective formulations that protect RNA from degradation,
deliver payload to target, and remain amenable to central
manufacturing and distribution. The rapid advancements
being made in in vivo targeting technologies, particularly
in the area of nanomaterials engineering, and our under-
standing of the requirements for successful induction of
potent anti-tumor immunity promise to yield the develop-
ment of effective and safe RNA vaccines for the treatment
of refractory cancers.
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