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Abstract

Striga hermonthica is a parasitic weed that destroys billions of dollars’ worth of

staple crops every year. Its rapid proliferation stems from an enhanced ability to me-

tabolize strigolactones (SLs), plant hormones that direct root branching and shoot

growth. Striga’s SL receptor, ShHTL7, bears more similarity to the staple crop kar-

rikin receptor KAI2 than to SL receptor D14, though KAI2 variants in plants like

Arabidopsis thaliana show minimal SL sensitivity. Recently, studies have indicated

that a small number of point mutations to HTL7 residues can confer SL sensitivity

to AtKAI2. Here, we analyze both wild-type AtKAI2 and SL-sensitive mutant Var64

through all-atom, long-timescale molecular dynamics simulations to determine the ef-

fects of these mutations on receptor function at a molecular level. We demonstrate

that the mutations stabilize SL binding by about 2 kcal/mol. They also result in a

doubling of the average pocket volume, and eliminate the dependence of binding on

certain pocket conformational arrangements. While the probability of certain non-

binding SL-receptor interactions increases in the mutant compared with the wild-type,

the rate of binding also increases by a factor of ten. All these changes account for

the increased SL sensitivity in mutant KAI2, and suggest mechanisms for increasing

functionality of host crop SL receptors.

Introduction

Witchweed, also known as Striga, is a parasitic plant that destroys an estimated $10 billion

of crops every year, which impacts around 100 million farmers worldwide.1 Striga proliferates

by metabolizing strigolactones (SL), a hormone exuded from the roots of staple food crops,

and germinates at nM or pM concentrations via activity of the ShHTL protein family.2,3 The

most sensitive of these is ShHTL7, which germinates at SL concentrations as low as 2 pM.3

The analogous receptor in host crops, KAI2, is only sensitive at micromolar concentrations,

so understanding how high sensitivity evolved in ShHTL7 may provide a means for targeting
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the receptor and inhibiting the destructive proliferation of Striga.3

KAI2, or karrikin insensitive 2, induces germination in plants such as Arabidopsis thaliana

by metabolizing smoke-derived compounds called karrikins that contain a butenolide struc-

ture fused to a six-membered ring.4,5 SLs are a class of plant hormones linked to regulation of

lateral root and branch development.6–9 SL molecules have two main moieties connected by

an enol-ether bridge: a tricyclic portion (A, B and C rings) and the butenolide ring (D-ring).9

ShHTL7, AtKAI2, and AtD14 (the SL receptor for Arabidopsis) are all α-β hydrolases with

a conserved Ser-Asp-His catalytic triad.10,11 However, while both karrikins and SLs contain a

butenolide ring, AtKAI2 is not sensitive to SLs.4 Phylogenetic analysis indicates that KAI2

paralogs fall into three different clades: KAI2c, the conserved form of the gene which includes

AtKAI2; KAI2i, the intermediate form of the gene; and KAI2d, the divergent form which in-

cludes ShHTL7. KAI2d genes convergently evolved the same functionality as AtD14, which

split off from the KAI2 clade at an earlier date.12 A recent study found even more evidence

supporting the emergence of SL sensitive KAI2d proteins from SL insensitive KAI2 proteins.

Only 3 amino acid substitutions from WT AtKAI2 to corresponding residues on ShHTL7

(Trp153Leu, Phe157Thr, and Gly190Thr) induced SL sensitivity.13 Enhanced SL sensitivity

in KAI2d versus other proteins correlates with an observed increase in pocket volume and

flexibility in ShHTL7 relative to other KAI2-related proteins.3,13 The specific mutant here,

known as Var64, also showed a 10-fold increase in time spent in the productive binding

mode with a corresponding decrease in the unproductive binding mode.13 There was also

an increase in downstream signaling partner gene expression in strains of Arabidopsis con-

taining Var64.13 However, the pocket volume and binding calculations were performed on

either static structures or small-scale molecular dynamics (MD) simulations (on the order of

0.5-1 μs). These studies do not give a complete view of receptor dynamics or functionality

across long timescales. For long-timescale processes like ligand binding and receptor acti-

vation, a much greater quantity of simulation data is needed to accurately characterize the

thermodynamics and kinetics of the system.
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Figure 1: Key structural features of (A) wild-type (WT) AtKAI2 (PDB code 4IH114), (B)
Var64 AtKAI2 mutant, (C) and strigolactone analogue GR24. Major helices on both AtKAI2
variants are T1, shown in indigo, T2, shown in tan, T3, shown in pink, and T4, shown in
orange. Important residues are depicted in cyan. S97, H247, and D218 make up the catalytic
triad, which binds GR24. The three residues of interest for the mutation study are W153,
F157, and G190 in the WT protein (A), and the mutated versions are L153, T157, and T190
(B). The mutant residue labels are in yellow boxes, while other features are in blue boxes.
(C) The structure of GR24, labeled with appropriate ring structures. This is the R-form of
GR24, which is the chirality exhibited by naturally occurring strigolactones.9

MD simulation is a powerful technique for characterizing long-timescale processes of

proteins, such as ligand binding of the SL molecule to receptor proteins, with full-atom res-

olution.15–20 Employing Markov State Models (MSMs) in combination with MD simulation

limits sampling bias and offers accurate kinetic and thermodynamic characterization of a

system.21–25 MSMs are a method for assigning millions of frames in an MD system to a

small number of kinetically relevant conformations and computing the rates of interconver-

sion between them.21 Previously, we have performed long-timescale MD simulations with

MSMs to characterize SL perception and other plant biochemical processes.18–20,26–28,28,29 In

this study, we created two systems to study the difference in molecular interactions between

the WT and Var64 and how these differences provide a mechanism for SL metabolism in the

latter but not the former.13 Specifically, we sought to see the effect of the three mutations on

SL-residue interactions, pocket volume, and binding kinetics. We ran one system with the
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wild-type version of AtKAI2 and one with the Var64 mutant (Trp153Leu, Phe157Thr, and

Gly190Thr), with about 200 μs of aggregate simulation data for each system. Both systems

contained one molecule of GR24, a synthetic SL analogue. Initial simulations were performed

using adaptive sampling, in which we clustered simulation frames based on structural fea-

tures, selected undersampled regions based on a “least-counts” principle, and generated

subsequent simulations using frames from the undersampled regions as a starting point. The

adaptive sampling and least counts approach efficiently characterizes a system by directing

future simulations towards areas with less data and avoiding areas that have already been

adequately sampled.21,23,24,30 Once enough data was generated to cover a sufficient portion

of the landscape, the rest of the samples were run on the Folding@Home distributed com-

puting system (for further details, see Methods section in SI).31 In our data analysis, we

investigated both thermodynamic effects of the mutations to examine any stabilization of

poses conducive to binding and kinetic effects to see any increase of flux into ligand-bound

states. In this paper, we show that the triple mutant of AtKAI2 improves thermodynamic

and kinetic properties. These mutations promote more stable SL binding, enhance contacts

that stabilize a wider pocket volume, increase anchoring of GR24 near the pocket entrance,

and contribute towards a tenfold increase in the binding flux.

Methods

Molecular Dynamics Simulations

Simulation Protocol

Wild-type (WT) and mutant systems were created from structure 4IH1 from the Protein

Data Bank.14 Amino acid mutations were added to the mutant system using Tleap in Am-

ber18.32 ACE and NME terminal caps were added using CHARMM-GUI (Residues 1 and

270 for D14).33,34 The GR24 model was taken from a bound structure of OsD14 (PDB 5DJ5)
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and was inserted using Packmol into a random position away from the receptor in both the

WT and mutant systems.35,36 Simulations were set up with AmberTools 18 and run with

Amber 18 using the ff14SB force field.32 Water was described with the TIP3P model and

GR24 with the generalized AMBER force field (GAFF).37,38 The simulation box size was a

70 Å cube containing TIP3P water and an NaCl concentration of 0.15 M to provide a neutral

charge. Structures were minimized with the conjugate gradient descent method for 10000

steps, then equilibrated for 5 ns. The Langevin thermostat kept simulations at a constant

temperature of 300 K and the Monte-Carlo barostat kept a constant pressure of 1.0 bar.

Short-range non-bonded interactions were calculated with a cutoff of 10 Å and long-range

electrostatics calculated with the Particle Mesh Ewald algorithm.39 The SHAKE algorithm

was used for constraining bonds to hydrogen.40 After three rounds of simulations (2.6 μs)

in Amber, 1500 independent runs for both the WT and mutant systems were then per-

formed using OpenMM on the Folding@Home distributed computing system starting from

the conformations obtained by clustering the initial simulation data into 100 states.31

Adaptive Sampling

To generate enough points for the Folding@Home simulations, we employed an adaptive

sampling scheme.24 We clustered points around a few structural metrics, determined the least

sampled conformations, and used these conformations to seed the next rounds. Sampling

metrics and a summary of simulations run for each round are provided in Tables S1 and S2.

Trajectory Analysis

Feature Calculations

All contact information was calculated with the MDTraj analysis package version 1.9.4.41

All residue contact distances were calculated with residue alpha carbons except for contacts

between mutated residues and residue F26, which were computed using the closest heavy

sidechain atom. GR24 features were calculated with individual carbons in either the A-ring
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or the D-ring.

Pocket Volume Calculation

Pocket volume was calculated with Epock version 1.0.5.42 Volume was calculated within a

“maximum englobing region” (MER) defined as a sphere centered at the midpoint between

the S95 Cα and the geometric center of the α carbons of the T1-T2 helices (resid 138 to

160). The MER radius was defined as the distance between the sphere center and the S95

Cα. Measured pocket volumes were weighted with MSM probabilities.

Contact Probability Calculation

Contact probability was calculated for GR24 against all residues in the WT and mutant

KAI2. Contact probability for a given residue is defined as the fraction of total frames in

which GR24 is within 4 Å of the residue. Contact probabilities were weighted by MSM

probabilities using Eq. 1.

Pcontact =
Nstates∑

i

Pcontact, raw|i ∗ πi (1)

Overall probabilities of ligand binding were calculated using

Pbound =
Nstates∑

i

PLig-S95 distance < 0.6 nm, raw|i ∗ πi (2)

Probability of ligand binding was also used to represent the probability of the ligand

being present in the pocket. The probability of the ligand at the pocket entrance followed a

similar formula, but used the ten residues on the T1 and T2 helix that face inward towards

the pocket in the KAI2 crystal structure (residues 139, 142, 143, 146, 147, 153, 154, 157,

158, and 161).
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Markov State Model Construction

Markov state models were built in pyEMMA from 41 total metrics related to ligand binding,

mutant residue interactions, and catalytic triad activity.43 A complete list of metrics is

available in the Supporting Information (Table S3). A hyperparameter search was performed

using cross-validation to generate a VAMP1 score.44 Final MSM hyperparameters are listed

in Table S4. Markovian behavior of MSMs was evaluated using the Chapman-Kolmogorov

test (Fig. S3 and S4). Using the state equilibrium probabilities from Markov state models,

free energy landscapes were calculated using

F (x, y) = −RT ln[Praw(x, y) ∗ πi(x, y)] (3)

Transition Path Theory

Transition path theory is a method to calculate the flux between a small number of ki-

netically relevant macrostates as a means of estimating which states have the highest rate

of interconversion.20 Four macrostates for the system were defined based on the position of

GR24 with respect to KAI2. These states were bound, unproductively bound, anchored, and

unbound. State definitions are given in Table S5. The mean first passage time (MFPT) was

computed between each pair of macrostates. The MFPT gives the amount of time required

to reach state B for the first time when starting at state A. Transition path theory and the

MFPT highlight which states are accessed quickest and allow a clear comparison between

the kinetic profile of two systems.20
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Figure 2: SL binding in WT and mutant AtKAI2. Binding free energy landscapes for WT
(A) and mutant (B) systems. α denotes the productively bound state (D-ring facing S95),
β the unproductively bound state (A-ring facing S95), γ the lid-helix anchored state, and
δ the unbound states. (See SI Fig. S5 for error plots). (C) GR24 binding in WT and (D)
mutant systems.

Results and Discussion

Var64 shows enhanced binding to SLs compared with WT KAI2

To explore the experimental finding of enhanced SL binding in Var 64 versus the wild type, we

investigated several different properties of WT AtKAI2 and the Var64 mutant by calculating

different structural metrics of the systems.13 Figure 2 shows the ligand binding behavior of

both the WT and Var64. In KAI2 homologs, catalysis is believed to occur when the S95

residue nucleophilically attacks the SL molecule’s D-ring.45,46 Figures 2(A) and 2(B) show

the free energy landscape projected onto A-ring and D-ring distances from S95 in the WT
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and Var64 systems, respectively. Both systems show high stability in the (α) position,

corresponding to the bound state of KAI2 (D-ring facing the pocket). However, Var64

shows a higher population of bound states, and the stability of states can reach up to

2-3 kcal/mol lower than in the wild-type (Fig. 2(B)). We calculated the probability of

binding, or the probability that GR24 is within a certain distance of the catalytic serine

(< 0.6 nm for binding), and found this probability to be 0.017 in the WT and 0.038 in

the mutant. Therefore, binding is enhanced more than twofold in mutant versus wild-type

AtKAI2. Both states also show a high degree of stability in an “inverse bound” state, where

the A-ring instead of the D-ring is oriented towards the pocket (β). However, there is a

lower free energy barrier between the bound and inverse states in Var64 versus the wild-

type. Additionally, the free energy of unbound states is on average about 2 kcal/mol higher

in Var64, showing that SL binding is more favorable in the mutant protein. This binding is

also affected by the residues involved in the mutation. In the WT, the probability of GR24

being in contact with W157 is 0.159 and with F157 is 0.167, but these probabilities increase

in Var64 to 0.168 for L153 and 0.203 for T157, respectively (see Fig. 4). When examining

a visual representation of SL binding generated from these contact probabilities, a degree

of steric hindrance is observed between GR24 and the bulky aromatic wild-type residues

W153 and F157 (Fig. 2(C)). In contrast, the mutant residues L153 and T157 are smaller

and inhibit less of the binding pocket volume (Fig. 2(D)).

Var64 demonstrates a higher pocket volume versus WT

Given the observed difference in pocket free space in the representative binding images,

we sought to characterize the pocket volume across both systems with a more rigorous

quantitative approach. Previous work has shown a correlation between increased pocket

volume and increased sensitivity to SLs, as well as a positive correlation between pocket

flexibility and SL sensitivity.13 We calculated the average pocket volume for the WT protein

as 357 Å3 and for the mutant protein as 678 Å3, which is nearly double that of the WT.
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A CB

Figure 3: Volume of the binding pocket in WT and Mutant AtKAI2. (A) Approximate av-
erage volume of the WT pocket. Free space is given in magenta spheres. The structure was
chosen by calculating the average pocket volume, then selecting all conformationally gener-
ated structures within 1 Å3 of the average and selecting one at random to be a representative
structure. (B) Average volume of the mutant pocket chosen using the same procedure as in
(A). (C) Probability distribution of WT and Var64 mutant pocket volume.

Figure 3(A) shows a close approximation of the average pocket volume of the wild-type

protein, and Figure 3(B) shows a close approximation of the average volume of the mutant.

After computing the true average, we selected all simulation frames within a 1 Å3 range of

that average and chose one at random. We also found the probability distribution of the WT

and mutant pocket volumes (Figure 3(C)). The two proteins showed a similar distribution

around their means, with a standard deviation of 134 Å3 for the WT and 146 Å3 for the

mutant. Therefore, the flexibility of the mutant is only marginally higher than the wild-type,

but the center of the distribution is higher in Var64. The change in T2 helix residues 153 and

157 from bulky aromatics to smaller side-chain amino acids is therefore likely a major reason

for the difference in pocket volume. The significantly greater binding pocket volume in Var64

suggests a strong reason for the enhanced binding in mutant AtKAI2, with enhanced pocket

flexibility playing a smaller but still visible role.
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Figure 4: Pocket dynamics of WT and mutant AtKAI2. (A) Free energy landscape of
WT F157-F26 interaction (T2 helix to back of pocket) versus SL binding. (B) The same
interaction but with the mutant T157 residue. ε denotes a point of high T2 helix-back of
pocket interaction. (C) Free energy landscape of WT F157-F26 interaction versus pocket
volume. (D) The same interaction but with the mutant T157 residue. ζ indicates a point of
high T4 helix-back of pocket interaction. (See SI Fig. S6 for error plots). (E) Close F157-F26
interaction in WT AtKAI2 (ε). (F) Separated T157-F26 residues in mutant AtKAI2 (ζ).

Var64 and WT lid helix contact differences affect binding stability

After characterizing the pocket volume of both systems, we investigated any contacts re-

sponsible for affecting the volume of the WT versus mutant system. One residue of note
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was F26, found on a loop at the back of the binding pocket. In preliminary data prior to

MSM-weighting, F26 was in contact with GR24 for about a quarter of all simulation frames,

leading to further investigation of the residue’s behavior (Figure S7). In the wild-type sys-

tem, the lowest free energy wells in the system were located where the distance between the

closest sidechain F26 and WT residues F157 and W153 was less than 5 Å (Fig. 4(A) and

Fig. S5, respectively). The system expresses the highest stability when these two residues

are in close contact with each other. In contrast, the mutant residues L153 (SI Fig) and T157

display a wider spread of stable contacts with F26 (Fig. 4(B)). While the D-ring only gets

close enough for binding (< ∼0.6 nm according to the binding cutoff from our previous work)

when F157 and F26 are in close contact, binding is independent of the distance between T157

and F26 in the mutant.20 We also examined the relationship between F26 and residue 157

distance versus pocket volume. In the WT system, there is no correlation between F157-F26

distance on pocket volume (Fig. 4(C)), but there is a clear linear relationship between these

two variables in the mutant (Fig. 4(D)). Given that S95 binding is independent of T157-

F26 distance, ligand binding can occur when the two residues are far apart and the pocket

is wider. This gives a more accessible volume for GR24 to enter the pocket and bind, in

agreement with the findings in previous experimental work with the mutant.13 All of these

interactions serve to demonstrate the difference in pocket behavior between WT and Var64

AtKAI2. Since the T3 helix spreads out from the other helices (Fig. 4(E) and 4(F)), the

T2 helix is open for direct contact with the back of the pocket. The high degree of contact

between F26 and F157, from hydrophobic contact between the two residues that draws the

loop at the back of the pocket towards the T2 helix, leaving less volume in the pocket and

blocking space for the WT to interact with catalytic S95 (Fig. 4(E)). When F26 is further

from F157, the loop stays further back in the pocket, giving more space for binding (Fig.

4(F)). Additionally, these interactions keep F26 in an upright position with its aromatic ring

vertical. Even when interacting with T157, F26 keeps this orientation, versus in the WT,

where it bends forward (Fig. 4(E)). All of these interactions display a demonstrable increase

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524622doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524622
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the mutant pocket’s volume and provide more space for SL binding.

Contact probability of GR24 with WT and mutant

B

C

G190A

D

T190 T157

L153

W153

F157

L153

T157T190

FE

Figure 5: Contact probability of GR24 against WT and mutant residues. Contact proba-
bility is the fraction of frames in which the ligand interacts with a given residue. Contact
probability is given for the wild-type (A), mutant (C), and the difference between the two
(E). A secondary structure map is given below the graph, with alpha helices in blue, and
beta sheets in orange. (B) Contact probability of WT residues mapped onto the KAI2 crys-
tal structure. High-contact residues are blue, medium-contact are white, and low-contact
are red. Coloring for the degree of contact is relative for each individual structure. The 3
residues changed in the mutant are shown in licorice representation. (D) Contact probability
of mutant residues mapped onto the mutated KAI2 crystal structure, with the same repre-
sentation as (B). (F) Contact probability difference mapped onto the mutated KAI2 crystal
structure. Blue and white indicates a greater degree of GR24 contact with mutant AtKAI2,
while red indicates no difference or greater contact with the WT.
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The difference in pocket conformations between WT and mutant AtKAI2 led us to in-

vestigate the overall ligand contacts with the entire protein in both systems through contact

probability analysis. Contact probability is defined as the fraction of frames in which the

ligand is within a certain cutoff distance, in this case 4 Å, of a given residue. This distance

is the approximate cutoff for the length scale of van der Waals interactions.20 We computed

contact probability for every residue across our entire simulation trajectories for both sys-

tems. Figure 5(A) shows the contact probability of GR24 with all WT residues. The points

of highest contact were around the T1 and T2 helices (residues 138-160). Of the 270 residues

in KAI2, the one with the highest contact was F157, occurring in 16.7% of frames. Figure

5(B) gives a representation of WT KAI2 with contact probabilities mapped onto the struc-

ture, highlighting the high degree of contact between GR24 and the residues of interest in

the mutagenesis study. Figure 5(C) displays the contact probability of the Var64 mutant.

While a large portion of this graph resembles the wild-type one, the contact probabilities of

T1 and T2 helix residues is significantly higher. Here, the GR24 contact probability with

residue T157 is 20.3% of all frames. The increase in contact probabilities here likely results

from the increase in time spent near the binding pocket, though GR24 is not in contact

with these residues while in the bound state (Figure S6). The projection of probabilities

onto the mutant structure is given in Figure 5(D). We also computed a “pocket entrance

probability”, or the probability that GR24 was in contact with any of the ten amino acids

facing the pocket interior in the KAI2 crystal structure (see Methods section for a complete

list). The WT pocket entrance probability was 32.1% and the mutant value was 43.2%,

following the trend of increased anchoring observed in Var64 versus wild-type KAI2. Fi-

nally, we directly compared the difference in contact probability between the two systems

(Figure 5(E)). The difference between Var64 and the WT in the lid helix region was around

5% for many residues. These difference values are projected onto Figure 5(F). As described

previously, the probability of binding was more than two times greater in the mutant than

the wild-type protein. Therefore, while the “anchored” state probability is one-third times
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higher in the mutant protein, the bound state probability experiences a greater proportional

increase in the mutant.

Transition path theory

We performed a transition path theory analysis to see the relationship between various states

of GR24 binding activity. Figure 6 shows the relative fluxes between states in the WT (A)

and mutant (B) systems. The rate from unbound and unproductively bound states to the

bound state was about ten times higher in the mutant than in the WT (on the order of 10 vs

1 μs). The rate from the anchored state to the bound state was about thirteen times higher

in the mutant. Therefore, it seems that it is more likely in the mutant for the ligand to both

find the binding pocket from free solution and from other interaction positions with KAI2.

The rate of GR24 dissociation from productive binding, moreover, was nearly twice as high

in the WT as in the mutant, indicating that GR24 is less likely to unbind when bound to the

mutant. However, GR24 in the mutant was twice as likely to go from the productively bound

to unproductively bound position compared with the WT, and over three times more likely

to go from the bound state to the anchored state. Given the higher binding pocket volume

of Var64, the ligand could have more flexibility to move easily between states in the mutant.

Both of these processes were on the order of 100 microseconds, much higher than the rate

of binding. Still, the large relative increase in binding flux for the mutant corroborates the

increased SL sensitivity of Var64.

Conclusions

At the molecular level, the three amino acid substitutions in the Var64 AtKAI2 mutant have a

profound impact on SL sensitivity. GR24 binding was approximately 2 kcal/mol more stable

in the mutant versus the WT, and the binding region was more populated as well. When

examining the pocket behavior, we found that the average pocket volume in Var64 was nearly
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Figure 6: Transition path theory of WT (A) and mutant (B) binding. Arrow thickness
represents the relative flux between two states. The four states defined here are productive
binding, where the D-ring of GR24 is oriented towards the catalytic residues; unproductive
binding, where the A-ring is oriented towards the catalytic residues; anchoring, where GR24
associates with the T1 and T2 helices; and unbound, where the ligand is not in any other
relevant position. Thin arrows represent processes on the scale of 1 μs, medium arrows
represent 10 μs, and thick arrows 100 μs.
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double that of the WT, and the pocket was marginally more flexible, indicating that more

space is available for entering the pocket and binding to the catalytic residues. Part of this

could be explained by the replacement of bulky aromatic sidechains with smaller ones, but

that alone does not account for the difference. An investigation of mutant residue contacts

within the binding pocket found that the WT version of residues needed to occupy a precise

arrangement for binding to occur, but the residue contacts had much greater flexibility in the

mutant, especially in the contact between T157 and F26. While allowing for greater pocket

flexibility, however, mutations also promoted an increase in lid helix anchoring of GR24.

However, while the flux to lid-anchored states from bound states tripled in the mutant, the

flux from lid-anchored to bound states increased by a factor of thirteen, showing that this lid

anchoring enhanced binding more than it detracted from it. The flux to bound from unbound

states increased ten times in the mutant as well, showing that the mutations indeed have

a profound effect on binding kinetics. Overall, these three mutations enhance SL binding

at the molecular level, suggesting a probable evolutionary path for SL perception in Striga.

Our findings provide a key for understanding the mechanisms involved in SL perception

and explaining the heightened sensitivity in proteins such as ShHTL7 relative to host crop

analogues.

Supporting Information

This article contains supporting information. In-house code used for analysis is available at

http://github.com/ShuklaGroup.

PDF document containing additional information describing methods and validation,

including adaptive sampling details, Markov state model construction parameters and vali-

dation, and transition path theory definitions and raw data; video of ligand binding pathway
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