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Endogenous pancreatic β cell regeneration is a potential strategy for β cell expansion

or neogenesis to treat diabetes. Regeneration can occur through stimulation of existing

β cell replication or conversion of other pancreatic cells into β cells. Recently, various

strategies and approaches for stimulation of endogenous β cell regeneration have

been evaluated, but they were not suitable for clinical application. In this paper, we

comprehensively review these strategies, and further discuss various factors involved

in regulation of β cell regeneration under physiological or pathological conditions, such

as mediators, transcription factors, signaling pathways, and potential pharmaceutical

drugs. Furthermore, we discuss possible reasons for the failure of regenerative medicines

in clinical trials, and possible strategies for improving β cell regeneration. As β cell

heterogeneity and plasticity determines their function and environmental adaptability, we

focus on β cell subtype markers and discuss the importance of research evaluating the

characteristics of new β cells. In addition, based on the autoimmunologic features of type

1 diabetes, NOD/Lt-SCID-IL2rgnull (NSG) mice grafted with human immune cells and β

cells are recommended for use in evaluation of antidiabetic regenerative medicines. This

review will further understand current advances in endogenous β cell regeneration, and

provide potential new strategies for the treatment of diabetes focused on cell therapy.

Keywords: pancreatic β cells, endogenous regeneration, pharmaceutical stimuli, rodent model, diabetes

INTRODUCTION

The pancreas plays an essential role in energy consumption and metabolism. It consists of two
functionally and morphologically distinct components: the exocrine and endocrine. The exocrine
pancreas is composed of acinar and ductal cells that secrete digestive enzymes. The endocrine
pancreas is composed of five different hormone-secreting cell types that include glucagon-secreting
α cells, insulin-producing β cells, somatostatin-releasing δ cells, ghrelin-releasing ε cells, and
pancreatic polypeptide (PP)-secreting cells. These cells aggregate to form the islets of Langerhans,
which are intermingled with the intra-islet microvascular network and play an essential role in
regulation of blood glucose levels by directly secreting insulin and glucagon into the bloodstream.
Type 1 diabetes (T1D) and type 2 diabetes (T2D) are defined as blood hyperglycemia caused by
an absolute or relative deficiency of pancreatic β cells. Autopsy studies have shown deficits in
β cell mass in approximately 70∼100 and 0∼65% in patients with T1D and T2D, respectively
(1, 2). Therefore, β cell mass regeneration is a potential therapeutic strategy for recovery of β cell
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loss in patients with diabetes. Regeneration of β cells
occurs through endogenous regeneration or exogenous
supplementation, such as transplantation of cadaveric islets or
grafting of new β cells generated from in vitro cell engineering.
Recently, numerous strategies and technologies for producing
human insulin-secreting cells have emerged, including in vivo
stimulation of existing β cell replication, reprogramming of other
pancreatic cells to differentiate into β cells, in vitro differentiation
of induced pluripotential stem (iPS) cells into new β cells, and
generation of human islets from genetically engineered pigs
(3, 4). However, clinical application has remained a challenge. For
example, strategies for enhancing replication of residual β cells
have been successful in rodent but not in humans. In addition,
drugs that stimulated conversion of α cells into β cells in animal
experiments did not do so in clinical trials. As such, it is critical
to determine the causes for limited success of clinical trials,
and to determine possible strategies for improving cell therapy
for T1D. In this review, we summarize advanced strategies
and approaches for endogenous β cell regeneration, discuss
regenerative mechanisms under physiological and pathological
conditions, focus on various factors involved in stimulation of
regeneration, and discuss promising potential pharmaceutical
drugs. Moreover, as T1D is characterized by autoimmune-
mediated β cells death, and heterogeneity and plasticity of β

cells determine their function and environmental adaptability,
we believe that thorough understanding associations between
neogenetic β cells and diabetogenic autoimmune cells can lead to
strategies to enhance the immunologic tolerance of neogenetic
β cells, thus improving T1D cell therapy. In this review we
introduce β cell subtyping markers that correspond with their
functional features, and highlight the importance of using the
humanized diabetic mice grafted with autoimmune cells and β

cells in future studies.

REPLICATION OF EXISTING PANCREATIC
β CELLS

Pancreatic β cells replicate readily in the fetal and neonatal
stages. However, this ability to replicate rapidly declines after
these stages. Furthermore, this ability to replicate is different
in rodents and humans. Proliferation of β cells is precisely
controlled by cell cycle regulators and circulating soluble factors.
Studies have shown that many mitogenic agents could stimulate
β cell replication in young rodents, but not in humans.
However, using high-throughput chemical screening, a series
of inhibitors of DYRK1A-NFAT, GSK3, and NF-κB signaling
pathways were shown to increase human pancreatic β cell
replication, suggesting that these inhibitors have unique potential
for treatment of diabetes.

Replicative Ability of β Cells Over the
Lifetime
During embryonic development, insulin-positive β cells appear
at approximately embryonic day 13.5 in mice or during weeks
8–9 in humans. During the fetal period, β cells are mainly
generated by differentiation of endocrine progenitor cells (5).

During the late gestational and neonatal stages, β cells are
generated by replication of existing β cells (6, 7). The rate of β

cell replication reduces after weaning, and the renewal capacity
of β cells becomes limited during adulthood or late adolescence.
Nevertheless, β cell mass, which is determined on the basis of
cell numbers and individual cell volumes, correlates in a linear
fashion with body weight throughout the lifespan of an organism
(5, 8). For example, in rats, the number and size of β cells expands
with body weight during the first few months of life. The rate of β
cell replication then progressively declines, to 1% in young rats (1
month of age), and <0.2% in adults (3∼7 months) (8). In aging
rats (15∼20 months), β cell mass primarily increases through
increased cell size (9). In healthy rodents, individual β cells have
long lifespans, and replication of mature β cells is limited during
adulthood (5, 10). Under some physiological or pathological
conditions, rates of β cell proliferation are elevated. For example,
β cells proliferate adaptively in response to pregnancy or obesity
via self-replication (11–14). Moreover, in young rodents, β cell
proliferation can be induced by increased metabolic demands or
β cell deficiency resulting from tissue injury (8, 15).

Different β Cell Replicative Ability Between
Rodent and Human
Human and rodent islets have distinct structural and molecular
characteristics (16). Replicative ability of human and rodent
β cells have common and different features. For example,
β cell mass increases during the earlier stages of life and
declines with aging in both species. Adaptive β cell proliferation
during pregnancy and obesity occurs extensively in rodents,
but is limited in humans (17). Pregnancy-associated insulin
resistance induces amplified insulin production to maintain
glucose homeostasis. In rodents, elevated insulin production
is accompanied by increased β cell numbers mediated by
lactotrophic hormones (13, 14, 18). Humans also exhibit a
compensatory increase in insulin secretion. New β cells originate
from other pancreatic cell lineages and existing β-cells. Moreover,
β cell proliferation mediated by lactotrophic hormones or other
mitogenic stimuli is limited in humans (19). In addition, obesity-
induced insulin resistance is associated with dramatic expansion
of β cell mass in several rodent models (20), but not in human
islets (20). Various mitogenic agents, hormones, and growth
factors (GFs) such as Glp-1, Gip-1, exendin-4, prolactin, Hgf,
and Igf-1 stimulate β cell proliferation in rodents but not in
humans (21–27).

Mediators of β Cell Replication
Cell Cycle Regulators
β cell replication is mediated by multiple mitogenic signaling
pathways such as Irs–Pi3k–Akt, Gsk3, mTor, ChREBP/cMyc,
Ras/Raf/Erk, and Nfats. These mechanisms also involve
upstream activators of mitogenic signaling pathways, including
nutrients (glucose, calcium), epidermal and platelet-derived
GFs (Glp1, Gip), and hormones (leptin, estrogen, prolactin,
and progesterone). Mitogenic signals stimulate quiescent β

cells to re-enter the cell cycle by regulating the expression
of downstream cell cycle regulators such as cyclins, cyclin-
dependent kinases (Cdks), cell-cycle inhibitors, and E2F
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factors (28–33). For example, exendin-4 and glucagon-like
peptide 1 (Glp-1) exert mitogenic effects on β cell proliferation
by activating cell cycle activators (cyclin A and Cdk1) and
proliferation-activating transcription factors (TFs) through the
cAMP-dependent calcineurin/Nfat pathway (24, 25, 34–37).
Menin is an endocrine tumor suppressor that suppresses β cell
proliferation by epigenetically promoting the expression of the
cell-cycle inhibitors p27 and p18 or by inhibiting K-Ras signaling
(38–40). Moreover, Ezh2 mediates increased trimethylation
of p16INK4a and p19Arf by H3K27, which epigenetically
represses Ink4a/Arf production and contributes to proliferation
of pancreatic β cells (41).

Circulatory Regulators
Circulating soluble factors derived from other organs act as
systemic regulators that control β cell proliferation during
puberty, pregnancy, and obesity. Multiple circulatory regulators
have been implicated in control of β cell proliferation in response
to insulin resistance. Examples of circulating regulators include
intestinal peptides such as Glp-1 and Gip-1 (24, 25), adipose-
tissue-derived adipokines such as adipsin (42, 43), resistin, and
leptin (44, 45), and skeletal-muscle-secreted factors such as Il6
and Il10 (46, 47). In addition, crosstalk between hepatic and
pancreatic tissues modulates β cell growth in response to insulin
resistance. Many hepatocyte-derived factors have been identified
as stimulators of β cell proliferation in mice and humans (48). In
an insulin receptor knockout mouse model of insulin resistance,
hepatocyte-derived secretory SerpinB1, and its partial mimic
GW311616A, enhanced β cell proliferation by inhibiting elastase
activity and activating key proteins in GF signaling (49). In
addition, in mouse models of diabetes, exogenic expression of
hepatic GFs, such as Hgf, Igf1, and Igf2, can regulate β cell mass
by increasing β cell replication (50–53).

Strategies for the Stimulation of β Cell
Replication
Multiple approaches have been evaluated to rapidly and robustly
replenish β cell masses. Numerous stimuli that promote β

cell proliferation have been identified (38, 54–56). Studies
have shown that administration of exogenous stimuli can
stimulate β cell proliferation in young rodents. Whether adult
rodent β cells can be induced to proliferate by exogenous
stimuli remains unclear. Some studies have suggested that
the replication of existing β cells induced by pancreatectomy
(Px) or β cell apoptosis is the major source of new insulin-
expressing cells in adult mice (6, 57). Other studies have
indicated that various diabetogenic injuries, including partial
Px, streptozotocin administration, and pancreatic duct ligation
(PDL), cannot stimulate β cell proliferation in adult mice
(21, 58, 59). Recently, high-throughput chemical screening has
identified multiple potential agents for stimulation of β cell
replication (60). As shown in Table 1, these agents include
DYRK1A inhibitors (harmine, aminopyrazine compounds,
and 5-iodotubercidin), which increase β cell proliferation
by inhibiting calcineurin/Nfat/Dyrk1a signaling (61, 62, 64,
66). Osteoprotegerin and denosumab stimulate human β cell
proliferation through inhibition of the receptor activator of

NF-κB ligand pathway (63). Moreover, high-throughput RNAi
screening has demonstrated that CDKN2C/p18 or CDKN1A/p21
silencing facilitated cell-cycle re-entry of quiescent adult human
β cells (65).

REPROGRAMMING OF OTHER
PANCREATIC CELLS INTO β CELLS

During embryonic development, pancreatic β cells are generated
from multipotent pancreatic progenitors in a sequential and
gradual process that is elaborately controlled by defined
transcription factors. Pancreatic ductal epithelium cells andNgn3
positive pancreatic cells are generally considered progenitors of β
cells. They differentiated into β cells when islets were destroyed in
rodent models. In this section, we introduce advanced strategies
for conversion of non-β cells to β cells through ectopic expression
of specific TFs or by pharmaceutical stimuli.

TFs Regulate the Differentiation of
Endocrine Cells
Development of embryonic pancreatic β cells is elaborately
controlled by TFs involved in pancreatic determination (67)
(Figure 1). During early pancreatic bud outgrowth, maintenance
and specialization of multipotent pancreatic progenitor cells
(MPCs) is modulated by the pancreatic TFs Gata4/6, Foxa1/2,
Pdx1, Ptf1a, Mnx1, Sox9, Nkx6.1, and Hnf1β. Depletion of
any of these TFs impairs pancreatic bud formation (68–72).
Although Pdx1 is extensively expressed in pancreatic cells,
it is only highly expressed in adult β cells. Lineage tracing
studies in mice have demonstrated that Pdx1-positive MPCs
possess high proliferative ability and can differentiate into all
cell types in each of the three major pancreatic compartments
(exocrine, endocrine, and ductal) (73, 74). Furthermore, the
ectopic expression of Pdx1 or Ptf1a in the endoderm can induce
ectopic pancreatic bud formation (71, 75). Ptf1a+/Gata4+ MPCs
differentiate into exocrine progenitors, whereas Sox9+/Ndx6.1+

MPCs differentiate into endocrine/ductal bipotent progenitors
(69, 76–79). Early endocrine progenitors originate from bipotent
trunk duct-endocrine progenitors, and their differentiation is
initiated by the expression of neurogenin 3 (Ngn3). Ngn3-
deficient mice fail to generate endocrine cells, but undergo duct
enlargement, and ectopic expression of Ngn3 directs pancreatic
progenitors toward an endocrine fate. These phenomena suggest
that Ngn3 is necessary for differentiation of islet cells (80–82).
Endocrine development requires participation of other endocrine
progenitor TFs such as Isl1, Neurod1, Pax6, Mafb, Nkx2.2,
and Rfx6. These TFs are activated by Ngn3 and are involved
in differentiation of endocrine cell lineages (80, 83). Finally,
monohormonal islet cell lineages differentiated from Ngn3-
positive endocrine progenitors are also regulated by a specific
combination of TFs. For example, Pax4 and Arx participate in
islet cell specialization via cross-inhibitory interactions. Pax4 and
Arx promote the differentiation of islet progenitor cells into β/δ
or α/PP cells, respectively (84). The α cell positive TF profile
includes Arx, Mafb, Rfx6, Nkx2.2, Neurod1, and Pax6, whereas
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TABLE 1 | Potential drugs for increasing pancreatic β cell replication.

Inhibitor Rodent model Human islet Pathway References

Harmine Px h-islet-NSG DYRK1A (61)

5-iodotubercidin ND h-islet-NSG DYRK1A (62)

Osteoprotegrin STZ-mice β cells in vitro RANKL, GSK3 (63)

Denosumab ND h-islet-NSG RANKL (63)

Aminopyrazine (GNF7156, GNF4877) DTA-induced diabetic mice h-islet-NSG DYRK1A, GSK3B (64)

Serpin B1 (sivelestat, W311616A) C57Bl/6 h-islet-NSG protease (49)

shRNA targeting to p21 and p18 ND Human islets in vitro p18, p21 (65)

ND, not determined; h-islet-NSG, human islet graphed into NSG mice.

FIGURE 1 | Transcription factors involve in differentiation of pancreatic cell lineages. In the diagrammatic sketch for pancreatic cell differentiation, the process of

differentiation from multipotent pancreatic progenitors to α or β cells is presented; and the combination of key TFs determining the specialization of endocrine and

exocrine pancreatic cell lineages is displayed. The figure was reproduced with permission from Elsevier and Copyright Clearance Center. This figure was adapted from

Hang and Stein (67).

the β cell positive TF profile includes Nkx2.2, Pax4/6, Pdx1,
Nkx6.1, and Mafα.

Differentiation of Pancreatic Progenitors
Into β Cells
Increasing β cell proliferation is a possible approach for recovery
of β cell deficiency in diabetes. Stimulation of β cell neogenesis,
however, may be a more feasible approach for treatment of
diabetes than elevation of β cell proliferation given the nearly
complete loss of β cells in T1D. Neogenesis is defined as
formation of insulin-producing β cells through differentiation
from stem/progenitor cells or conversion from other pancreatic
cells. The existence of adult β cell progenitors remains the most
controversial topic in diabetes research despite evidence showing
that pancreatic cell lineages including ductal, endocrine, and
exocrine, are derived from embryonic multipotent progenitors.
Several studies have shown that β cells develop from other
progenitor cells. The pancreatic ductal epithelium is a potential

progenitor of islet and acinar tissues after birth (85). Foci of
regeneration induced by partial Px comprise new ductal cells that
express markers of embryonic pancreatic epithelium, including
Pdx1, Hnf6, Foxa2, Tcf1/2, and Sox9, resulting in formation of
new pancreatic lobes. These behaviors suggest that new ductal
cells act as progenitors for the regenerating pancreas (86). In
adult rodents, ductal cells differentiate into β cells in response
to specific stimuli. For example, in adult mice Sox9 positive
ductal cells differentiate into β cells in response to moderate
hyperglycemia combined with long-term administration of low
dose epidermal GFs (69, 87). In the PDLmousemodel, pancreatic
duct cells positive for the expression of carbonic anhydrase II,
a duct cell-specific marker, act as progenitors of new islets and
exocrine cells after injury (88–90). Recently, a selective Cdk5
inhibitor was identified that could promote β cell differentiation
from ductal progenitors in zebrafish. This effect was observed
in adult mice treated with PDL and human induced pluripotent
stem (iPS) cells, which indicated that Cdk5 acts as an endogenous
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suppressor for β-cell differentiation (91). Moreover, in injured
adult mouse pancreases, Ngn3-positive pancreatic cells act as
endocrine progenitors and give rise to all islet cell types, including
glucose-responsive β cells through the notch signaling pathway
(73, 92, 93).

Conversion of Other Pancreatic Cells to β

Cells
β cell regeneration through transdifferentiation from other
pancreatic cells, including exocrine and endocrine pancreatic
cells, has been well-characterized. Results of genetic lineage
tracing studies involving mouse models of severe β cell ablation
have suggested that new insulin-producing β cells are generated
from conversion of pancreatic α or δ cells in adult and
adolescent mice (94, 95). Moreover, in diabetic mice transient
treatment with epidermal growth and ciliary neurotrophic
factors induces reprogramming of acinar cells to β cell masses
(96). Differentiation of pancreatic lineages is sequentially and
regionally regulated by pancreatic TFs (97). In adult mice, re-
expression of the specific combination of Ngn3, Pdx1, and Mafα
by adenoviral transduction contributes to reprogramming of
pancreatic exocrine cells into insulin-expressing cells that are
similar to β cells (98). Similarly, ectopic overexpression of β

cell-specific TFs also induces reprogramming of exocrine or
endocrine cells into β cells. In adult mice, ectopic expression of
β cell-specific single TFs such as Pax1 or Pax4, ectopic expression
of a combination of Pax1 and Mafα, or targeted disruption of α

cell-specific TFs such as Dnmt1 and Arx, can induce conversion
of α cells to β cells (74, 99–102). In addition, forced expression of
Pax4 also mediates transdifferentiation of δ cells, Ngn3 positive
endocrine progenitors, and duct-lining precursor cells into β cells
(74, 103, 104).

Potential Drugs for Stimulation of β Cells
Conversion
Although ectopic expression of TFs effectively induces
conversion of other pancreatic cell into β cells in mice,
viral or transgene-mediated overexpression may be difficult to
achieve in humans. As such, drug-stimulated conversion may
be a potential alternative approach for T1D treatment. Recently,
several small molecules have been identified as activators of β

cell neogenesis.

γ-Aminobutyric Acid
γ-Aminobutyric acid (GABA), an inhibitory neurotransmitter in
the central nervous system, is synthesized from glutamate by
glutamate decarboxylase (GAD) (105). High levels of GABA and
GAD are present in pancreatic islet cells, particularly β cells (106,
107). GAD65, an isoform of GAD, acts as a major autoantigen in
T1D (108). GABA promotes β cell replication and inhibits β cell
apoptosis in mouse models of STZ-induced diabetes and grafted
human islets (109–112). GABA released from β cells interacts
with and activates the ionotropic receptor GABAA (a Cl−

ion channel) and the metabotropic G-protein-coupled receptor
GABAB in plasma membranes of islet cells (113–116). Binding
of ligands to receptors enhance insulin secretion from β cells
and suppress glucagon release from α cells (109, 117). Recently,

Ben Othman reported that prolonged GABA exposure induced
conversion of α cells into β cell-like cells in a mouse model of
STZ-induced diabetes. Moreover, GABA treatment results in loss
of α cells in grafted human islets and concomitantly increased
islet mass and β cell-like counts. The mechanism of GABA-
mediated conversion of α cells into β cells, however, requires
further elucidation. The ability of GABA to downregulate Arx
expression suggests that it acts on GABAA receptors on α cells
(118). In addition, GABA may act as an immunosuppressive
regulator in T1D by mediating cytokine secretion from human
peripheral blood mononuclear cells and CD4+ T cells (119, 120).
In summary, administration of GABA contributes to replication
of β cells, enhances conversion of α cells to β cells, and suppresses
immune reactions in rodent models of diabetes. Given these
actions, GABA has a potential antidiabetic role and clinical value
for treatment of T1D.

Artemisinin
Artemisinin may act as a potential activator of conversion of α

cells to β cells. One report showed that artemisinin impaired
α cell identity and induce insulin expression in α cells through
translocation of Arx from the nucleus to the cytoplasm, which
then inhibited Arx. Moreover, the mechanism of action of
artemisinin on transdifferentiation of α cells into β-like cells
involves enhancement of GABA receptor signaling in a gephyrin-
dependent manner (121). However, Meulen et al. reported that
stimulation of intact islets with high doses of artemether failed
to promote transdifferentiation of primary α cells to β cells.
Moreover, artemisinin reduces Ins2 gene expression, suppresses
glucose uptake, and abrogates calcium responses and insulin
secretion in response to glucose (122). These paradoxical effects
of artemisinin on β cell regeneration warrant further verification.

Diet Therapy
Interestingly, a novel diet therapy with 4-day fasting-mimicking
diet (FMD) cycles can reverse β cell failure and can reverse
diabetes in mice. FMD promotes Ngn3-driven β cell regeneration
by inducing re-expression of prenatal development genes, such as
Sox17 and Pdx1, in the adult pancreas (123).

In addition, the mechanism underlying maintenance of
the correct proportion of cellular components in neogenesis
of islets derived from conversion of non-β cells has yet to
be determined. For example, how the pancreas compensates
for loss of α cells during conversion of α cells to β cells
requires further study. One potential mechanism is that α

cell conversion includes mobilization of duct-lining precursor
cells (reawakening of the epithelia-to-mesenchymal transition),
regeneration of α cells, and conversion of α cells to β cells
(118). This mechanism suggests that neogenetic β cells originate
from neogenetic α cells that differentiated from mobilized Ngn3-
positive endocrine progenitor cells. Accordingly, formation of
new islets is a complex and dynamic process, and new islets
may contain different cell types or even intermediate transitional
cells. Tracking the fate of these cells through lineage tracing,
and identifying them by single cell analysis would help reveal
mechanisms of α cell conversion (124–126).
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RODENT MODELS FOR STUDY OF β CELL
REGENERATION

Diabetic rodent models, which generally include classical and
genetic models, play important roles in the study of themolecular
mechanisms of β cell regeneration and the evaluation of the
effects of potential pharmaceutical drugs for diabetes treatment.
Classical models are defined by damage of β cells by surgery
or treatment with chemical compounds, such as Px, PDL, and
STZ-mediated β cell ablation. Genetic models are constructed
through crossing special transgenic mouse strains, which leads
to specific and inducible β cell ablation or allows for tracking of
target islet cells (Figure 2). In this section, we comprehensively
introduce principles and protocols for construction of these
rodent diabetic models, and review the recent advances in β cell
regeneration through use of these models. In addition, based on
autoimmunologic features of T1D and difficulties in stimulation
of β cell regeneration in humans, we introduce a humanized
diabetic mouse model, and suggest use of this model for study
of β cell regeneration.

Classical Diabetic Rodent Models
Classical rodent models of β cell regeneration include partial Px,
PDL, and STZ-mediated β cell ablation. Px: Removal of 60∼90%
of the adult rat pancreas through Px administration induces
extensive pancreatic regeneration with formation of new lobes
and islets, and proliferation of acinar cells. The Pxmodel has been
used to study β cell neogenesis and replication (86, 127, 128).
PDL: PDL is defined as surgical ligation of the pancreatic duct
at the level of the pylorus. This procedure obstructs drainage
of exocrine secretions and results in loss of acinar cells through
death and dedifferentiation. During the early years of diabetes
research, this model was widely used to study mechanisms of β

cell formation (129–131). More recently, the PDLmodel has been
used to demonstrate expansion of β cells generated from Ngn3-
positive endogenous progenitors (92). A controversial finding,
however, suggested that PDL failed to elevate β cell levels in
mice (132, 133). STZ-mediated β cell ablation: STZ, a cytotoxic
chemical produced by Streptomycetes achromogenes, can be used
to cause extensive damage to endogenous β cells and induce
hyperglycemia. It binds to the Glut-2 transporter, which is

FIGURE 2 | Mouse model for the study of β cell regeneration. The targeting to pancreatic β cells is relayed on the driving of insulin promoter, and conditional ablation

(or labeling) is dependent on the induction under Dox, AP20187 or Tam administration in specific transgenic strains. (A) Dox-induced DT-dependent specific ablation

of β cells; (B) Caspase-FKBP-induced apoptosis of pancreatic β cells conditionally activated by AP2018; and (C) Tam-induced lineage tracing of pancreatic β cells

based on CreERT: Rosa26-LoxP-Reporter transgenic strains.
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abundantly distributed on plasma membranes of β cells. STZ
causes DNA alkylation and generates high levels of free radicals
that cause DNA damage and cell death. STZ can be used alone
or in combination with other chemicals to induce diabetes. STZ-
induced β cell damage causes spontaneous β cell regeneration
in neonatal and adult rodents (134–136). STZ administration,
however, has failed to stimulate an adaptive increase in β cells in
adult monkeys (137). The STZmodel has been used to study β cell
regeneration induced by various stimuli, including transgenes
and signaling pathway activators (52, 138–142).

Genetic Modification Induces β Cell
Ablation
Diphtheria Toxin-Targeted Specific and Inducible β

Cell Ablation
Corynebacterium diphtheriae produces diphtheria toxin (DT) as
a single secretory polypeptide. In vitro, mature DT generates two
components, fragments A (DTA) and B (DTB). DT binds to a DT
receptor on cell surfaces and is incorporated into cells through
receptor-mediated endocytosis. DT can inactivate elongation
factor (EF)-2 in cells by catalyzing transfer of ADP-ribose to EF-
2. Inactivation of EF-2 inhibits protein synthesis and causes cell
death (143). Thus, specific and inducible killing of pancreatic
β cells is based on doxycycline (Dox)-induced expression of
DT. The approach for construction of this model is crossing
an insulin-reverse tetracycline-dependent transactivator (insulin-
rtTA) transgenic mouse strain with the TetO-DTA mouse. RtTA
expression in the insulin-rtTA mouse strain is driven by a rat
insulin promoter, whereas DTA subunit expression in the TetO-
DTA mouse strain is driven by a rtTA-responsive promoter. In
the Tet–on system, rtTA interacts with the tet-resistance operon
in the presence of Dox and activates transcription (Figure 2A)
(144). Accordingly, administration of Dox to double-transgenic
mice induces DTA expression in β cells, resulting in widespread
β cell apoptosis (15). Moreover, DT binding affinity for human
DT receptors is 105-fold higher than that of murine DT receptors
(145). Conditional and targeted cell ablation in mice can be
achieved through transgenic human DTR expression driven by
specific promoters in the presence of DT. Numerous studies have
documented that ectopic expression of human DTR driven by
insulin or glucagon promoters resulted in targeted ablation of
99% of α or β cells following DT administration (94, 95, 146).

Caspase 8–FKBP Transgene Induces β Cell Apoptosis
In this section, mechanisms of caspase-FKBP-induced specific-
cell ablation are summarized in context of conditional caspase
activation driven by cell-specific promoters. Using the caspase-
FKBP transgenic model, multiple tissue cells have undergone
conditional and specific ablation such as cardiac myocytes,
adipocytes, hepatocytes, and pancreatic β cells (147–151).
The caspase-FKBP fusion protein was designed with human
caspase catalytic domains such as p20 and p10 from caspase
8 fused with a series of FKBPv domains such as Phe36Val
mutant FKBP. The binding affinity of the caspase–FKBP fusion
protein for the FK506 analog AP20187 is 1,000-fold greater
than that of endogenous FKBP. The mechanism underlying
caspase activation through the forced dimerization of adjacent

FKBP molecules by AP20187 is shown in Figure 2B (148–150).
Accordingly, a PANIC–ATTAC mouse model was constructed
through transgenic expression of FKBPv–caspase 8 fusion
protein driven by a rat insulin promoter. This model has been
used to study inducible and reversible β cell ablation and other
aspects of diabetes (150, 151).

Genetic Cell Lineage Tracing Model
Genetic cell lineage tracing has been used for tracking target
cells in the body, and enables visualization of the source and
fate of target cells. This approach has been used to analyze
formation and regeneration of β cells under physiological or
pathological conditions (152). For the past several decades, the
Cre/loxP genetic lineage tracing system has been the most widely
used method for tracking cell fate (153). The Cre/loxP system
functions through expression of Cre recombinase driven by the
loxP-stop-loxP cassette, a cell-specific promoter located upstream
of the reporter gene. Cre recombinase excises the floxed STOP
cassette and subsequently activates reporter gene expression.
Conditional or inducible expression of Cre recombinase is based
on the TetO-Cre or CreERTM transgenic mouse strains, which
are crossed with the ROSA26/reporter mouse strain and result
in inducible tracking for target cells. The CreERTM transgenic
cassette contains a fusion of Cre recombinase with a mutated
ligand-binding domain (ERTM), the latter of which preferentially
binds to the antiestrogen tamoxifen instead of endogenous 17β-
estradiol (154). Under normal conditions, the CreERT fusion
protein is sequestered by HSPs in the cytoplasm. Following
treatment with tamoxifen, tamoxifen binds to CreERT, resulting
in disruption of the interaction with Hsp90. Released CreERT
transfers to the nucleus, initiates recombination, and activates
reporter gene expression (Figure 2C) (155, 156). Numerous
experiments aimed at identifying the source or fate of pancreatic
cells in rodent models have been performed using the conditional
Cre-LoxP genetic lineage tracing system (6, 103, 104, 123). For
example, Fabrizio crossed RIP-DTR, RIP-CreERTM , and ROSA26-
LoxP-YFP transgenic mouse strains to achieve DT-dependent
conditional β cell ablation and tamoxifen-dependent β cell
lineage tracing. Moreover, hybridization among the transgenic
mouse strains Glucagon-rtTA, TetO-Cre, and ROSA26-LoxP-YFP
was used to track the source of insulin+ cells. This study found
that 65% of insulin-expressing cells following β cell ablation were
YFP+, which indicated that neogenetic insulin-expressing cells
originated from α cells (94).

Humanized Diabetic Mice Model
T1D is an autoimmune disease caused by immune-mediated
destruction of pancreatic β cells. The etiology of T1D involves
interactions among genetic, environmental, and immune factors.
Multiple approaches for prevention or treatment of T1D have
been have been successfully used in the non-obese diabetic
(NOD) mouse model, but have not been successfully reproduced
in humans. These failures may be attributed to structural and
compositional variations between NOD murine and human islet
cells, as well as to differences between human and murine
immune systems (157, 158). These differences include genetic
susceptibility loci, immune responses to environmental factors,
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leukocyte subsets, and immunological factor compositions (159,
160). To define the interaction between the human immune
system and β cells, and to improve treatments for T1D, a
humanized diabetes mouse model in which mice are grafted
with a functional human immune system and human β cells
closely imitates the physiological conditions of human T1D.
The immunodeficient NOD/Lt-SCID-IL2rgnull (NSG) genotype
constructed on NOD mice is suitable for grafting of human
immune cells and human β cells because it contains genetic
modifications of severe combined immunodeficiency (SCID)
mutation and a complete null mutation of the IL2rg gene
(160–163). NSG mice can be grafted with human tissue,
hematopoietic stem cells, and peripheral bloodmononuclear cells
(162, 164). Recently, studies of immunological mechanisms of
T1D, treatment strategies for diabetes, and transplantation of islet
cells using NSG mice have made significant progress (165–170).
Thus, this model will be a powerful platform for finding potential
drug targets for T1D therapy and evaluating antidiabetic drugs in
preclinical trials.

CHARACTERIZING NEOGENETIC ISLET
CELLS

New β cells are typically described as β cell-like cells, which
often possess the basic characteristics of β cells such as glucose-
stimulated insulin secretion. However, β cells are heterogeneous
and exhibit plasticity during development, under pathological
conditions, or following specific treatments. Therefore, it is
necessary to identify characteristics and subtypes of new β cells.

Features of Mature β Cells
Embryonic and neonatal β cells are immature and can produce
insulin, but lack the ability to respond to glucose stimulation.
Within days after birth, β cells develop the ability to secrete
insulin in response to glucose (glucose-stimulated insulin
secretion; GSIS) and become mature functional β cells (171).
Mafa, NeuroD, and Errγ drive β cell maturation, and urocorin3
(Ucn3) acts as amarker of β cell maturation (172–176). Immature
β cells that lack Ucn3 are present throughout life. These cells are
involved in the intermediate stage of transdifferentiation of α cells
into β cells and may be potential sources for β cell regeneration
(177). Therefore, given that the maturation state of β cells
affects insulin production, secretion, and GSIS, subtyping new β

cells will allow for better understanding of β cell characteristics
and functions.

New Markers for Subtyping of β Cells
Under pathological conditions or in response to specific
treatments, adult β cells exhibit heterogeneous responses (178).
During the past few decades, a series of markers of β cell
heterogeneity have been identified and characterized (Table 2).
For example, insulin and Pdx1 levels reflect different maturation
states of β cell subpopulations (179, 185). Expression of Glut2lower

characterizes rare subpopulations of β cells with low insulin
content, properties of stem/progenitor cells, and lineage plasticity
that appears during β cell regeneration induced by β cell ablation
(180). The correlation between E-cadherin and insulin levels in

adult rodent β cells suggests the importance of tight cell-to-
cell junctions to the function of β cells (181, 186). Recently,
novel proteins have been identified as phenotypic and functional
markers for discrimination of β cell populations (187). Flattop,
a Wnt/planar cell polarity effector, can be used to distinguish
the proliferative competence of mature β cells. Subpopulations
of β cells labeled by Flattop present distinct molecular (gene
expression level of Ucn3 and MafA), physiological (expansive
ability to respond to stimulation), and ultrastructural features
(182, 188, 189). Other subtyping markers, St8sia1 and Cd9, based
on their expression levels, human β cells have been divided
into four subtypes, which have diverse gene expression profiles
and distinct basal and GSIS ability (183). In addition, hubs
are the markers for β cell subpopulations with transcriptional
immaturity and high metabolism. Hubs were discovered through
studies of optogenetics and photopharmacology (184).

Functional cooperation among islet cells is dependent on
the three-dimensional architecture and cellular composition
of islet cells (190). β cell subpopulations combine with other
islet cells to form a three-dimensional islet architecture that
contributes to distinct functions and influences development of
diabetes mellitus. In addition, the physiological and pathological
conditions of the pancreas also affect β cell heterogeneity
(191, 192). In this process, β cells adapt physiologically,
morphologically, and functionally to specific environmental
cues. Therefore, given that heterogeneity and plasticity of β

cells determine their functional and environmental adaptability,
subtyping new insulin expressing cells would provide new clues
for treatment of diabetes.

DISCUSSION

Over the past several decades, studies examining endogenous
β cell regeneration have proposed numerous strategies for
treatment of β cell-deficient diabetes. Most of these strategies,
however, have only been successfully applied to animals.
Although some treatment strategies for diabetes have been
successful in rodent models, most have failed in humans. It is
generally accepted that the autoimmunologic features of T1D are
the primary causes of clinical failures. Specifically, neogenetic
β cells are always recognized and attacked by diabetogenic T
cells, which results in death of these new β cells. Fortunately,
the approaches and technologies for protection of new β cells in
islet transplantation have improved. For example, encapsulating

TABLE 2 | The markers for subtyping of pancreatic β cells.

Markers Characteristics of β cells References

Ucn3, insulin, Pdx1 Mature state (176, 179)

Glut2 Insulin secreting (180)

E-cadherin Insulin levels (181)

Flattop Proliferation-competent (182)

St8sial and Cd9 Basal or glucose-stimulated insulin secretion (183)

Hubs Insulin secretion and glucose-response (184)
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technologies protect grafted islets from the host immune
system (193, 194). Another strategy is to improve immunologic
tolerance of new β cells through replenishment of regulatory
T cells (195–198). Clinical trial results showed that prolonged
immunosuppression in chronic T1D patients slightly increased
native pancreatic insulin production, which demonstrated the
effect of the immune system on endogenous pancreatic β cell
regeneration (199). Moreover, technologies for generation of
insulin producing cells derived from iPS cells has allowed for
autologous β cell transplantation for T1D treatment (200, 201).
However, because T1D is an autoimmune disease, new β cells are
attacked by immune cells. Thus, further studies should focus on
increasing the autoimmunologic tolerance of new β cells. First,
we suggest focusing on the functionality and immunogenicity
of new pancreatic β cells to improve adaptability in clinical
applications. Subsequently, steps should be taken to improve
understanding of the characteristics of pancreatic islets, islet cells,
and new insulin-expressing cells. Furthermore, studies aimed at
determining molecular mechanisms and potential regenerative

medicines should use humanized mouse models of diabetes,
which will provide significant information for development of
new T1D therapies.
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