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ABSTRACT: Strong electron correlation can be captured with multireference wave
function methods, but an accurate description of the electronic structure requires
accounting for the dynamic correlation, which they miss. In this work, a new approach for
the correlation energy based on the adiabatic connection (AC) is proposed. The ACn
method accounts for terms up to order n in the coupling constant, and it is size-consistent
and free from instabilities. It employs the multireference random phase approximation and
the Cholesky decomposition technique, leading to a computational cost growing with the
fifth power of the system size. Because of the dependence on only one- and two-electron
reduced density matrices, ACn is more efficient than existing ab initio multireference
dynamic correlation methods. ACn affords excellent results for singlet−triplet gaps of
challenging organic biradicals. The development presented in this work opens new
perspectives for accurate calculations of systems with dozens of strongly correlated
electrons.

Electron correlation energy is defined with respect to the
energy of a model (a reference) used to describe a given

system. In other words, given a Hamiltonian Ĥ , if Ψref is the
reference wave function and Eref is the corresponding energy,
i.e.,

= ⟨Ψ | ̂ |Ψ ⟩E Href ref ref (1)

then electron correlation comprises all electron interaction
effects not accounted for by the chosen model, and the
correlation energy pertains to the energy error

≡ −E E Ecorr exact
ref

(2)

computed with respect to the exact energy Eexact (an eigenvalue
of the Hamiltonian Ĥ). Strongly correlated molecular systems
require model wave functions consisting of multiple config-
urations to capture static correlation effects. The complete
active space (CAS) method assumes the selection of a number
of (active) electrons and orbitals crucial to the static
correlation followed by exact diagonalization in the active
orbital subspace.1,2 The CAS model is a base of the CASSCF
wave function and is also frequently employed in density
matrix renormalization group (DMRG) calculations. The
DMRG method is one of the most promising tools for
strongly correlated molecules3−7 because of its favorable
scaling, which enables the handling of much more extensive
active spaces than CASSCF allows. The reference energy, Eref

in eq 1, for all CAS-based methods does not include a
substantial portion of the electron correlation, called dynamic
correlation, Ecorr in eq 2. Even the inclusion of dozens of

orbitals in the active space is not sufficient to achieve a reliable
description, and the necessity to recover dynamic correlation
remains the major challenge of DMRG.6 Although there exist
many post-CAS methods aimed at including dynamic
correlation (e.g. ref 7), none are satisfactory because of the
limitations in both accuracy and efficiency. In particular,
perturbation-theory-based approximations may suffer from the
lack of size-consistency, intruder states, or the unbalanced
treatment of closed- and open-shell systems, which must be
cured by level-shifting.8 The limitation of PT2 when combined
with DMRG is the high scaling with the number of active
orbitals resulting from the treatment of three- and four-
electron reduced density matrices (RDMs). Efforts to reduce
the cost of handling high-order RDMs in NEVPT2 are worth
noticing. These include the stochastic strongly contracted
scheme,9,10 employing the cumulant expansion11 or prescreen-
ing techniques.12 However, the improved efficiency may come
at the cost of introducing additional intruder states.13

Alternative approaches for molecular systems with strongly
correlated electrons, which might also be viewed as CAS-like
methods, are represented by embedding schemes. These
comprise the self-energy embedding theory,14 active-space
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embedding,15 or subsystem embedding subalgebras16 leading
to the active-space coupled-cluster downfolding techniques.17

The goal of this work is to address the challenge of
recovering dynamic correlation and proposing an efficient and
reliable computational method applicable to large active
spaces. The presented approach builds upon the adiabatic
connection formalism first introduced in the framework of
Kohn−Sham DFT18−21 and recently formulated for CAS
models.22,23

Although the following discussion will pertain to a ground-
state energy, the presented formalism is general and can be
directly applied to higher states. Derivation of the formula for
the correlation energy in the adiabatic connection (AC)

formalism begins with assuming a model Hamiltonian Ĥ(0)

(typically the electron−electron interaction is either reduced

or removed from Ĥ(0)
) such that the reference function Ψref is

its eigenfunction

̂ |Ψ ⟩ = |Ψ ⟩H E(0) ref (0) ref
(3)

The AC Hamiltonian ̂ αH is introduced as a combination of

Ĥ(0)
and a scaled complementary operator ̂ ′H

α∀ ̂ = ̂ + ̂ ′α
α

∈[ ] H H H0,1
(0)

(4)

̂ ′ = ̂ − ̂H H H(0) (5)

The eigenequation for ̂ αH reads

̂ |Ψ ⟩ = |Ψ ⟩α
ν
α

ν
α

ν
αH E (6)

where index ν pertains to the νth electronic state. The role of
the coupling parameter α is to adiabatically turn on full
electron correlation by varying α from 0 to 1. Namely, at α = 0

electron interaction is reduced according to the assumed Ĥ(0)

model and the reference wave function is obtained as Ψα
0

|Ψ ⟩ = |Ψ ⟩α=
0

0 ref
(7)

The α = 1 limit corresponds to electrons interacting at their
full strength so that both the exact energy and wave function
are obtained

=α=E E0
1 exact

(8)

|Ψ ⟩ = |Ψ ⟩α=
0

1 exact
(9)

E x p l o i t i n g t h e He l lm a nn−F e y nman t h e o r em

= ⟨Ψ | ̂ ′|Ψ ⟩
α

α α∂
∂

α

HE
0 0

0 , satisfied for α ∈ [0, 1], it is straightforward

to show that the correlation energy, eq 2, is given exactly as

∫ α= ⟨Ψ | ̂ ′|Ψ ⟩ − ⟨Ψ | ̂ ′|Ψ ⟩α αE H H( ) dcorr
0

1

0 0
ref ref

(10)

The choice for the Ĥ(0)
Hamiltonian depends on the

reference wave function. Our interest is in multireference CAS-
based models which assume partitioning orbitals into sets of
inactive (fully occupied), active (fractionally occupied), and
virtual (unoccupied) orbitals and constructing Ψref as an
antisymmetrized product of a single determinant comprising
inactive orbitals and a multiconfigurational function utilizing

active orbitals. Thus, we represent Ĥ(0)
as a sum of group

Hamiltonians ĤI
22,24

∑̂ = ̂H H
I

I
(0)

(11)

where I corresponds to an inactive, active, or virtual group and
ĤI consists of one- and two-particle operators

∑ ∑̂ = ̂ ̂ + ̂ ̂ ̂ ̂ ⟨ | ⟩
∈

†

∈

† †H h a a a a a a rs pq
1
2I

pq I
pq p q

pqrs I
r s q p

eff

(12)

∑ ∑∀ = + [⟨ | ⟩ − ⟨ | ⟩]∈
≠ ∈

h h n pr qr pr rqpq I pq pq
J I r J

r
eff

(13)

Notice that ⟨ | ⟩rs pq denotes a two-electron integral in the
x1x2x1x2 convention and the effective one-electron Hamil-
tonian heff is a sum of kinetic and electron-nuclei operators and
the self-consistent field interaction of orbitals in group I with
the other groups (second term in eq 13). Throughout the
letter, it is assumed that indices p, q, r, and s denote natural
spin orbitals of the reference (α = 0) model and { }np are the
corresponding natural occupation numbers. For this choice of

Ĥ(0)
, the α-dependent integrand in the correlation energy

expression, eq 10, includes, among others, one-electron terms
depending on the difference between 1-RDM at α = 1 and the
reference term, γα − γα=0 = γα − γref. Such terms are set to 0
under the assumption that for the properly chosen multi-
reference wave function for a strongly correlated system, the
variation of γα with α can be ignored.
As has been shown in refs 22 and 23 and also in the

Supporting Information (SI), choosing Ĥ(0)
as a group

Hamiltonian and assuming that 1-RDM stays constant with
α turn eq 10 into the following AC correlation energy
expression

i

k

jjjjjj
y

{

zzzzzz∫∑ ∑ ∑γ γ α γ γ= ′ −

×⟨ | ⟩

ν

α ν α ν

ν

α ν α ν

≠ ≠

= =E

rs pq

1
2

d
pqrs

pr qs pr qscorr
AC

0

1

0

,0 , 0

0

0,0 0, 0

(14)

where γ0ν,α are one-electron transition reduced-density
matrices (1-TRDM)

γ = ⟨Ψ | ̂ ̂ |Ψ ⟩ν α α
ν
α†a apq q p

0 ,
0 (15)

It is important to notice a prime in the AC formula in eq 14,
which indicates that terms pertaining to pqrs belonging to the
same group are excluded. This implies that electron correlation
already accounted for by the active-orbitals component of the
reference wave function is not counted twice in Ecorr

AC .
We now briefly recapitulate developments presented in our

earlier works22,23,25,26 leading to approximate correlation
energy methods called AC and AC0. To formulate a working
expression for the AC correlation energy, we have used Rowe’s
equation of motion27,28 in the particle-hole RPA approxima-

tion, where the excitation operator ν̂
†

O generating a state ν,

ν̂ | ⟩ = | ⟩ν
†

O 0 , is approximated by single excitation operators as

̂ = ∑ ̂ ̂ + ̂ ̂ν
†

>
† †O X a a Y a a( )p q pq p q pq q p . To distinguish this approx-

imation from the conventional RPA,27,29−31 which assumes a
single determinant as a reference, we used the ph-RPA
equations
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{

zzzzzzzz
ω

∼

∼ =
∼

∼

α

α
ν
α

ν
α ν

α ν
α

ν
α

−

+

Y

X

0 1
1 0

Y

X

0

0
(16)

which are introduced for a general, multiconfigurational
reference: the extended RPA (ERPA).28,32 The ERPA
equations have been written for the AC Hamiltonian (eq 4)
leading to α

± defined as

∀ [ ] =
⟨Ψ |[ ̂ ̂ [ ̂ ̂ ̂ ]] ± [ ̂ ̂ [ ̂ ̂ ̂ ]]|Ψ ⟩

− −
α

α α

>
>

±

† † † †a a H a a a a H a a

n n n n

, , , ,

( )( )
p q
r s

pq rs
p q s r p q r s

p q r s
,

ref ref

(17)

Explicit expressions of α
± in terms of 1- and 2-RDMs are

presented in the SI. Both α
+ and α

− are symmetric and
positive-definite at α = 0 and 1 for the Hellmann−Feynman
reference wave function Ψref. Because the coupling constant
dependence is passed to ERPA equations only via AC
Hamiltonian ̂ αH , the matrices α

± are linear in α, i.e.,

α= +α
± ± ±

(0) (1)
(18)

In the ERPA model,33 the α-dependent 1-TRDMs (eq 15) are
g i v e n b y t h e e i g e n v e c t o r s ∼

ν
α

Y a s

γ γ∀ + [∼ ] = +ν
α α ν α ν

> n n Y( )p q p q pq qp pq
1/2 1/2 ,0 ,0 , which allows one

to turn eq 14 into a spin-free formula25

i

k
jjjjjj

y

{
zzzzzz∫

∑

∑ α

= ′ + +

× [∼ ] [∼ ] − [∼ ] [∼ ]

×⟨ | ⟩

ν
ν
α

ν
α

ν ν

>
>

E n n n n

pr qs

Y Y Y Y

2 ( )( )

d

p q

r s

p q r s

pq rs pq rs

corr
AC 1/2 1/2 1/2 1/2

0

1 (0) (0)

(19)

where ∼ = ∼
ν ν

α=
Y Y

(0) 0
. Equations 16 and 19 form the basis for

practical correlation energy calculations. This, however,
requires solving the ERPA problem which formally scales
with the sixth power of the system size. In addition, using the
reference wave function in which the choice of the active
orbitals is not optimal could lead to developing instability in
the ERPA problem for α ≫ 0.25 To lower the computational
cost and avoid potential instabilities, we introduced an AC0
variant, assuming linearization of the integrand in eq 19,

namely, using α∼ = ∼ + ∼
ν
α

ν νY Y Y
(0) (1)

, by keeping the linear terms
in α and carrying out the α integration,25

∑

∑

= ′ + +

× [∼ ] [∼ ] ⟨ | ⟩
ν

ν ν

>
>

E n n n n

pr qsY Y

2 ( )( )
p q

r s

p q r s

pq rs

corr
AC0 1/2 1/2 1/2 1/2

(0) (1)

(20)

The low computational cost of AC0 stems from the fact that
ERPA equations must be solved only at α = 0, and for this
value of the coupling constant, the ± matrices are block

diagonal. The largest block has dimensions of ×N Nact
2

act
2

(Nact denotes the number of active orbitals), so the cost of its
diagonalization is marginal even for dozens of active orbitals.
Despite the fact that encouraging results have been obtained

with AC0 when combined with CASSCF25,26,34 or DMRG,35 α
integration should in principle account for correlation more

accurately than AC0. It is thus desirable to develop an AC
method which on the one hand is exact at all orders of α and
on the other avoids solving the expensive ERPA problem.
Ideally, such a method would be free of potential instabilities
that might occur when α approaches 1. A novel AC method
satisfying all of the requirements is presented in this work.
L e t u s u s e t h e i n t e g r a l i d e n t i t y

∫π ω ω∀ +>
∞ −a a2 / ( ) daRe 0 0

2 2 1 = 1 to express the AC

correlation energy by means of the α-dependent dynamic
density−density response matrix.36 This can be attained by
employing the relations

∫

∫

∑ ∑
π

ω
ω

ω ω

π
ω ω

[∼ ] [∼ ] = [∼ ] [∼ ]
+

≡ [ ]

ν
ν
α

ν
α

ν
ν
α

ν
α ν

α

ν
α

α

∞

∞

Y Y Y Y

C

2
d

( )
1

d ( )

pq rs pq rs

pq rs

0 2 2

0
, (21)

in eq 19, resulting in the formula

∫ ∫π
α ω ω ω= {[ − ]′ }α α

∞
=E C C g

2
d d Tr ( ) ( )corr

AC

0

1

0

0

(22)

where

∀ = + + ⟨ | ⟩>
>

g n n n n pr qs( )( )p q
r s pq rs p q r s,

1/2 1/2 1/2 1/2

(23)

and the prime in eq 22 indicates that when taking a product of
matrices C and g, terms pqrs ∈ active are excluded. By using
spectral representations of the matrices α

+ and α
− in terms

of the ERPA eigenvectors,37 it is straightforward to show that
the dynamic linear response matrix Cα(ω) follows from the
linear equation given as (see the SI for details)

ω ω[ + ] =α α α α
+ − +1 C ( )2

(24)

To reduce the computational cost of solving eq 24, we
introduce a decomposition of the modified two-electron
integrals g

∑=
=

D Dgpq rs
L

N

pq L rs L,
1

, ,

Chol

(25)

where Dpq,L are the natural-orbital-transformed Cholesky
vectors of the Coulomb matrix multiplied by factors

+n np q
1/2 1/2, cf. eq 23. We expand Cα(ω) at α = 0

∑ω ω α=
!

α

= n
C C( )

1
( )

n

n n

0

( )

(26)

ω ω
α

= ∂
∂

α

α=
C

C
( )

( )n
n

n
( )

0 (27)

and solve eq 24 iteratively in the reduced space by retrieving, in
the nth iteration, the nth-order correction C(n) projected onto
the space spanned by NChol transformed Cholesky vectors
{ }D .L To account for the prime (exclusion of terms for all-
active indices pqrs) in the AC correlation energy, eq 22, we
define the auxiliary matrices of the transformed Cholesky
vectors as

l
m
ooo
n
ooo

∀ =
∈

> D
D pq

D

2 if active

otherwisep q pq L
pq L

pq L
,

1 ,

, (28)
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l
m
ooo
n
ooo

∀ =
∈

> D
pq

D

0 if active

otherwisep q pq L
pq L

,
2

, (29)

Assuming an expansion of the response matrix Cα(ω), cf. eq
26, up to nth order in α and employing the Cholesky
decomposition of integrals, eq 25, together with matrices D1

and D2 in eq 22 leads to a new AC formula for the correlation
energy reading

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjj

y

{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
∫ ∑

π
ω ω=

! +

∞

=

E
k k

C
D

2
Tr d

( )
( 1)k

n k

corr
AC

0 1

( )
2n

(30)

The matrices ωC̅( ) n( ) defined as

ω ω̅ =C C D( ) ( )n n( ) ( ) 1 (31)

have dimensions of M2 × NChol, which are reduced comparing
to the M2 × M2 dimensions of C(ω)(n) because by
construction the number of Cholesky vectors is 1 order of
magnitude smaller than M2, i.e., NChol ≈ M. Employing the
linearity in α of the matrices α

±, cf. eq 18, in eq 24 one finds

the following recursive formulas for the nth-order term ωC̅( ) n( )

ω̅ = ̅ +C A D( )(0) (0) 1
(32)

ω ω̅ = ̅ − ̅ ̅+C A D A C( ) ( )(1) (1) 1 (1) (0)
(33)

ω ω

ω

∀ ̅ = − ̅ ̅ − −

× ̅ ̅
≥

−

−

n n nC A C

A C

( ) ( ) ( 1)

( )

n
n n

n

2
( ) (1) ( 1)

(2) ( 2) (34)

where the required matrices are given by the ERPA matrices

±
(0) and ±

(1) (see the SI for their explicit forms in terms of 1-
and 2-RDMs)

ω̅ = Λ+ +A ( )(0) (0)
(35)

ω̅ = Λ+ +A ( )(1) (1)
(36)

ω̅ = Λ ++ − + −A ( )( )(1) (0) (1) (1) (0)
(37)

ω̅ = Λ + −A ( )(2) (1) (1)
(38)

ω ωΛ = ++ −
−1( ) ( )(0) (0) 2 1

(39)

The correlation energy expression in eq 30 together with the
recursive relation in eqs 32−34 is the central achievement of
this work. It allows one to compute the correlation energy for
strongly correlated systems at the cost of scaling with only the
fifth power of the system size. All matrix operations scale as
M4NChol down from M6 scaling of the original ERPA problem
in eq 16. Notice that the cost of computing the Λ(ω) matrix is
marginal because the inverted matrix is block diagonal with the
largest block having dimensions of ×N Nact

2
act
2 .

By setting the maximum order of expansion of the response
matrix C(ω) in eq 30 to 1, the correlation energy ACn
becomes equivalent to the AC0 approximation, cf. eq 20. In
the limit of n → ∞, the Ecorr

ACn value approaches the AC energy
given according to the formula in eq 19 if the Taylor series is
convergent. Numerically, this equality requires sufficient
accuracy both in the frequency integration and in the Cholesky
decomposition of two-electron integrals.
Going beyond the first-order terms in the coupling constant

is potentially beneficial because higher orders gain importance
as α approaches 1. Higher-order contributions are effectively
maximized i f the AC integrand Wα in eq 22,

∫ ω ω ω= {[ − ]′ }α α α∞ =W C C gd Tr ( ) ( )
0

0 , is linearly extrapo-

lated from Wα=1 to the exact limit Wα=0 = 0. Such an
extrapolation method leading to the approximation

Table 1. ST Gaps (ET − ES), Mean Errors (ME), Mean Unsigned Errors (MUE), and Standard Deviations (std dev) Computed
with Respect to CC3 Reference Dataa

molecule T state CASSCFb AC1n ACn AC0 NEVPT2c CASPT2d CC3d

ethene 13B1u 3.78 4.53 4.56 4.69 4.60 4.60 4.48
E-butadiene 13Bu 2.77 3.44 3.43 3.46 3.38 3.34 3.32
all-E-hexatriene 13Ag 2.66 2.83 2.81 2.80 2.73 2.71 2.69
all-E-octatetraene 13Bu 2.25 2.46 2.43 2.39 2.32 2.33 2.30
cyclopropene 13B2 3.78 4.42 4.44 4.56 4.56 4.35 4.34
cyclopentadiene 13B2 2.75 3.34 3.34 3.37 3.32 3.28 3.25
norbornadiene 13A2 3.07 3.92 3.89 3.86 3.79 3.75 3.72
benzene 13B1u 3.74 4.17 4.21 4.37 4.32 4.17 4.12
naphtalene 13B2u 2.93 3.19 3.21 3.29 3.26 3.20 3.11
furan 13B2 3.54 4.09 4.16 4.30 4.33 4.17 4.48
pyrrole 13B2 3.95 4.47 4.52 4.67 4.73 4.52 4.48
imidazole 13A′ 4.42 4.70 4.74 4.85 4.77 4.65 4.69
pyridine 13A1 3.81 4.28 4.34 4.53 4.47 4.27 4.25
s-tetrazine 13B3u 2.43 2.27 2.05 1.51 1.64 1.56 1.89
formaldehyde 13A2 3.32 3.80 3.74 3.77 3.75 3.58 3.55
acetone 13A2 4.17 4.27 4.29 4.90 4.10 4.08 4.05
formamide 13A″ 4.72 5.31 5.47 5.60 5.64 5.40 5.36
acetamide 13A″ 4.77 5.46 5.57 5.73 5.52 5.53 5.42
propanamide 13A″ 4.79 5.51 5.61 5.80 5.54 5.44 5.45
ME − 0.38 0.08 0.10 0.18 0.10 0.00 -
MUE 0.45 0.13 0.13 0.24 0.14 0.07 -
std dev 0.35 0.15 0.11 0.23 0.13 0.12 -

aAll values are in eV. bActive spaces from ref 42. cResults from ref 47. dResults from ref 42.
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∫ α α=
π

α=E W dcorr
AC 2

0

1 1 has already been proposed in ref 22. If

it is used together with the formula in eq 22, the expansion
shown in eq 26, and the Cholesky decomposition of two-
electron integrals, then one obtains the formula
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which will be denoted as AC1n. Notice that the frequency-
integrated kth-order term in eq 40 contributes to the
correlation energy by a factor of (k + 1)/2 greater than its
counterpart in the expression given in eq 30.
The Cholesky decomposition of the Coulomb integrals

matrix in the AO basis was carried out using a modified
program originally used in refs 38 and 39. The implementation
was carried out according to ref 40. The Cholesky vectors in
the AO basis, Rpq,L, were generated until the satisfaction of the

trace condition ∑ ⟨ | ⟩ − ∑ <≥
−( )pp qq R R 10p q L pq L pq L, ,

2. The

convergence threshold was previously tested as a part of the
default set of numerical thresholds in Table 1 of ref 38.
For the ω integration in the ACn correlation energy, we have

used a modified Gauss−Legendre quadrature as described in
ref 41. With the 18-point grid, the accuracy of the absolute
value of energy achieves 10−2 mHa, which results in 10−2 eV
accuracy in the singlet−triplet (ST) gaps.
To assess the accuracy of the ACn approaches, we have

applied them to two benchmark data sets of singlet−triplet
energy gaps: the single-reference system set of Schreiber et
al.42 and the multireference organic biradicals studied by
Stoneburner et al.43 In the single-reference data set, we
employed the TZVP44 basis set and compared our data against
the CC342 results. The aug-cc-pVTZ basis and the doubly
electron-attached (DEA) equation-of-motion (EOM) coupled-
cluster (CC) 4-particle−2-hole (4p−2h) reference43 were used
for the biradicals. All CASSCF calculations were performed in
the Molpro45 program. All AC methods were implemented in
the GammCor program.46

Computing the correlation energy with the ACn method
requires either fixing the maximum order of expansion with
respect to the coupling constant, n in eq 30, or continuing the
expansion until a prescribed convergence threshold is met. The
advantage of the former strategy is that size consistency is
strictly preserved. For each system, we found that the ACn
correlation energy converges with n for the chosen active
space. Typical convergence behavior for the singlet, triplet, and
ST energies is presented in Figure 1. It can be seen that for n =
3 the ACn ST gap deviates by only 0.01 eV from the AC value,
computed using eq 19. For all other biradicals and single-
reference systems, we found that setting n = 10 in eq 30 is
sufficient to converge ST gaps within 10−2 eV, thus n = 10 has
been set for all systems.
In Table 1, we present ST gaps for the subset of the ref 42

data set. The CASSCF method predicts ST gaps that are too
narrow, with the mean error approaching −0.4 eV, which
results from the unbalanced treatment of closed-shell singlet
and open-shell triplet states. The addition of correlation energy
using the adiabatic connection greatly reduces the errors. The
mean unsigned error (MUE) of AC0 amounts to 0.24 eV. The
performance is further improved by ACn, which affords MUE
of 0.13 eV. Maximizing the contribution from higher-order
terms in α, attained in AC1n, leads to ST gaps of the same

unsigned error as that of ACn. Noticeable, the signed error is
reduced, which indicates that higher-order terms play a more
important role in the open-shell states than in the closed-shell
states. The accuracy of ACn is on a par with NEVPT2 and only
slightly worse than the best CASPT2 estimations from ref 42.
The standard deviation of AC0, amounting to 0.23 eV, is
reduced to 0.11 eV by ACn, which parallels the standard
deviation of the perturbation methods.
In ref 43, the systematic design of active spaces for biradicals

based on the correlated participating orbital (CPO) scheme48

is presented. Here, we take a different approach and identify
the most appropriate CASs by means of single-orbital
entropies and two-orbital mutual information.49−51

Figure 2 shows the correlation measures for singlet and
triplet states of prototypical biradicals, C4H4 and C5

+H5 ,
obtained with, respectively, CAS(20,22) and CAS(14,16)
active spaces (cf., the description in the SI). We observe that
the π orbitals of C4H4 and C5

+H5 are well separated from the
others in terms of their single-orbital entropies (si > 0.19; see
the SI) and represent a natural choice of the active space
selection. The largest values of si correspond to the singly
occupied frontier orbitals in the singlet states. These orbital
pairs also possess the largest values of mutual information,
which stems from the strong correlation of the frontier orbitals
due to the singlet-type coupling of these open shells. Notice
that both single-orbital entropies and mutual information from
the singly occupied orbitals are much lower in the case of the
triplet states. This is due to the fact that the triplet states were
calculated as high-spin projections and thus can be qualitatively
described with a single determinant. However, when analyzing
the triplet states, one can see that all of the π orbitals have
similar values of their single-orbital entropies and that
CAS(2,4) (the nCPO active space in ref 43) is not a
reasonable choice. In fact, for this imbalanced active space, we
have experienced divergence of the ACn series (last entry in
Table 1 in the SI).
The analysis of mutual information and single-orbital

entropies of prototypical biradicals has allowed us to define

Figure 1. Differences in ACn and AC correlation energies for singlet
(S) and triplet (T) states (left axis) and ST gaps (right axis) as a
function of n for the C4H2-1,3-(CH2)2 biradical. Notice that black
markers overlap with the red ones.
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optimal active spaces: CAS(4,4) for C4H4, C4H3NH2,
C4H3CHO, and C4H2NH2(CHO), CAS(4,5) for C5

+H5 , and
CAS(6,6) for C4H2-1,2-(CH2)2, and C4H2-1,3-(CH2)2. The
choice of the orbitals in CAS is therefore such that all valence π
orbitals on, or adjacent to, the carbon the carbon ring are
included and only the mostly correlated orbitals, with
occupancies in the range of (0.05, 1.95), enter the active
space. The chosen active spaces are close to the πCPO scheme
considered in ref 43, with the difference that nearly unoccupied
orbitals in πCPO, shown to be uncorrelated according to our
mutual information analysis, are excluded.

Similar to the single-reference case, the performance of the
CASSCF method for the ST gaps in biradicals is seriously
affected by the lack of dynamic correlation (Table 2). Even
though the CASSCF gaps of three systems (C5

+H5 , 1,2- and
1,3-isomers) are in error by only 0.1 eV, the overall MUE is as
large as 0.20 eV and the mean average unsigned percentage
error (MU%E) exceeds 100%. The AC0 method over-
compensates for the errors in CASSCF. For biradicals 1, 3,
and 4, the excessive reduction of the ST gaps by AC0 results in
a wrong ordering of states. Both ACn and AC1n approaches
capture correlation at high orders of α and greatly improve on

Figure 2. DMRG mutual information (colored edges) and single-orbital entropies (colored vertices) of C4H4 and C5
+H5 for the lowest singlet and

triplet states. Numbers in the graphs correspond to indices of the DMRG-SCF (C4H4) and CASSCF (C5
+H5 ) natural orbitals presented together

with their occupation numbers in the SI. Blue circles represent the π orbitals with si > 0.19.
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AC0. The ordering of states is correct and the average error
falls below 0.10 eV as compared to the 0.16 eV error in AC0.
AC1n performs slightly better than ACn in terms of MUEs,
with the errors being 0.06 and 0.08 eV, respectively, and
significantly better in terms of percentage errors. The improved
MU%E of AC1n (14 vs 26%) is due to the good performance
of this method for small gaps (systems 1, 3, and 4). These
excellent results imply a crucial role of the higher-order terms
in AC which should enter the correlation energy with high
weights.
Table 2 includes the ftPBE results from ref 52. The latter

method performs better than other MC-PDFT53 approaches
for ST gaps of biradicals. Similarly to AC approximations, MC-
PDFT is a post-CASSCF method relying on only 1- and 2-
RDMs obtained from CAS. It employs density functional
exchange-correlation functionals with modified arguments to
describe electron correlation. As shown in Table 2, the
accuracy of ST gap predictions by ftPBE does not match that
of the AC1n method, with the percentage error nearly tripled
and amounting to 38%. When comparing the computational
efficiency of the adiabatic connection and MC-PDFT
approximations, ACn (or AC1n) formally scale with the fifth
power of the system size, which is one order more than scaling
the MC-PDFT. (The timings of both methods are presented in
the SI.) It should be noticed, however, that in the cases of both
ACn and MC-PDFT the major share of the total computational
time is spent on the CASSCF calculation.
The accuracy achieved by AC1n comes close to that of the

RASPT2 method. A comparison of RASPT2 (or CASPT243)
results with those of ACn requires some care. These
perturbation methods involve parameters to remove intruder
states and to compensate for their tendency to underestimate
gap energies between closed- and open-shell states.54 The
default value of the ionization potential-electron affinity shift8

used in ref 43 improves ST gaps of biradicals predicted by
CASPT2 and RASPT2 methods. In general, however, the shift
may be problematic for strongly correlated systems, e.g.,
complexes with transition metals, and their tuning may be
required.55,56

In summary, we have proposed a computational approach to
the correlation energy in complete active space models. The
novel ACn formula for the correlation energy is based on a

systematic expansion with respect to the adiabatic connection
coupling constant α. Application to singlet−triplet gaps of
single- and multireference systems revealed the need to
account for higher-order terms in the α expansion. The
ACn/AC1n approaches showed a systematic improvement over
the first-order AC0 method. The AC1n variant, which
maximizes contributions from the higher-order terms, was
identified as the best-performing AC approximation. Owing to
the Cholesky decomposition technique, the ACn methods
achieve N( )5 scaling of the computational time with the
system size. Because they involve only 1- and 2-RDMs, they
are well-suited to treat large active spaces. Importantly, the
formalism used to derive ACn is not limited to a particular form

of the model Hamiltonian Ĥ(0)
, thus further improvements in

accuracy could be achieved with models other than that
assumed in this work.
Compared to other correlation energy methods for strong

correlation, ACn emerges as having the most favorable accuracy
to cost ratio. Advantages of ACn over perturbation methods,
such as CASPT2 or RASPT2, include not only the ability to
treat dozens of active orbitals but also the lack of parameters
and strict size consistency.57 We believe that the presented
development opens new perspectives for meeting the challenge
of strong correlation, e.g., by DMRG6 methods.
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