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Abstract: (1) Background: HIV-1 sub-subtype A1 is common in parts of Africa, Russia, former Soviet
Union countries, and Eastern Europe. In Pakistan, sub-subtype A1 is the predominant HIV-1 subtype.
Preliminary evidence suggests that distinct strains of HIV-1 sub-subtype A1 are circulating in Pakistan;
however, an in-depth molecular phylogenetic characterization of HIV-1 sub-subtype A1 strains in
Pakistan have not been presented. We performed a detailed characterization of the HIV-1 sub-
subtype A1 epidemic in Pakistan using state-of-the-art molecular epidemiology and phylodynamics.
(2) Methods: A total of 143 HIV-1 sub-subtype A1 gag sequences, including 61 sequences generated
specifically for this study from PLHIVs part of our cohort, representing all sub-subtype A1 gag
sequences from Pakistan, were analyzed. Maximum-likelihood phylogenetic cluster analysis was
used to determine the relationship between Pakistani sub-subtype A1 strains and pandemic sub-
subtype A1 strains. Furthermore, we used signature variation, charge distribution, selection pressures,
and epitope prediction analyses to characterize variations unique to Pakistani HIV-1 strains and
establish the association between signature variations and Gag epitope profile. (3) Results: The
HIV-1 sub-subtype A1 sequences from Pakistan formed three main clusters: two that clustered with
Kenyan sequences (7 and 10 sequences, respectively) and one that formed a Pakistan-specific cluster
of 123 sequences that were much less related to other sub-subtype A1 sequences available in the
database. The sequences in the Pakistan-specific cluster and the Kenyan reference strains exhibited
several signature variations, especially at amino acid positions 312, 319, 331, 372, 373, 383, and 402.
Structural protein modeling suggested that amino acid changes in these positions result in alterations
of the Gag protein structure as well as in Gag-specific T-cell epitopes. (4) Conclusions: Our results
suggest that the majority of the Pakistan HIV-1 sub-subtype A1 strains were unique to Pakistan and
with a specific mutation pattern in Gag.

Keywords: HIV-1; sub-subtype A1; phylogenetics; phylodynamics; epitopes; gag; Pakistan

1. Introduction

Human immunodeficiency virus type 1 (HIV-1) is a major global health concern and
is responsible for approximately 37.6 million infected individuals worldwide [1]. A high
level of genetic diversity is a characteristic feature of HIV-1, attributed to error-prone
replication, recombination between HIV-1 strains, and evolution under immune selection
pressure [2,3]. Over time, HIV-1 has diversified into several hundred lineages (called
subtypes, sub-subtypes, or circulating or unique recombinant forms [CRFs or URFs]),
often specific to a geographic region, e.g., sub-subtype A1 in East Africa [4,5] and East
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Europe [6,7], sub-subtype A3 in West Africa [8–10], region-specific strains of subtype B in
Thailand, Brazil, Korea, Trinidad, and Tobago [11], and HIV-1 subtype C in Brazil [12].

HIV-1 tends to evolve under selection pressure exerted by the host immune system,
where human leukocyte antigens (HLAs) play a major role in the CD8+ T-cell immunity [13].
HLA diversity worldwide is shaped by demographics and natural selection [14], and the
HLA region on chromosome 6 is a highly polymorphic region of the human genome with
>7000 HLA alleles [15]. Moreover, the HLA frequency can differ at the population level
and result in differential inter-population selection pressure which may affect the evolution
of HIV-1 in a population-specific manner [16].

The HIV-1 epidemic in Pakistan has been expanding rapidly and a large increase
(57%) in new HIV-1 infections has been observed during the last ten years [17,18]. These
infections have now bridged from high-risk groups, such as people who inject drugs
(PWID) and men who have sex with men (MSM), into the low-risk communities, including
women and children [19,20]. The HIV-1 epidemic in Pakistan is mainly driven by HIV-1
sub-subtype A1. However, other HIV-1 strains have been found in different outbreaks
in the country [19,20]. Several of them have emerged as recombinant forms including
sub-subtype A1, e.g., CRF02/A1 [21], indicating an increasing diversity in circulating HIV-1
strains in Pakistan. However, an in-depth molecular characterization of HIV-1 sub-subtype
A strains in Pakistan has not been presented. Moreover, the relationship between Pakistani
sub-subtype A1 strains and other sub-subtype A1 strains is largely unknown. In the current
study, we analyzed HIV-1 gag sequences to characterize the HIV-1 sub-subtype A1 epidemic
in Pakistan by state-of-the-art molecular epidemiology and phylodynamics.

2. Materials and Methods
2.1. Study Population

In total, 143 HIV-1 gag sequences were analyzed. Of these, 61 were generated from
whole blood samples (3–5 mL whole blood from each study participant) collected from
people living with HIV-1 (PLHIV) enrolled in a Pakistan high-risk community HIV-1 cohort
in Karachi-Pakistan. The age of the participants ranged from 18 to 64 years, and most of
them were male (92%), with 64% being on antiretroviral therapy (ART, Table 1). Recorded
information on risk group included people who inject drugs (PWID, 43%), men who have
sex with men (MSM, 13%), spouse of an HIV positive individual (SP, 2%), and heterosexual
(5%, Table 1). The majority of participants were diagnosed for HIV-1 infection between
2011 and 2015 (61%), and all samples were collected in 2015 (Table 1, [3]). Samples from
PLHIV were recruited after obtaining written informed consent from each participant.
Basic information regarding age, sex, ethnicity, ART usage, and high-risk behavior was
obtained from each participant. Ethical approval for the study was obtained from the
Ethical Review Committees of Aga Khan University (4189-BBS-ERC-16). In addition to
the new sequences generated from these samples (as described below), 82 HIV-1 sub-
subtype A1 gag sequences from Pakistan (previously deposited to the Los Alamos Database
[https://www.hiv.lanl.gov]; accessed on 1 October 2018) were included in the study. All
accession numbers are listed in Supplementary Table S1.

Table 1. Characteristics of study participants.

Category/Variable Total No. (%)

Age (years)
15–24 11(18)
25–64 50 (82)

Sex
Male 56 (92)
Female 5 (8.12%)

https://www.hiv.lanl.gov
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Table 1. Cont.

Category/Variable Total No. (%)

Marital Status
Married 31 (51)
Single 25 (41)
Not declared 5 (8)

ART History
Experienced 39 (64)
Naïve 19 (31)
Not declared 3 (5)

Risk group
PWID 26 (43)
MSM 8 (13)
HET 3 (5)
SP 5 (2)
NA 2 (3)

Year of Diagnosis
2000–2005 8 (13)
2006–2010 5 (8)
2011–2015 37 (61)
Unknown 11 (18)

Date of sampling 2015
Abbreviations: MSM: men who have sex with men; PWID: people who inject drugs; HET: heterosexual; SP: spouse
of an HIV positive individual; NA: not available.

2.2. HIV-1 gag Gene Amplification and Sequencing

DNA extraction was performed by the QIAamp DNA Blood Mini Kit from Qiagen
(Hilden, Germany), according to the manufacturer’s instructions. The HIV-1 gag gene
was amplified by a two-step nested PCR strategy, using three different approaches for
the first round. The first round primers in the first, second, and third approaches were:
GOPF (5′-CTCTCGACGCAGGACTCGGCTTGC-3′, HXB2 [accession number: K03455]
positions 683–706), GOPR (5′-CCAATTCCCCCTATCATTTTTGG-3′, 2382–2404); NOPF1
(5′-CAAAGATCTCTCGACGCAG-3′, 676–694), NOPR1 (5′- CTGTATCATCTGCTCCTGTG-
3′, 2327–2346); and OPPF (5′-CTAGCAGTGGCGCCCGAACA-3′, 629–648) and OPPR (5′-
CTAATACTGTATCATCTGCTCCTGT-3′, 2328–2352). The primers GIPF (5′-GAGGCTAG
AAGGAGAGAGATGGG-3′, 772–794) and GIPR (5′-TTATTGTGACGAGGGGTCGTTGCC-
3′, 2269–2292) were used for nested amplification. The reaction mixture of 25 µL for
both first and second-round PCR contained 5 µL of PCR buffer (5 × Green GoTaq® Flexi
Buffer, pH 8.5), 2 mM MgCl2, 400 µM dNTPs, 0.3 U GoTaq Polymerase (Promega M3001,
Madison, WI, USA), and 0.48 pmol primers. The thermocycling conditions were as follows:
denaturation at 95 ◦C for 5 min, followed by 35 cycles of denaturation at 95 ◦C for 1 min,
annealing at 58 ◦C (first approach)/50 ◦C (second approach)/48 ◦C (third approach) for
1 min, and extension at 72 ◦C for 1 min, with a final extension of at 72 ◦C for 15 min. One µL
of the first-round PCR product was used for the second-round PCR. The thermocycling
conditions were as follows: Denaturation at 95 ◦C for 5 min, followed by 35 cycles of
denaturation at 95 ◦C for 1 min, annealing at 60 ◦C for 1 min, and extension at 72 ◦C
for 1 min, with a final extension of at 72 ◦C for 15 min. The amplified products were
electrophoresed on a 1.2% agarose gel (Sigma-Aldrich A1296; St. Louis, MO, USA), stained
by ethidium bromide, and visualized under ultraviolet light. PCR products were sequenced
by Macrogen Inc., Korea (Supplementary Table S2).

2.3. Subtyping Determination

For subtype determination, gag sequences from Pakistan were aligned with the most
recent (2010) HIV-1 subtype reference sequence dataset containing all group M sequences
and circulating recombinant forms (CRFs, https://www.hiv.lanl.gov/; accessed on 1 Octo-

https://www.hiv.lanl.gov/
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ber 2018) using the Clustal algorithm, followed by manual editing in Geneious v8.1.9 [22].
The gag alignment was submitted for maximum likelihood (ML) phylogenetic reconstruc-
tion in PhyML 3.0 using the following parameters: general time-reversible (GTR) model of
nucleotide substitution with a gamma-distributed rate heterogeneity. Branch support was
assessed by an approximate likelihood-ratio test based on the Shimodaira–Hasegawa-like
procedure (aLRT-SH) [23]. The inferred tree was assessed and annotated in FigTree (v1.4.3;
http://tree.bio.ed.ac.uk/software/figtree/; accessed on 10 October 2018). Nodes with
aLRT-SH support ≥0.9 were considered significant.

2.4. Cluster Analysis

A BLAST approach was used to generate a reference sequence dataset from NCBI
Genbank [24] based on similarity with the Pakistani HIV-1 sequences, as previously de-
scribed [25]. Briefly, the 10 closest matches for each Pakistani sequence were selected, after
which duplicate hits were removed using the program skipredundant.exe (threshold 98%)
from the EMBOSS package [26]. Information about the collection date, sampling country,
and route of transmission was also collected for each sequence. Subsequently, the sequence
alignment was used to determine a maximum likelihood (ML) tree as described above.

2.5. Time-Scaled Phylogenetic Reconstruction

Time-scaled phylogenetic reconstruction was done using the Bayesian Markov chain
Monte Carlo (MCMC) method as implemented in BEAST package v1.10.2 [27] with the
following settings: HKY + G nucleotide substitution model with codon partitioning; re-
laxed clock with an uncorrelated lognormal rate distribution; and SkyGrid demographic
model [28]. The prior ulcd. mean was set to uniform with an initial 0.001 (upper limit
1, and lower limit 1.0 × 10−6). The posterior probability ≥0.99 was used to determine
monophyletic clusters. MCMC chains were run for 2 × 108 generations and sampled every
20,000 steps. Maximum clade credibility (MCC) trees were generated in TreeAnnotator
v1.10.2 [29] after 10% burn-in. Time trees were labeled in FigTree v1.4.4 [30]. Two individual
runs were performed for each dataset, with log files combined in LogCombiner V1.10.2 [31].

2.6. Signature Variation(s) Analysis and Charge Distribution

Consensus nucleotide sequences were generated in Geneious v8.1.9 [22], followed by
translation to corresponding amino acid sequences in ExPASy [32] for protein-based analy-
sis. To identify the molecular level variations behind the divergence and temporal changes,
the signature variations (defined as variations unique to a particular set of sequences) were
identified using the viral epidemiology signature pattern analysis (VESPA) tool available in
the Los Alamos HIV Database [33]. The statistical significance of the ratio of the identified
unique sites between the strains was determined using the Chi-square test using Graph-
Pad (https://www.graphpad.com/quickcalcs/chisquared1/; accessed on 1 January 2019).
Amino acid variations were plotted using the WebLogo tool [34]. The effects of signature
variations on the biophysical properties of the sequences were determined by calculating
the differences in charge distribution on each amino acid along the length of the HIV-1
sub-subtype A1 Gag protein. Charged amino acids (arginine, lysine, glutamic acid, aspartic
acid, and histidine) and potential N-linked glycosylation sites (PNGSs) were determined
using an in-house Perl script based on the rules set in GLYCOSITE, as described previ-
ously [2]. The amino acid positions in HIV-1 Gag were determined using HXB2 (accession
number K03455) as a reference. The statistical significance of the net charge and total charge
between strains was determined using an unpaired t-test employed in Prism 9 version 9.3.1
(GraphPad Software, San Diego, CA, USA).

http://tree.bio.ed.ac.uk/software/figtree/
https://www.graphpad.com/quickcalcs/chisquared1/
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2.7. Renaissance Counting

To determine sites under selection, ratios of non-synonymous (dN) and synonymous
(dS) substitutions were estimated by renaissance counting, as implemented in BEAST
v1.10.2 using the HKY85 nucleotide substitution model, three-site codon partitioning, and
an uncorrelated relaxed molecular clock with lognormal distribution [2,35]. The MCMC
chain length was set at 2 × 108.

2.8. Epitope Mapping

To determine the effect of significant variations in cytotoxic T-cell (CTL) and helper
T-cell epitopes, pre-defined CTL and helper T-cell epitopes were retrieved from the HIV
molecular immunology database (www.hiv.lanl.gov/content/immunology/index). For
comparison, epitopes were then mapped on the consensus Gag protein sequences of the
Pakistani and reference datasets, respectively. Furthermore, HLA anchoring residues and
restricting HLA alleles for each epitope were predicted from consensus sequences using
the Motif Scan tool available in the Los Alamos Database [36].

2.9. Protein Structure Modeling

Finally, the effect of signature variations on protein structure was determined using
protein homology modeling, and secondary and tertiary structures were modeled using
the ab-initio protein structure prediction tool QUARK (https://zhanglab.ccmb.med.umich.
edu/QUARK, accessed on 1 January 2019) [37]. The similarity between the generated ter-
tiary structure models was determined by superimposing the two protein models using the
Click server (http://cospi.iiserpune.ac.in/click/, accessed on 1 January 2019) [38]. Finally,
sites with signature variations were marked in Discovery Studio Visualizer V17.2.0 [39].

3. Results
3.1. Subtyping and Cluster Analysis of HIV-1 Sub-Subtype A1 in Pakistan

The subtype analysis indicated that all 143 gag sequences from Pakistan were sub-
subtype A1 (Supplementary Figure S1). After the removal of duplicate sequences (from the
total number of reference sequences obtained from the database), the dataset was reduced
to 80 patient-unique reference sequences from Genbank for cluster analysis [24]. Except
for two sequences, all Pakistan sequences clustered together in three Pakistani-specific
clusters (Clusters 1–3, Figure 1), whereof most sequences were found in one large Pakistani-
exclusive cluster (Cluster 3, n = 123 sequences, Figure 1). The remaining Pakistani sequences
formed two separate clusters with sequences from Kenya (Cluster 1 and Cluster 2, Figure 1).
To assess if the Kenyan reference sequences were representative of the main HIV-1 sub-
subtype A1 epidemic in Kenya, we reconstructed a separate ML tree based on all available
Kenyan sub-subtype A1 sequences (n = 2045) in the Los Alamos Sequence Database
(accession numbers in Supplementary Table S3). The analysis showed that the reference
sequences were intermingled with the remaining Kenyan sequences, indicating that the
reference sequences were representative of the main HIV-1 sub-subtype A1 epidemic in
Kenya (Supplementary Figure S2). Due to their close genetic relationship with the Pakistani
sequences, these Kenyan sequences were used as references in subsequent comparative
analyses.

www.hiv.lanl.gov/content/immunology/index
https://zhanglab.ccmb.med.umich.edu/QUARK
https://zhanglab.ccmb.med.umich.edu/QUARK
http://cospi.iiserpune.ac.in/click/
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Figure 1. Phylogenetic clusters of HIV-1 sub-subtype A1 in Pakistan. Tips in green and black
represent, respectively, Pakistani and Kenyan (reference) HIV-1 sub-subtype A1 sequences. Arrows
indicate clusters 1, 2, and 3 in the phylogenetic tree, while the aLRT-SH support values of the three
clusters are also shown.

3.2. Date of Origin and Evolutionary Dynamics of HIV-1 Sub-Subtype A1 in Pakistan

To further characterize the HIV-1 sub-subtype A1 epidemic in Pakistan, we performed
an in-depth phylodynamic analysis of the main Pakistani cluster, Cluster 3 (n = 123). For
comparison and to gain further insight, we also analyzed the Kenyan HIV-1 sub-subtype
A1 cluster (n = 51, excluding the 19 Pakistani sequences, Figure 1). Some sequences
from the Kenyan reference dataset were removed because of poor temporal signal or
possible recombination (based on clustering pattern). The median time to the most recent
common ancestors (tMRCA) was 2002 (95% highest posterior density (HPD): 2000–2004)
for the Pakistani sub-subtype A1 cluster 3, and 1969 (95% HPD: 1949–1980) for the Kenyan
cluster (Figure 2A). The mean evolutionary rate for the Pakistani cluster 3 was 4.2 × 10−3

substitution/site/year (s/s/y, 95% HPD interval: 3.5 × 10−3–5.0 × 10−3), compared with
1.0 × 10−3 (95% HPD Interval: 7.1 × 10−4–1.3 × 10−3) for the Kenyan cluster (Figure 2B).

Skygrid analysis indicated that the effective number of HIV-1 sub-subtype A1 infec-
tions increased in Pakistan from 2002 to 2007 (Figure 2C). A potential drop in effective
infections was indicated at around 2008, prior to a modest continuous increase between
2009 and 2015. The analysis of the Kenyan cluster indicated a sharp increase in effective
infections between 1975 and 1995, before stabilizing after 2000 (Figure 2D). However, the
apparent stabilization after 2000 was accompanied by a large variance and should be
interpreted with caution.
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Figure 2. Demographic History of HIV-1 sub-subtype A1 in Pakistan. (A) The pirate plot of evolu-
tionary rate. (B) Time to the most recent common ancestor (tMRCA) of the Pakistani and Kenyan
HIV-1 sub-subtype A1 strains. (C,D) Bayesian Skygrid plots of the number of effective infections over
time for the Pakistani (C) and Kenyan (D) HIV-1 sub-subtype A1 strains. The dotted lines represent
the median tMRCA of the strain. The blue area (C and D) represents a lower and upper 95% higher
posterior density (HPD).

3.3. Analysis of Molecular Properties between Pakistani and Kenyan HIV-1 Sub-Subtype
A1 Sequences

The VESPA analysis indicated seven amino acid sites that differed between Pakistani
and Kenyan HIV-1 sub-subtype A1 sequences (Table 2). The total and net charges of
HIV-1 sub-subtype A1 sequences from Pakistan and Kenya were not significantly different
(p = 0.886) (Supplementary Table S4). However, differences in charged amino acids were
observed at positions 312, 319, 331, 372, 373, 383, and 402 with reference to the HXB2
position (Figure 3, Supplementary Table S6). One PNGS (at position 373) was only found
among the Kenyan sequences (Figure 3, Supplementary Table S5). Moreover, the negatively
charged glutamic acids found at positions 312 and 319 among the Kenyan sequences were
replaced by a negatively charged aspartic acid among the Pakistani sequences (Figure 3,
Supplementary Table S6). Furthermore, the neutral amino acid histidine at position 372
was observed more frequently among the Kenyan sequences (n = 33, 65%) as compared
to the Pakistani sequences (n = 15, 12%, p < 0.001, two-tailed Fisher’s exact test, Figure 3,
Supplementary Table S6). Similarly, position 383 of Gag also exhibited a change in amino
acid charge, where arginine was completely replaced with the positively charged amino
acid lysine in Pakistani sequences (Figure 3, Supplementary Table S6).
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Table 2. Signature Variation Pattern of HIV-1 Sub-Subtype A1 in Pakistan in comparison with
the Kenyan reference dataset. The predominant amino acid variant in the Pakistani and Kenyan
reference dataset is represented in 1 and 4 rows of the table, respectively. The frequencies of each
amino acid variant are mentioned below the variant, whereas the highest frequencies of variants
in the Pakistani and Kenyan reference dataset are shown in bold. The position of the amino acids
concerning the HXB2 is mentioned in the last row.

Pakistan V T S A Q M K

Frequency in Pakistan 0.854 0.911 0.797 0.78 0.862 0.732 0.992
Frequency in Kenya 0.102 0.102 0.122 0.061 0.184 0 0.163

Kenya T S G V H I R

Frequency in Pakistan 0.049 0.008 0.195 0.211 0.122 0.244 0.008
Frequency in Kenya 0.673 0.898 0.878 0.898 0.653 0.959 0.837

HXB2 Position 303 332 357 370 372 375 383

Figure 3. Biophysical properties of amino acids on sites of Kenyan and Pakistani HIV-1 sub-subtype
A1 strain. Blue and light blue colors represent arginine and lysine amino acids, whereas the green
and light green represent glutamic acid and aspartic acid, respectively. The black arrow represents
sites with visible differences between the two strains.

3.4. Gag Sites under Selection in Pakistani and Kenyan HIV-1 Sub-Subtype A1 Strains

The ratio of non-synonymous (dN) and synonymous (dS) substitution was deter-
mined to assess site-specific selection in Pakistani and Kenyan HIV-1 sub-subtype A1 Gag
sequences. The analysis showed that eight sites in the Pakistani sequences and six sites
in the Kenyan sequences were under significant positive selection pressure (Figure 4).
Moreover, the HIV-1 Gag positions 303 and 339 (identified as signature sites distinguishing
Pakistani and Kenyan sequences) were under positive selection in both sequence sets,
whereas positions 332 and 357 were under positive selection in Pakistani sequences only
(Figure 4).
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Figure 4. CD4 and CD8 T-cell epitope map on HIV-1 sub-subtype A1 Gag. The amino acids under
negative and positive selection pressure are underlined with blue and red colors, respectively. Neutral
sites are not underlined. Amino acids dissimilar between the Pakistani and Kenyan sequences are
represented with the green color font. The grey color line separates the CD4 and CD8 T-cell epitopes
and the steric represents the epitope variant.

3.5. Sequence Variation in HIV-1 Gag T-Cell Epitopes

In the next step, we evaluated the effects of mutations (the amino acids dissimilar
between Pakistani and Kenyan sequences (303, 332, 357, 370, 372, 375, and 383)) on CTL
and helper T-cell epitope generation (Figure 4). The number of identified epitopes between
Kenyan (CD4+ = 7 and CD8+ = 27) and Pakistani (CD4+ = 4 and CD8+ = 15) consensus
sequences differed due to amino acid polymorphisms in epitope regions. For example,
the presence of threonine (T) at amino acid position 303 in the Kenyan sequence matched
five CD4+ and ten CD8+ T-cell epitopes, respectively (Figure 4). In contrast, a valine (V) in
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this position in the Pakistani sequence only matched two CD8+ T-cell epitopes (Figure 4).
In contrast, some signature variations resulted in the prediction of CD4+ T-cell epitopes
in Pakistani sequences only, such as sites 332 and 370, which matched two and one CD4+

T-cell epitopes, respectively (Figure 4). Moreover, amino acid site 375 in the Pakistani strain
was represented by two CD8+ T-cell epitopes, whereas the same site in the Kenyan strain
did not match any previously described epitopes (Figure 4).

3.6. Sequence Variation in HLA Binding Motifs and Epitopes

Next, we evaluated the effects of mutations (the amino acids dissimilar between
Pakistani and Kenyan sequences (303, 332, 357, 370, 372, 375, and 383)) on HLA anchorage.
In total, 176 epitopes and 20 unique HLA anchoring residues were found in the Pakistani
consensus sequence, compared with 175 epitopes and 19 residues in the Kenyan consensus
sequence (Table 3 and Supplementary Table S5). The sub-subtype A1 signature sites 370,
372, and 375 in the Pakistani sequence (containing amino acids A, Q, and M, respectively)
were associated with 7 unique CD4+/CD8+ T-cell epitopes, whereas the corresponding sites
in the Kenyan sequence (containing amino acids V, H, and I, respectively) were associated
with 11 CD4+/CD8+ T-cell epitopes (Table 3 and Supplementary Table S5). An alanine at
position 370 in the Pakistani sequence resulted in three unique CD4+/CD8+ T-cell epitopes,
in contrast to the Kenyan sequence, where a valine at the same position resulted in five
unique CD4+/CD8+ T-cell epitopes (Table 3 and Supplementary Table S5).

The signature position 303 in the Pakistani sequence (containing a valine) was iden-
tified as an anchor site in nine unique epitopes restricted by the following type I HLAs:
A*0206, B*3501, B*5103, Cw*0601, and Cw*0602; and type II HLAs: DPA1*0102, DPA1*0201,
DPB1*0201, DPB1*0401, DRB1*0401, DRB1*0901, and DRB4*0101; whereas a threonine at
position 303 in the Kenyan sequence was associated with only one unique epitope of four
amino acids (FFKT) with anchor residues in the following type II HLAs: DRB1*0301 and
DRB3*0201 (Table 3). Moreover, site 332 in the Pakistani sequence containing a threonine
was not associated with any epitope, whereas the presence of a serine at the same site in
the Kenyan dataset was associated with the epitope NANPDCKSI that is restricted by HLA
B*7801 (Table 3).

Table 3. Unique HLA Anchoring Residues and restrictions. The HLA anchoring residue analysis of
the possible unique epitopes, their restricted HLA, and their anchoring residues in HIV-1 sub-subtype
A1 in Pakistan and Kenyan reference datasets. Columns 1–4 and columns 5–8 represent the data from
HIV-1 sub-subtype A1 from Pakistan and the Kenyan reference dataset, respectively. The amino acid
in bold and underline represents the signature amino acids between the strains.

Restricted HLA HXB2 Position Epitope Anchors Restricted HLA HXB2 Position Epitope Anchors

B*5103, Cw*0601, Cw*0602 295-303 DYVDRFFKV ........V DRB1*0301 or
DRB3*0201 300-303 FFKT F..T

DPA1*0102, DPB1*0201 296-303 YVDRFFKV Y...F..V B*7801 325-333 NANPDCKSI .A.....S.
DRB1*1501 297-303 VDRFFKV V..F..V B*7801 356-364 PGHKARVLA .G.......

DPA1*0201/DPB1*0401 297-306 VDRFFKVLRA V.....V..A A*0201, A*0202,
A*0214 362-370 VLAEAMSQV .L......V

DRB1*0901 or DRB4*0101 300-303 FFKV F..V B*5103, Cw*0601,
Cw*0602 ........V

DRB1*0401 or DRB4*0101 300-308 FFKVLRAEQ F..V.RA.Q DRB1*1501 or
DRB5*0101 363-372 LAEAMSQVQH L........H

A*0206, B*3501 302-310 KVLRAEQAT .V....... B*1517
367-375 MSQVQHTNI .S......I

DRB1*0401
303-311 VLRAEQATQ V.......Q

B*3801, B*5101,
B*5103, Cw*0601,

Cw*0602
........I

DRB1*0401 or DRB4*0101 V..A.QA.Q A*0206
369-377 QVQHTNIMM .V.......

DQA1*0102, DQB1*0602 352-360 GVGGPSHKA .....S..A A*3001 .V......M

DQA1*0301, DQB1*0302 357-365 SHKARVLAE S.......E DRB1*0301 or
DRB3*0201 370-373 VQHT V..T

B*7801 363-371 LAEAMSQAQ .A.....A. DRB1*0401 370-378 VQHTNIMMQ V.......Q

DQA1*0301, DQB1*0301 365-370 EAMSQA E..S.A DRB1*1501 or
DRB5*0101 370-379 VQHTNIMMQR V........R

A*3004, B*1502 367-375 MSQAQQTNM ........M DQA1*0301/
DQB1*0301 371-375 QHTNI ..T.I

B*5101, Cw*0303,
Cw*0305-0306,
Cw*0308-0309,

Cw*0801-Cw*0806, Cw*1502,
Cw*1503, Cw*1506, Cw*1507

369-377 QAQQTNMMM .A......M A*2601, A*2602,
A*2603 374-382 NIMMQRGNF .I......F

B*7801 .A....... DRB1*0301 or
DRB3*0201 375-378 IMMQ I..Q

A*0206 371-379 QQTNMMMQR .Q....... DRB1*0801 375-379 IMMQR I...R
B*1512

374-382 NMMMQRGNF .M......F A*3101, A*3303 375-383 IMMQRGNFR ........R
B*2703 .M....... B*2703, DPB1*0301 382-390 FRGQKRIKC .R.......

DRB5*0101 375-383 MMMQRGNFK M..Q....K Signature Amino Amino Acid: Bold and underline
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3.7. Structural Diversity

The structure of the HIV-1 Gag protein was predicted using the ab initio method
in the QUARK tool [37] to assess the potential effects of differences in the identified
amino acid differences between the Kenyan and Pakistani consensus sequences on the
Gag protein structure. The analysis suggested several secondary and tertiary structural
differences (Figure 5). For example, differences in positions 303, 332, 357, 370, and 372
resulted in a longer α-helix in the Kenyan sequence as compared to the Pakistani Gag
protein sequence (Figure 5A,B). Similarly, the signature position 375 in the Kenyan sequence
changed the start position of α-helix in Gag protein (start-end: 374–378, with reference to
HXB2 position) as compared to the Pakistani sequence (start-end: 375–379, with reference to
HXB2 position, Figure 5A,B). Additionally, the signature pattern at position 383 elongated
the β-sheet downstream in Gag from the Pakistani HIV-1 strain compared to the Kenyan
strain (Figure 5A,B). The superimposition of tertiary structures of Gag from the Kenyan
and Pakistani strains indicated a 64% similarity between the two structures. The α-helix
extension caused by differences in sites 303, 332, 357, 370, and 372, in the Kenyan strain,
altered the overall folding of the protein and affected the complete superimposition of the
protein. The variation at position 383 in the Kenyan strain resulted in a bigger and more
exposed loop compared to the Pakistani strain (Figure 5A,B).

Figure 5. Structural diversity of HIV-1 sub-subtype A1 Gag protein in Kenya and Pakistan. (A) Superim-
posed Gag structure from Pakistan (Blue) and Kenya (Green) with signature sites highlighted in dark blue
color. (B) Predicted Secondary structure (α-helix = Blue cylinder, β-sheets = teal arrow, and loop = dark
blue line) mapped on Gag from both strains.

4. Discussion

In this study, we characterized the HIV-1 sub-subtype A1 epidemic in Pakistan on the
basis of the phylogenetic and molecular properties of gag. Our dataset includes all known
HIV-1 sub-subtype A1 gag sequences. The analysis showed that the HIV-1 sub-subtype A1
sequences from Pakistan formed three main clusters, whereof two clustered with Kenyan
sequences suggesting a close relationship between the Kenyan and the Pakistani HIV-1
sub-subtype A1 epidemics. This is in line with a previous study on pan-epidemic strains
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of sub-subtype A1 (performed on sub-subtype A1 sequences collected up to 2010) [40].
However, the third and larger cluster was much less related to other available sub-subtype
A1 sequences, also suggesting the presence of a Pakistani-specific HIV-1 sub-subtype A1
strain. To the best of our knowledge, this Pakistani-specific strain has not been described
before, and this may reflect an evolving and distinct HIV-1 epidemic in Pakistan. The phy-
lodynamic analysis indicated that this strain emerged around 2002 (95% HPD: 2000–2004)
and had an approximately four times higher evolutionary rate compared with the Kenyan
strain. This could be due to the selection of evolutionary ‘fit’ and transmissible strain,
capable of spreading rapidly to high-risk groups such as PWID and MSM [41–43]; how-
ever, this could not be ascertained due to a lack of availability of precise sequences and
epidemiological information from that period.

Moreover, the evolutionary rate of the Pakistani strain was approximately twice as
high compared with the HIV-1 gag evolutionary rate in the global sub-subtype A1 epidemic
(median rate: 2.3 × 10−3 s/s/y), as recently determined by Patino-Galindo et al. [44]. This
may reflect the recent emergence of a Pakistani-specific HIV-1 strain that still has not fully
adapted to the Pakistani population. Indeed, the evolution of population-specific strains
is not an unusual phenomenon in HIV-1 infection, and several studies have reported on
different subtypes that have evolved into population-specific sub-strains (e.g., the Thai
subtype B, Brazilian subtype B, Korean subtype B, Trinidad and Tobagonian subtype B,
and Ethiopian and East African subtype C strains) [11,45]. Furthermore, the phylodynamic
analysis of the Pakistan-specific lineage suggested a rapid increase in the number of
effective infections and transmissions following the emergence of the strain in 2002. This is
in agreement with the HIV-1 surveillance data for Pakistan, showing a rapid increase in
new cases in the country, especially during the last 10 years [1,19,41,46].

Next, we compared the consensus sequences of the Pakistani and the Kenyan HIV-1
sub-subtype A1 strains for the presence of mutations and variations unique to Pakistani or
Kenyan datasets (referred to as signature sites). Interestingly, some of the identified sites
(303, 332, 370, 372, and 375) have previously been shown to be specific for sub-subtype
A1, and even specific to Kenyan and Pakistani sequences [16]. However, in contrast to
the previous study, which was focused on only Pakistani and Kenyan patient-derived
sequences, this study included all available sub-subtype A1 gag sequences deposited from
Pakistan (patient-derived and database sequences), which not only confirms the previous
findings but also identifies additional sites, such as position 373, to be uniquely different
in Kenyan sequence, as compared to Pakistani sequences, because of the presence of
PNGSs. Glycosylation is known to affect the function of Gag protein in HIV-1; for example,
previous studies have demonstrated that the glycosylated Gag protein mimics the Nef
function in nef deficient HIV-1 by restoring and rescuing its infectivity [47]. In addition to
glycosylation, changes in the net charge can affect protein stability. For example, in GFP
protein, instead of lysine, the presence of arginine, which has three nitrogen atoms and is
capable of forming hydrogen bonds with neighboring amino acids (Pro75 and Asp76), leads
to protein stability [48]. Interestingly, at signature position 383 in NC (nucleocapsid region),
arginine was found in the Kenyan strain, which was replaced with lysine in the Pakistani
strain. Our observations cannot ascertain the link between the transmission advantage of
the Kenyan compared to the Pakistan strain. However, further studies to investigate the
role of amino acid charge differences in Gag structure and functions can provide further
insights into how the difference in the charge of Gag amino acids can affect viral infection
dynamics.

HIV-1 Gag is relatively conserved compared with other HIV-1 proteins and contains
several immunodominant regions [49]. Mutations in the gag gene have previously been
associated with increased tolerance against drugs or immune activity. For example, in vitro
studies have demonstrated that mutations in the capsid can produce negative effects on
virus infectivity [50]. Moreover, mutations in the Gag p2/NC (spacer peptide 1/nucleo-
capsid) cleavage site can reduce the efficacy of protease inhibitors, which ultimately leads
to treatment failure and propagation of the infection [51]. Other effects include changes
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in epitope sequence, which may abrogate the recognition of epitopes, particularly T-cell
epitopes, leading to immune escape [40,52]. An in-depth molecular analysis of Gag in-
dicated signature amino acid variation in Pakistani HIV-1 sub-subtype A1, which may
have evolved under immune pressure. The presence of valine at signature position 303
of Gag resulted in the generation of more epitopes, as valine has been predicted to serve
as an anchoring residue for five HLA type I and seven HLA type II molecules [36]. On
the contrary, the presence of threonine at the same position has been associated with a de-
creased number of epitopes [16]. In addition, a recent study on HIV-1 subtype C showed an
association between the selection pressure exerted by HLA Cw*0303/Cw*0304 and amino
acid variation at position 303 in the HLA-restricted HIV-1 Gag epitope YVDRFFKTL [53].
Moreover, the substitution of wild-type amino acid T with A/I/V at position 303 in Gag
has been suggested to reduce the CD8+ T-cell recognition of the epitope [53]. Similarly,
the mutation T303A/I has been shown to decrease HIV-1 infectivity rates, whereas HIV-1
with T303V showed similar replicative fitness compared with the wild-type strain [53].
In contrast, the signature position 357, with a serine in the Pakistani strain, was found to
reduce the number of CD4+/CD8+ T-cell epitopes compared with the Kenyan strain that
had a glycine in this position. This observation is supported by a previous study indicating
that the set of four substitutions (79F+228L+286K+357G) can reduce the replicative capacity
of NL4-3 (mutant) by 2-fold [54]. However, due to limited in vitro and in vivo data on
epitopes specific for HIV-1 sub-subtype A1, a detailed assessment of the relationship be-
tween signature mutations and immune escape cannot be established and warrants further
in vitro studies to confirm this phenomenon. However, it is important to mention that
since more than half of the patients were on ART, and archival HIV-1 DNA genomes were
amplified, it may be difficult to assess actual immune escape in Gag in these patients.

The HIV-1 inhibitor Bevirimat (BVM) binds to the Gag spacer regions and blocks
the cleavage of the protein [55]. The amino acid positions 370, 372, and 375 found to be
different between the Pakistani and Kenyan strains are the known binding residues of Gag
inhibitors [55]. In this study, we found a signature variation at position 370 of the Gag
protein (alanine and valine in the Kenyan and Pakistani strains). Interestingly, the V370A
polymorphism has previously been shown to reduce the BVM susceptibility by 40-fold.
Although this has to be verified by in vitro experiments, this opens up the possibility that
the Pakistani HIV-1 sub-subtype A1 strain may be resistant to BVM [55].

5. Conclusions

In summary, this study increases our understanding of the HIV-1 sub-subtype A1
introduction, evolution, and diversification in Pakistan. The results suggest that HIV-1
sub-subtype A1 strains are unique to Pakistan with phylogenetic linkages to the Kenyan
strains. Additionally, Pakistani sub-subtype A1 strains have accumulated certain unique
mutations in the gag gene that may facilitate HIV-1 adaptation to host selection pressures
and more effective transmission of the virus to different at-risk groups. Further studies
are needed to fully disentangle the role of the identified mutations in virus transmission
dynamics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14102307/s1, Table S1: List of accession number of HIV-1 Gag
sequences from Pakistan used in this study.; Table S2: Profile of the people living with HIV-1 (PLHV-1)
in Pakistan recruited for this study.; Table S3: The list of accession numbers of all Kenyan HIV-1
subtype A1 sequences from the database used to construct the Kenyan HIV-1 subtype A1 tree.;
Table S4: The list of net charges and total charges.; Table S5: List of anchoring residues in HIV-1
subtype A1 gag protein from Kenya and Pakistan.; Table S6: The list of accession numbers along
with biophysical properties difference of the sequences different between Kenyan and Pakistani
HIV-1 subtype A1.; Figure S1. Genotyping of HIV-1 subtype A1.; Figure S2. Clustering pattern of
Kenyan reference dataset sequence with all available Kenyan sequences from the Los Alamos HIV
Database.; Figure S3. Amino acid variations within Pakistani and Kenyan cohorts.; Figure S4. Sites
under selection pressure in Pakistani and Kenyan reference subtype A1.
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