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Abstract: Vulvar size and angle are meaningful traits in pig production. Sows with abnormal vulva
generally show reproductive disorders. In order to excavate candidate loci and genes associated
with pig’s vulvar traits, 270 Suhuai pigs with vulvar phenotype were genotyped by a porcine single
nucleotide polymorphisms (SNP) Chip. Then, Chip data were imputed using resequenced data of
30 Suhuai pigs as a reference panel. Next, we estimated the heritability and performed a genome-wide
association study (GWAS) for vulvar traits. The heritabilities for the traits vulvar length (VL), vulvar
width (VW) and vulvar angle (VA) in this pig population were 0.23, 0.32 and 0.22, respectively. GWAS
based on Chip data identified nine significant SNPs on the Sus scrofa chromosomes (SSC) 2, 7, 9 and
13 for VL or VW. GWAS based on imputed data identified 11 new quantitative trait loci (QTL) on
SSC1, 2, 7, 8, 9, 11, 13, 16 and 17 for VL or VW. The most significant QTL for VL on SSC2 were refined
to a 3.48–3.97 Mb region using linkage disequilibrium and linkage analysis (LDLA). In this refined
region, FGF19 and CCND1, involved in the development of the reproductive tract, cell growth and
vulvar cancer, could be new candidate genes affecting VL. Our results provided potential genetic
markers for the breeding of vulvar traits in pigs and deepened the understanding of the genetic
mechanism of vulvar traits.

Keywords: Suhuai pigs; vulvar traits; candidate genes; genome-wide association study; linkage
disequilibrium and linkage analysis

1. Introduction

Pork accounts for a large proportion of the meat market in China. Hence, enterprises
focus on breeding pigs with high fertility. Reproductive performance is one of the most
important economic traits in the pig industry since it can directly affect the population
size and production efficiency of a pig farm. In breeding, vulvar size and angle reflect
the development of the genital tract of a sow. The vulvar size and angle of sows should
not be too small, otherwise it is difficult to carry out artificial insemination and farrowing.
In recent studies, Graves et al. found that sows with larger vulva at 95–115 days had a
higher proportion of estrus within 180 or 200 days than sows with smaller vulva at the
same period [1]. Corredor et al. measured the vulva score categories (VSC) of 14-week-old
or 15-week-old Large White pigs from three farms and found that there was a strong
genetic correlation between VSC and litter size [2]. Thus, vulvar traits were very important
economic traits for reproduction progress.
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Most reproductive traits have complex genetic background and the traditional breed-
ing method makes it difficult to improve these traits. In recent decades, identifying SNPs
related to reproductive traits and using these associated SNP markers for marker-assisted
selection or genomic selection to improve reproductive traits have become effective meth-
ods of pig breeding. However, in terms of detecting causal loci, previous studies mostly
used low-density molecular markers to map QTLs, and the identified candidate loci usually
covered large genomic regions with less confidence [3]. Recently, genome-wide asso-
ciation studies (GWAS) characterized by a high density of single nucleotide polymor-
phism (SNP) markers have been widely used to identify genetic mutations and QTLs
for various traits, especially reproductive traits with low heritability. A large number
of SNPs which are significantly related to reproductive traits, such as teat number [4],
litter size [5] and sperm quality [6], have been detected. Up to date, few studies on
the vulvar traits of pigs were reported and few QTLs related to the vulvar traits of pigs
have been identified at the genome-wide level based on the public database of QTLdb
(https://www.animalgenome.org/cgi-bin/QTLdb/SS (accessed on 1 June 2022)). Corredor
et al. recently detected multiple QTLs on SSC1 2, 5, 7, 8 and 10 significantly associated with
vulvar size by using GWAS in Yorkshire and Landrace populations [7]. Flossmann et al.
selected sows with small vulva and normal sows in the German Landrace population for
case-control analysis and found that a missense mutation on BMP15 affected litter size of
sows, but genes related to vulvar traits were not found in their study [8]. The casual genes
associated with pig’s vulvar traits need to be further explored.

Suhuai pig is a synthetic pig breed, containing a 25% lineage of Chinese Huai pig and
a 75% lineage of Large White pig [9]. The vulvar traits of Suhuai pig population did not
undergo strong artificial selection. Therefore, there may be large variation for vulvar traits
in this population, and it is an ideal population to explore key SNPs and genes associated
with vulvar traits. The objectives of this study were to analyze the phenotypic variation of
vulvar traits including VL, VW and VA in Suhuai pigs, to evaluate their heritability and to
detect the genetic loci and genes associated with vulvar traits by performing GWAS and
linkage disequilibrium and linkage analysis (LDLA).

2. Materials and Methods
2.1. Ethics Approval

All experimental protocols and details were approved by the Nanjing Agricultural
University Animal Care and Use Committee (Certification No.: SYXK (Su) 2017-0007).

2.2. Animals and Phenotypic Collection

This study collected 270 Suhuai sows whose ages were about 160.0 ± 6.7 (Mean ± SD)
days to measure the vulvar length, width and angle. All experimental individuals were
raised in standard houses at the Huaiyin breeding farm (Huaian, China). Vulvar length,
width and angle were measured, respectively. Vulvar length is the distance from the top to
the bottom of the vulva. Vulvar width is the distance from the leftmost to the rightmost
end of the widest part of the vulva. The measurement rules of vulvar length and width
were consistent with that of Mills et al. [10]. Vulvar angle mainly referred to the angle
between the straight line, formed by the bottom of the vulva and the bottom of the vulva
fissure, and the vulva fissure (Supplementary Figure S1). Iron wire was folded according
to the vulvar shape and then the angle of the iron wire was measured with a protractor
(Supplementary Figure S1). Data from sows with estrus symptoms were excluded from the
analysis. About 150 mg of ear tissue was collected from each pig and stored in a centrifuge
tube filled with 75% alcohol.

2.3. Genotyping and Imputation

Ear tissues from 270 individuals were used to extract DNA by the phenol/chloroform
method. Quantification and quality testing of genomic DNA was completed by using
NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA). DNA with a concentration of
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greater than 50 ng/µL and a value of 260/280 ranging from 1.7 to 2.1 were furthered used
for SNP genotyping. For these 270 samples, 211 samples and 59 samples were genotyped
using a GeneSeek GGP Porcine 80K Chip and COMPASS Porcine 50K Chip, respectively.
The quality control of genotyped data was performed by using PLINK v1.09 software [11]
and the code was documented in Supplementary Material S1. Samples with a call rate
of SNPs > 90% were retained. SNPs with call rate > 90% and minor allele frequency
(MAF) > 0.05 were retained. SNPs unmapped and on sex chromosomes were discarded.
According to SNP data from 80K Chip, the missing genotypes of 50K Chip were imputed
by Beagle 5.2 [12] and the code was documented in Supplementary Material S2. Imputed
SNPs with MAF > 0.05 and DR2 (imputed accuracy in Beagle) > 0.9 were retained. After
filtering, 270 individuals and 46,622 SNPs were used for analysis.

Meanwhile, 30 Suhuai pigs which represented the lineage of male and female pigs in
the core group of Suhuai pigs were resequenced. SNP calling and filtering were executed
by GATK 4.0 (Supplementary Material S3), following the previously reported process [13].
The average sequencing depth was 12 coverages, and 25,758,435 SNPs were identified.
Using the resequenced data as the reference panel, the Chip data were imputed by the
above method. In this imputation, 7,720,972 eligible SNPs with DR2 > 0.9 and MAF > 0.05
were retained for further analysis.

2.4. Descriptive Analyses and Heritability Estimation

Descriptive analyses of phenotypes including VL, VW and VA were conducted in
R 3.6.1 software. The effect of environmental factors on phenotype was fitted by the
general linear model in SAS 9.4 (https://odamid-apse1.oda.sas.com/SASStudio (accessed
on 13 April 2022)). Significant factors were used in subsequent models. For vulvar size,
birth season and measurement batch were used. For vulvar angle, only measure batch was
used. Genomic data is more accurate in predicting breeding values than pedigree data [14].
In this study, we used DMU software [15] based on Chip data and phenotypical data to
estimate breeding value (EBV) and calculate heritability. The formula of narrow heritability
is as follows: h2 = σ2

a /σ2
p , where σ2

a is additive variance; σ2
p is phenotypic variance.

The model (Model 1) of heritability estimation contains the following effects:

yijk = µ + seasoni + batchj + ak + eijk; ak ∼ N
(

0, Gσ2
a

)
; eijk ∼ N

(
0, Iσ2

e

)
where yijk is the observed value of traits; µ is the average value of VL, VW and VA;
seasoni is the effect of birth season; batchj is the effect of measurement batch; ak represents
random additive effects; eijk represents environmental effects; N is normal distribution;
σ2

e is environmental variance and I is the corresponding coefficient matrix; G is the genome
matrix constructed by 46622 SNPs and G is calculated by invgmatrix software [16].

2.5. Genome-Wide Association Study

Principal component analysis (PCA) was performed by PLINK v1.09 [11] to test popu-
lation stratification. The GWAS was performed by linkage disequilibrium adjusted kinships
(LDAK) software [17] to calculate the associations between genotypes and observed phe-
notypes (Supplementary Material S4). The mixed linear model (Model 2) of the GWAS
analysis is as follows:

Y = Xb + Wd + u + e; u ∼ N
(

0, Kσ2
a

)
; e ∼ N

(
0, Iσ2

e

)
where Y is the vector of three phenotypes; b contains birth season and measurement batch
and X is incidence matrix; d is the effect of SNP and W represents the genotype matrix
of SNPs; u is polygenic effect; the meanings of N, e, I, σ2

e and σ2
a are the same as model 1;

K is kinship matrix calculated by pruned marker genotypes from Chip data or imputed
data (pruning threshold is 0.98 and the size of window is 100 Kb) and the codes referred
to Wang et al. [18]. In the mixed model, single SNP was fitted as both a fixed effect and
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a random effect, which would weaken the effect of a single SNP. Thus, a method named
“leave one chromosome out” was used to solve these problems [19]. This method indicated
that when calculating the association between one SNP and phenotype, the kinship matrix
was constructed by using SNPs which were from other chromosomes. For the association
results, in order to reduce the error rate, the Bonferroni method was used to correct the
threshold [20]. A large number of SNPs were generated after imputation, which made
the threshold set by the Bonferroni method be too strict. We pruned SNPs using “–indep-
pairwise 25 5 0.8” on PLINK v1.09 [11] and then calculated the number of effective SNPs
(62215) through SampleM [21]. Thus, the genome-wide threshold was equal to 0.05/N,
where N is the number of effective SNPs or the number of SNPs from Chip data. In addition,
SNPs with p-value < 1/N were considered as suggestive significant loci [22]. The CMplot
package [23] was used to draw Manhattan plot and Q-Q plot (Supplementary Material S5).
The former reflected the p-value distribution of SNPs and the latter was the comparison
between the expected p-value and the realistic p-value. LD decay distance was calculated
by the PopLDdecay tool [24] using 46622 SNPs (Supplementary Material S6). When
the LD value (r2) was 0.2, the LD decay distance of 270 Suhuai pigs was about 300 Kb
(Supplementary Figure S2). Thus, QTLs were defined as the regions that were located in
300 Kb upstream and downstream of significant SNPs identified by GWAS.

2.6. Linkage Disequilibrium and Linkage Analysis (LDLA)

LDLA was conducted to refine QTLs identified by GWAS. Similar to the process of
GWAS, LDLA calculated the correlation between haplotypes and phenotypes. Haplotypes
were constructed through beagle 3.0 [12]. The model (Model 3) of LDLA is as follows:

Y = Xb + Zh + e; h ∼ N
(

0, Khσ2
a

)
; e ∼ N

(
0, Iσ2

e

)
where Y, X, b, e, N, I, σ2

a and σ2
e have the same meaning as they did in model 2; h is

random effect of haplotypes and Z is incidence matrix; Kh is kinship matrix calculated by
haplotypes. The confidence interval was determined when −log10p of the most significant
locus decreased by 2 [25]. The code of LDLA referred to the article of Xu et al. [26] and was
documented in Supplementary Material S7. The overlapping intervals mapped by GWAS
and LDLA were considered as candidate QTLs in further study.

2.7. Phenotypic Variation Explained by SNPs

The formula 2p(1 − p)b2/σ2
y × 100% calculated the contribution of the significant

SNPs to the phenotypic variance [27]. In this formula, p is minor allele frequency of target
marker; b is effect of SNP; σ2

y is phenotypic variance of vulvar traits.

2.8. Annotation of Candidate Genes

The positions of SNPs in Chip were determined according to SSC10.2 reference genome
and were converted according to SSC11.1 reference genome. Genes located in intervals
refined by LDLA were considered as candidate genes. Candidate genes were further
searched for their function details in ensemble database (http://asia.ensembl.org/index.
html (accessed on 3 May 2022)) and their biological functions were retrieved in Pubmed
(https://pubmed.ncbi.nlm.nih.gov (accessed on 3 May 2022)).

3. Results
3.1. Descriptive Results of VL, VW and VA in Suhuai Pigs

There were 270 individuals with records of vulvar length and width, and 258 individu-
als with records of vulvar angle. Season and batch were significantly related to vulvar size
and batch was significantly related to vulvar angle (Table 1). Thus, these factors would be
fitted in subsequent statistical model. We summarized the characteristics of the distribution
of the three traits in Suhuai pig population (Table 2, Supplementary Figure S3). The ranges
of VL and VW were 1.2–5.7 cm and 0.9–4.3 cm, respectively. The data showed that VL
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was generally greater than VW, which was consistent with vulvar characteristics of pigs in
production. Their coefficients of variation were 25.46% and 27.67%, respectively, and large
variations existed in the Suhuai pig population. The VA ranged from 91◦ to 180◦ and its
coefficient of variation was 11.24%. When estimating heritability, only an additive effect
was considered as a genetic effect. The heritabilities of three traits were 0.23, 0.32 and 0.21,
respectively, suggesting these traits belonged to moderate heritability and hence, these
traits were responsive to selection.

Table 1. Significance between environmental effects and vulvar traits of Suhuai pigs.

Traits Number Season Batch

VL (cm) 270 ** **
VW (cm) 270 ** *

VA (◦) 258 * non
Note: VL is vulvar length; VW is vulvar width; VA is vulvar angle; * is significance (p < 0.05); ** is extreme
significance (p < 0.01); non is nonsignificance.

Table 2. Descriptive statistics and heritability of phenotypic data in Suhuai pigs.

Traits Number Max Min Mean SE CV (%) h2 (SE)

VL (cm) 270 5.7 1.2 3.40 0.05 25.46 0.23 (0.13)
VW (cm) 270 4.3 0.9 2.62 0.04 27.67 0.32 (0.13)

VA (◦) 258 180 91 152.42 1.07 11.24 0.21 (0.12)

Note: SE is standard error; CV is coefficient of variation; h2 is heritability.

3.2. Imputation Description

Firstly, 50K Chip data were imputed into 80 K Chip data, and then 80K Chip data
were imputed into resequenced data. After imputation, the density of SNPs within 1 Mb
window was significantly improved (Supplementary Figure S4). To evaluate the accuracy of
imputation, 5% of the loci were randomly eliminated and imputed again. The allele concor-
dance rate of these 5% loci was considered as the imputed accuracy. The average imputed
accuracy of these two steps was 99.1% and 93.7%, respectively (Supplementary Figure S5).

3.3. The Test of Population Stratification

PCA was executed using the “–pca 10” command in PLINK v1.09 [11]. No individual
was clearly separated from the population, suggesting there was no population stratification
phenomenon (Supplementary Figure S6).

3.4. GWAS of Vulvar Traits in Suhuai Pigs

Firstly, a total of 46622 SNPs were used for preliminary GWAS analysis (Table 3,
Figure 1). Among them, nine SNPs on SSC2, 7, 9 and 13 reached a chromosome significant
level, four SNPs located at 3.72–3.95 Mb on SSC2 exceeded the highest threshold line
and two SNPs near 3.72 Mb were significantly related to both VL and VW. There was no
significant SNP for VA. Then, imputed data were further used for analysis to increase
the density of markers (Table 4, Figure 1). On SSC2, 7, 9, 16 and 17, we identified six
QTL regions that were significantly related to VL. The most significant SNPs (lead SNPs)
on these QTL regions explained 6.71%, 5.27%, 4.81%, 4.94%, 4.55% and 3.94% of the
phenotypic variance of VL, respectively. For VW, a total of five QTL regions on SSC1, 2,
8, 11 and 13 reached above the suggestive threshold line. The lead SNPs on these QTL
regions explained 4.99%, 5.81%, 5.10%, 5.04% and 7.38% of the phenotypic variance of
VW, respectively. Simultaneously, QTL 3.41–4.05 Mb on SSC2 were common QTL of VL
and VW, which showed that this QTL contained genes or loci affecting both VL and VW.
There was no significant SNP for VA. In Q-Q plots (Supplementary Figure S7), the p-value
of SNPs calculated by GWAS did not deviate obviously from the expected p-value. The
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gene inflation factors (λ) of VL, VW and VA for Chip data were 1.076, 1.077 and 1.076,
respectively, and for imputed data were 1.102, 1.072 and 1.074, respectively.

3.5. LDLA of Vulvar Traits in Suhuai Pigs

In GWAS analysis, QTL located in 3.25–4.25 Mb on SSC2 had a considerable impact
on VL. To refine this QTL interval, imputed data were used to perform the LDLA analysis
of this QTL. The region of 3.48–3.97 Mb on SSC2 was identified as a candidate interval by
LDLA (Figure 2). The common interval of 3.48–3.97 Mb on SSC2 identified by GWAS and
LDLA was selected for further study. Genes including fibroblast growth factor 3, 4 and 19
(FGF3, FGF4, FGF19), LTO1 maturation factor of ABCE1 (LTO1) and cyclin D1 (CCND1)
were located at this interval. After functional annotation, FGF19 and CCND1, involved in
the development of the reproductive tract, cell growth and vulvar cancer, were identified
as the possible candidate genes of vulvar traits.

Table 3. Significant SNPs for three vulvar traits of Suhuai pigs by Chip data.

Trait SSC SNPs Position p-Value Allele MAF PVE

VL 2 rs81344397 3,945,248 9.10 × 10−8 C/T 0.36 6.53%
2 rs81323795 3,726,771 1.05 × 10−7 A/G 0.36 6.47%
2 rs319327579 3,747,849 1.52 × 10−7 A/G 0.36 6.33%
2 rs336379732 3,831,753 2.13 × 10−7 T/C 0.36 6.22%
9 rs326835497 118,063,093 1.71 × 10−5 A/G 0.27 5.09%

VW 2 rs81323795 3,726,771 8.13 × 10−6 A/G 0.36 5.45%
2 rs319327579 3,747,849 9.39 × 10−6 A/G 0.36 5.36%
7 rs80898557 11,989,354 2.04 × 10−5 T/C 0.43 4.33%

13 rs320033947 21,085,416 1.31 × 10−5 G/T 0.43 8.19%

Note: MAF is the minor allele frequency; PVE represents the proportion of phenotypical variance explained by
SNPs. The physical positions were annotated by Sus scrofa 11.1 reference genome.
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Figure 1. Manhattan plots of GWAS for three vulvar traits of Suhuai pigs based on Chip or imputed
data. (a) VL; (b) VW; (c) VA. In plots (a–c), the above plot was generated using Chip data and the
below plot was generated using imputed data. The solid line and the dotted line in Manhattan plots
represent the suggestive threshold level and the genome wide threshold level, respectively.
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Table 4. Candidate QTLs for three vulvar traits of Suhuai pigs by imputed data.

Traits SSC QTL Region (Mb) Position of
Lead SNP (bp)

p-Value of
Lead SNP PVE

VL 2 3.25–4.25 3,833,112 6.98 × 10−8 6.71%
7 7.23–8.07 7,763,002 7.74 × 10−7 5.27%
9 123.25–123.87 123,550,278 3.33 × 10−6 4.81%

16 12.66–13.26 12,961,112 1.52 × 10−5 4.94%
17 40.60–41.20 40,902,044 7.82 × 10−6 4.55%
17 43.10–43.72 43,404,836 1.06 × 10−5 3.94%

VW 1 271.53–272.13 271,827,161 1.37 × 10−5 4.99%
2 3.41–4.05 3,726,718 4.40 × 10−6 5.81%
8 22.30–22.93 22,602,662 1.34 × 10−5 5.10%

11 7.29–8.10 7,650,870 5.19 × 10−6 5.04%
13 20.78–21.38 21,080,852 1.37 × 10−5 7.38%

Note: Lead SNP is the most significant SNP in one region. The physical positions were annotated by Sus scrofa
11.1 reference genome.
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4. Discussion

This study measured the vulvar phenotype of 270 Suhuai pigs in total. Through
descriptive analysis, the three vulvar phenotypes were obviously separated in this popu-
lation, especially regarding VL and VW, which showed that this population was helpful
for excavating candidate genes affecting vulvar traits. Then, these pigs were scanned by
using 80K Chip (n = 211) or 50K Chip (n = 59) and 30 Suhuai pigs were resequenced using
the whole genome sequencing. Two-step imputation was used to increase the marker
density of data. Average imputed accuracy from 50K Chip to 80K Chip and from 80K
Chip to resequenced data were 99.1% and 93.7%, respectively. Our results showed that the
imputed accuracy could be related to the size of the reference population and the degree of
difference in marker density between the reference population and the target population.
Low density SNP Chips were directly imputed into the high-density data of the whole
genome, which would affect the quality of imputation. Xu et al. imputed the 50K Chip of
246 boars into the resequenced data and obtained a genotypical accurate rate of 84.8% [26].
Yan et al. obtained a genotypical accurate rate of 89% after imputing the 60K Chips of the
F3 pig population into the resequenced data [28]. Therefore, our imputed data could be
used for subsequent GWAS and LDLA analysis.
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In previous studies for heritability estimation, Knauer et al. recorded the vulvar width
of 1225 Landrace×large white crossbred sows with an average age of 162 days, and the
estimated heritability of vulvar width was 0.58 [29]. Corredor et al. estimated variance
components for vulvar size in Landrace and Yorkshire gilts at 23.8 weeks of age, and
showed that vulvar size had low or moderate heritability in Landrace and moderate or
high heritability in Yorkshire [7]. In this study, we selected 160.0 ± 6.7-days-old Suhuai
sows to explore the heritability of vulvar traits based on Chip data, and vulvar size showed
moderate heritability. Genetic background, age and population size might lead to differ-
ences in heritability estimation between our study and the two previous studies mentioned
above. Currently, there were no available data about the heritability of vulvar angle, and to
our knowledge, we estimated the heritability of vulvar angle trait for the first time.

Based on Chip data and imputed data, several QTLs that might affect vulvar traits
were mapped by GWAS. For QTLs detection, seven significant SNPs for VL or VW on SSC2,
and 13 obtained by Chip data were still significant using imputed data in our study. In
addition, compared to Chip data, the significant loci obtained by imputed data were more
significant. The results of these two comparisons indicated that the imputed method was
helpful for further excavating candidate genes. In other studies, Corredor et al. identified
multiple QTLs for VL on SSC1, 2, 5, 7 and 10 and for VW on SSC1, 2 and 8 [7]. Our study
also identified QTLs for VL or VW on SSC1, 2, 7 and 8, but in different regions. These
differences might be due to heterogeneity among different populations. In this study,
11 significant regions on SSC1, 2, 7, 8, 9, 11, 13, 16 and 17 detected by GWAS of imputed
data were all newly discovered candidate QTLs for vulvar size. However, the SNPs that
were significantly related to vulvar angle were not identified, which was possibly due to a
small variation coefficient within Suhuai pig population.

In addition to GWAS, LDLA was also an effective method to map and refine QTLs [26,30].
Our study used LDLA to refine the QTL region for VL on SSC2. Combining GWAS and
LDLA, 3.48–3.97 Mb on SSC2 was the most likely candidate interval for VL. Meanwhile,
the interval on SSC2 (3.48–3.97 Mb) was located in a QTL for teat number identified in a
hybrid population between Meishan and Dutch pigs [31]. Thus, the functions of genes
in this interval were annotated. Based on the functional annotation, we found that the
FGF19 belonged to the FGF family and this family was involved in the development of
the female reproductive tract [32]. Furthermore, FGF19 promoted glycogen synthesis and
stimulated protein synthesis [33]. CCND1 is a kind of cyclin coding gene in mammals and
plays an important role in regulating cell division cycle and cell growth [34]. In a study
of 183 patients with vulvar cancer, CCND1 was detected to be overexpressed in vulvar
cancer tissues of most patients [35]. Taken together, FGF19 and CCND1 on SSC2 might be
two novel functional genes affecting the vulvar length. Follow-up studies are needed to
excavate the functional loci of the two genes affecting vulva traits and reveal the molecular
mechanism of regulating vulvar development.

5. Conclusions

Vulvar traits including VL, VW and VA showed moderate heritability in Suhuai pigs.
A total of 11 new QTLs for VL or VW on SSC1, 2, 7, 8, 9, 11, 13, 16 and 17 were identified
by GWAS. Combining GWAS and LDLA, a 3.48–3.97 Mb region on SSC2 was identified as
an important QTL with a larger effect on VL, and significant SNPs in this QTL could be
potential molecular markers for pig breeding. In addition, FGF19 and CCND1 might be new
genes related to the VL of pigs. These findings will provide reference for understanding
the molecular genetic basis of pig’s vulva-related traits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13081294/s1, Material S1: The code for quality control.
Material S2: The code for imputation. Material S3: The code for calling SNPs of resequenced data.
Material S4: The code for GWAS. Material S5: The code for plots of Manhattan and Q-Q. Material S6:
The code for plot of LD decay. Material S7: The code for LDLA. Figure S1: The real pictures of vulvar
traits. Figure S2: LD decay plot of 270 Suhuai pigs by Chip data. Figure S3: Box plot of vulvar
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phenotypes of Suhuai pigs. Figure S4: Density map of SNPs. Figure S5: Allele concordance rate of
each chromosome. Figure S6: PCA plot of 270 Suhuai pigs by Chip data. Figure S7: Q-Q plots.
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