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The modulation of antimicrobial properties of nanomaterials can be achieved through various physical
and chemical processes, which ultimately affect subsequent properties. In this study, the antibacterial
potential of nano-silver was investigated at 0.5, 1.0, 2.0, and 3.0 g/L, and its differential temperature syn-
thesis was achieved at 20, 50, and 70 �C using the solvent evaporation method. Nano-silver particles
exhibited FCC (octahedral) crystalline structure with crystallite sizes ranging between 28 and 39 nm cal-
culated using XRD analysis. Moreover, irregular and non-uniform surface morphology was evident from
SEM micrographs. The UV–Vis absorbance spectrum of nano-silver exhibited wave maxima at 433 nm,
while the FTIR analysis depicted different modes of vibration indicating the CH, OH, C�C, C-Cl, and
CH2 functional groups attached to the surface. Lastly, nano-silver caused prominent inhibition
(12.5 mm) in the Escherichia coli growth, particularly at 70 �C synthesis temperature and 3.0 g/L dose.
It is concluded that both the nano-silver crystal growth temperature and dose contributed substantially
to bacterial growth inhibition linked with subsequent size, shape-dependent properties.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nanoparticle synthesis can be achieved via chemical and bio-
logical approaches. The bottom-up techniques recombine atoms
or molecules into NPs while the top-down approaches convert bulk
material into NPs. On a comparative basis, chemical synthesis
methods (Bottom-up) are relatively cheaper and require less
energy than top-down physical methods (Gabrielyan et al., 2019,
Munir et al., 2019, Naskar et al., 2020, Erci et al., 2020,
Danbature et al., 2021, Atif et al., 2021, Iqbal et al., 2021). It is
essential to mention that various metallic oxides synthesized via
bottom-up chemical approaches are potential candidates as antibi-
otics, and one prominent candidate is nano-silver (Ag-NPs).

The Ag-NPs exhibit multiple oxidation states such as (Ago, Ag2+,

and Ag3+), leading to profound antibacterial effects. These are
already used in various products of commercial and household
importance (Gajbhiye and Sakharwade, 2016, Gunawan et al.,
2017, Khan et al., 2018). In addition, the smaller diameter con-
tributes to improved cellular penetration and can cause membrane
damage and lipid peroxidation leading to bacterial cell death
(Bondarenko et al., 2018). It is also reported that exposure to silver
nanoparticles can lead to enhanced generation of reactive oxygen
species that trigger bacterial cell death and promote subsequent
antibacterial properties (Suet al., 2009, Song et al., 2019). More-
over, nano-silver could form electron-deficient Ag+ species that
react with thiol groups of different cellular proteins in bacteria
leading to protein denaturation (Liu et al., 2006, Mukha et al.,
2013). The binding and interaction of Ag+ with bacterial enzymes
disrupt the mitochondrial electron flow, thereby causing oxidative
stress due to leakage of high-energy electrons (Holt and Bard,
2005, Bruna et al., 2021). Therefore, the antibacterial potential of
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Fig. 1. XRD spectrums of Ag-NPs synthesized at different temperature regimes.
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nano-silver is substantial and can be utilized in the context of
nano-medicine.

Microbes are an essential part of the environment and can cause
various diseases in humans and other living organisms. One such
bacterium is Escherichia coli, and it can cause food poisoning, diar-
rhea, and even pneumonia (Hati et al., 2018, La Combe et al., 2019)
and 90 % of urinary tract infections in humans (Manges, 2016). Pre-
vious reports suggested antibacterial properties of the nanosilver
against E. coli (Chalova et al., 2009, Touchon et al., 2009). Here
for the first time, we present experimental and theoretical analyses
of nano-silver synthesized via solution evaporation method using a
two-way approach (both synthesis temperature and dose–
response).

2. Experimental procedures

2.1. Synthesis of nano-silver

Sodium borohydride (0.02 M) solution was prepared in de-
ionized water (200 mL) and incubated in an ice bath for 3 h. After-
ward, the silver nitrate (0.01 M) was prepared in 10 mL de-ionized
water with continuous stirring for 5 min. Next, the silver nitrate
solution was added drop by drop into sodium borohydride solution
with continuous stirring on a magnetic stirrer for 40 min at 20, 50,
and 70 �C temperatures yielding a black-colored product. Finally,
the product was filtered using filter paper, oven-dried at 200 �C
for 5 h, and finely homogenized into nano-silver using mortar
and pestle.

2.2. Characterization of nano-silver

Multiple characterization techniques like XRD, SEM, FTIR, UV–
Vis were utilized to analyze the nano-silver final product. The
XRD with model number D8 Advance, Bruker) X’Pert3 MRD XL)
Cu-Ka radiation 1.5406 Å was used to determine the phase and
material composition. The crystallite size was calculated by using
Debye-Scherrer’s formula (Equation i).

D ¼ kk
bcosh

ð1Þ

Furthermore, SEM Emcrafts tabletop was used to collect the
information about surface morphology while FTIR (Spectrum 2,
Perkin Elmer) provided the information about fingerprints. Finally,
UV–VIS was utilized to study the absorbance characteristics
(Lambda 2, Perkin Elmer, LP74 Processor Module).

2.3. Culturing of E. Coli and antibacterial assay

The culturing and anti-bacterial assay was performed by using
agar well diffusion medium (Invitrogen). After solidifying the
media, E. coli cotton swabs were used for culturing bacteria, fol-
lowed by incubation at 37 �C for 18–24 h. Different concentrations
of 0.5, 1.0, 2.0, and 3.0 g/ L of Ag-NPs were applied for the antibac-
terial assay, and bacterial growth inhibition zone changes were
investigated.

2.4. Mathematical modeling

Exponential function on both horizontal and vertical axis is
selected as candidate function for the mathematical model using
Mat-lab. The function is proposed to fit the data with reasonable
goodness of fit as provided in SSE, R- square, adjusted R-square,
and RMSE, and graphical representation is provided accordingly.
In addition, the bacterial growth was calculated by using the fol-
lowing equation (ii);
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Bacterial growth ¼ aþ ð12� b� em�TempÞ
þ ð12� c � e�d�Nano�silverConc:Þ
þ ð12� e� e�f�nano�silverConc:�TempÞ ð2Þ

a, b, c, d, e, f, and m are unknown coefficients extracted through
the least square error method with a 95% confidence index (a = –
32.68; b = 0.003465; c = -8.932; d = -0.02035; e = 3.332;
f = 0.01095; m = -0.6369).

3. Results

3.1. Characterization of nano-silver

3.1.1. X-ray diffraction analyses (XRD) of nano-silver
The miller indices of different diffracted peaks were calculated

(111) and (200) to confirm the crystalline nature of nano-silver.
The miller indices of these peaks were compared with standard
card JCPDS number 4–0783. The Bragg reflection 2h at 38.12� and
44.35� and the FCC octahedral crystal structure was determined
at (111). Moreover, the XRD spectrum of nano-silver synthesized
at different temperature regimes depicted that an increase in the
temperature increased the plasmonic band’s intensity level while
decreasing the nano-silver diameter (Fig. 1). The average crystallite
size of Ag-NPs synthesized at varying temperature is given in
Table 1.

3.1.2. Scanning electron micrographs (SEM)
The SEMmicrographs of the surface morphology (Fig. 2A-C) and

images were collected same scale range at 2 mm and represent the
irregular and non-uniform surface of silver NPs at varying temper-
atures. An increase in the individual grain with increasing temper-
atures was evident due to the aggregation of larger particles which
modified the surface morphology (spherical small and large) and
grain size of nano-silver.

3.1.3. Fourier-Transform infrared spectrum (FT-IR)
The FTIR analysis revealed different functional groups attached

to the surface of nano-silver (Fig. 3). The spectrum provided multi-
ple modes such as CH, C-Cl, C�C, CH2, and OH. The strong absor-
bance was recorded at 1540 cm�1 and 2335.53 cm-1due to the
vibration of alkyle group (C-H). Moreover, the modes at
2660 cm�1 also indicated slight vibration of alkyl group as com-



Table 1
Average crystallite size of Ag-NPs synthesized at varying temperature.

Synthesis temperature of
Ag NPs

Peaks
(111)

Peaks
(200)

Average crystallite size ranges
(nm)

20 �C 29 28 28.5
50 �C 32 33 32.5
70 �C 38 40 39
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pared to the previous 2335.53 cm�1 mode. The stretching at
2161.21 cm�1 indicated the alkyne (�) group and the mode
829 cm�1 represents the alkyl halide (C-Cl).

3.1.4. Ultraviolet–Visible absorption spectrum (UV–Vis)
The absorption characteristics of nano-silver are presented in

Fig. 4. The absorption maxima at 433 nm corresponding to plas-
mon resonance were recorded, corresponding to the nano-silver
optical behavior.

3.2. Antibacterial assay and the corresponding mathematical analyses

3.2.1. Antibacterial assay
Antibacterial effects of nano-silver at different concentrations

(0.5, 1.0, 2.0 and 3.0 g/L) synthesized at different temperatures
(20, 50 and 70 �C) varied significantly (Table 2). It was evident that
bacterial growth was substantially inhibited at a higher dose
(3.0 g/L) and 70 �C temperature of Ag-NPs, evident from the inhibi-
tion zone (Fig. 5). This also revealed that the nano-silver was more
effective compared to other growth temperatures and doses.

3.2.2. Contour-plot and mathematical modelling
Likewise, the contour plot of the bacterial growth indicated

dependency on the synthesis temperature and nano-silver dose
(Fig. 6). It can be observed that the gradient of change is more with
towards the right top corner, moving from the bottom left corner.
This more significant change in gradient highlighted the effect of
higher values of nano-silver dose and temperature. Conversely,
lower changes at lower values of temperature and dose (g/L) exhib-
ited lesser bacterial growth inhibition.

The mathematical model was prepared using curve fitting and
the method of least square errors. Exponential function on both
horizontal and vertical axis is selected as candidate function for
the mathematical model after analyzing the shape of the surface
(Fig. 7). The following function is proposed to fit the data with rea-
sonable goodness of fit, as evident from the figure of merits pro-
vided in SSE, R-square, adjusted R-square, and RMSE. It was also
observed that goodness of fit is showing reasonable values to rep-
resent the data points. The SSE = 0.8026; R-square = 0.934;
Adjusted R-square = 0.8549; RMSE = 0.4007. Lower values of SSE
and RMSE reflected that the error representing the data with
Fig. 2. SEM analysis of Ag NPs synthesize
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equation (ii) is low. Values close to 1 for R-square and adjusted
R-square depicted a reasonable fit. The data points and the surface
generated from the function are presented in equation (ii) and It is
observed that experimental data and surface generated from equa-
tion (ii) are in good agreement (Fig. 7).

3.3. Discussion

Diffracted peaks were calculated at (111) and (200); miller
indices of these peaks compared with standard card JCPDS number
4–0783 (Lanje et al., 2010). The octahedral crystal structure and
crystallite size of pure nano-silver were increased by increasing
the temperature and is consistent with the previous work (Singh
et al., 2010, Allafchian et al., 2016, Munir et al., 2021). It is also
reported that an increase in the temperature increased the inten-
sity level of the plasmonic band and decreased the nano-silver
diameter (Dada et al., 2018). Temperature-dependent increase in
aggregation of larger particles and nano-silver grain modification
agrees with the previously published work (Shahjahan et al.,
2017, Munir et al., 2021). Besides, the 3000.01 (OH) and (CH2)
2053.61 cm�1 are responsible for reducing AgNO3 to Ag-NPs The
given functional groups are attached on the surface of nano-
silver as reported by (Muzamil et al., 2014, Hamedi et al., 2017,
Elumalai et al., 2017). The UV–Vis absorption pattern also reflected
nano-silver particle size increase with increasing temperature
(Ninganagouda et al., 2014, Mekkawy et al., 2017).

We recorded prominent antibacterial activity and a different
response based on synthesis temperatures. Increasing temperature
above 70 �C correlated with the particles size and increased bacte-
rial death linked with higher cellular NPs penetration (Gandhi and
Khan, 2016; Tang and Zheng, 2018). Another possible reason for
the better antibacterial action of Ag-NPs is variable oxidation
states like Ago, Ag2+, and Ag3+, which can influence bacterial cell
death. The contour plot highlighted the effect of higher nano-
silver dose and temperature values, and lower changes at lower
values of temperature and dose (g/L) exhibited lesser bacterial
growth inhibition. Earlier studies have also reported that the
non-hazardous low-cost synthesis of silver NPs is also known as
bactericidal nanomaterials (Slavin et al., 2017).

The present study reported the antibacterial effect of silver NPs
against E. coli with the help of mathematical modeling. The Mat-
lab used to operate the different exponential function to calculate
the following parameter such as SSE = 0.8026; R2 = 0.934;
RMSE = 0.4007. The R-square approximately equal to 1 indicated
that fitness is reasonably well. Here, compare the dose of nano-
silver with temperature, the higher dose of nano-silver increased
bacteria death and vice versa. Lastly, the temperature-dependent
changes at lower doses of nano-silver were non-significant, while
increasing the dose of nano-silver mediated significant effects of
crystal growth temperatures on bacterial inhibition.
d at different temperature regimes.



Fig. 3. FTIR spectrum of Ag NPs synthesized at different temperature regimes.

Fig. 4. UV– visible absorbance spectra of the synthesized Ag-NPs.

Table 2
Inhibition zones and the concentration of Ag NPs synthesized at different
temperatures.

Ag NPs concentrations
(g/L)

Bacterial growth inhibition zone (size,
mm)

20 �C 50 �C 70 �C

0.5 9.5 9.5 9.5
1 10 11 11
2 10.5 11.5 12
3 11.0 12 12.5

Fig. 5. Bacterial growth incubation dependency on Ag NPs Concentration (g/L) and
temperature.

Fig. 6. Contour plot of the bacterial growth with variation of Ag NPs concentration
(mg/mL) and temperature (oC).
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Fig. 7. Experimental data comparison with the proposed mathematical model
provided in equation (ii), along with the goodness of fit parameters and constants
extracted through the method of least square errors.
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4. Conclusions

The octahedral crystal structure and crystallite size of 28 to
39 nm, and irregular morphology of nano-silver were still
effective in promoting inhibition of bacterial growth. Different
functional on the surface of nano-silver included CH, CH2, OH,
alkyne, and an alkyl halide, and it showed kmax at 433 nm.
Moreover, an antibacterial assay performed against E. coli
indicated that nano-silver synthesized at 70 �C and 3.0 g/L
concentration resulted in an effective inhibition zone (12.5 mm)
confirmed by the mathematical modeling approach. It is concluded
that the nano-silver can be an effective antimicrobial agent, and
it will be interesting to investigate the bioactive potential of
nano-silver against different bacterial pathogens resistant to
conventional drugs
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