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Abstract: The development of efficacious antitumor compounds with minimal toxicity is a hot
research topic. Numerous cancer cell targeted agents are evaluated daily in laboratories for their
antitumorigenicity at the pre-clinical level, but the process of their introduction into the market
is costly and time-consuming. More importantly, even if these new antitumor agents manage to
gain approval, clinicians have no former experience with them. Accruing evidence supports the
idea that several medications already used to treat pathologies other than cancer display pleiotropic
effects, exhibiting multi-level anti-cancer activity and chemosensitizing properties. This review aims
to present the anticancer properties of marketed drugs (i.e., metformin and pioglitazone) used for
the management of diabetes mellitus (DM) type II. Mode of action, pre-clinical in vitro and in vivo
or clinical data as well as clinical applicability are discussed here. Given the precious multi-year
clinical experience with these non-antineoplastic drugs their repurposing in oncology is a challenging
alternative that would aid towards the development of therapeutic schemes with less toxicity than
those of conventional chemotherapeutic agents. More importantly, harnessing the antitumor function
of these agents would save precious time from bench to bedside to aid the fight in the arena of cancer.
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1. Introduction

Pleiotropy in biological systems is a long known phenomenon, commonly attributed to the
complexity of intracellular signaling networks or tissue-specific cellular responses [1–4]. Consequently,
a growing list of pharmacological agents is being reported to exhibit therapeutic potential in pathologic
entities that are not mechanistically relevant with their current therapeutic use [5–7]. Besides, the
involvement of non-antitumor compounds with cancer-associated networks corroborates the notion
that their use could be expanded in the field of oncology aside from their current use [8–11]. This is
widely known as drug “repurposing” or “repositioning” in oncology. Paying credence to this emerging
concept, diverse commercially available non-antineoplastic agents such as anti-hypercholesterolemic
agents [12], nonsteroidal anti-inflammatory drugs (NSAIDs), agents currently used for the management
of hypertension or even agents received by patients suffering from acute immunodeficiency syndrome
(AIDS) exhibit profound anti-cancer activity [13–15].

Herein, the antitumor activity of the marketed anti-diabetic drugs metformin and pioglitazone is
reviewed. This is evidenced either by pre-clinical in vitro and in vivo data or clinical data from studies
in DM type II patients or nondiabetic individuals. Despite the fact that many anti-diabetic medications
are currently available in the market, only the biguanide metformin and the thiazolidinedione
(TZD) pioglitazone are mentioned. This is why insulin administered for the management of DM
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type I and insulin secretagogues (sulfonylureas) have been associated with an increased incidence of
cancer [16–18]. Studies regarding the correlation (either positive or negative) among glucagon-like
peptide 1 (GLP-1)-based medications including dipeptidyl peptidase 4 (DDP-4) inhibitors (the so-called
“gliptins”) or anti-diabetics that target renal sodium-glucose cotransporter 2 (SGLT2 inhibitors or
“gliflozins”) and cancer, cannot be considered as conclusive [19,20]. On the other hand, only little
evidence has been provided for the anti-tumor properties of non-sulfonylurea secretagogues (known
as “glinides”) or α-glucosidase inhibitors [21,22] whereas the TZDs rosiglitazone and troglitazone that
fall into the same category of drugs which exhibit profound anti-tumor activity [23–27] have been
withdrawn from the market [28] due to their cardiotoxicity and hepatotoxicity, respectively. This is
also the case for the biguanide phenformin that also exhibits anti-cancer properties [29–31], but is no
longer commercially available because of its severe adverse lactic acidosis effect [32].

2. Metformin and Pioglitazone: Overview of Current Clinical Use and Molecular Targets

Metformin is a first-line anti-diabetic agent [33] widely prescribed all over the world. It acts as an
insulin sensitizer and it can be used either as monotherapy or as part of combinational formulations.
Metformin can also prevent the development of diabetes in subjects diagnosed with prediabetes [34].
However, the formal use of metformin is only for the treatment of diabetes. Pioglitazone is also
used for the treatment of DM type II [35] and can be administered alone or in conjunction with other
anti-diabetics including metformin or sulfonylurea analogues.

There is convincing evidence for a direct correlation between DM type II (also called adult-onset
or non-insulin-dependent DM) and cancer [36–39], particularly postmenopausal breast cancer [40,41].
Notably, patients with DM type II run a 10%–20% greater risk than non-diabetic females for developing
breast cancer while up to 16% of breast cancer patients are diabetics [42]. In addition, DM type
II is associated with worse prognosis and poor outcome of breast cancer [43]. DM type II is a
metabolic disorder characterized by the disturbed blood glucose control, insulin resistance and
hyperinsulinemia [36]. The latter clinical finding, in turn, is linked with the pathogenesis of cancer
due to the mitogenic activity of insulin [36,37,44]. Yet, recent evidence indicates that the anti-cancer
properties of metformin are largely attributed to cell autonomous mechanisms [32].

Metformin acts as an activator of AMP-activated protein kinase (AMPK) which serves as
a master metabolic sensor and is a negative modulator of the mammalian target of rapamycin
(mTOR) [45]; a point of convergence for tumorigenesis and energy homeostasis [46]. AMPK
and its upstream activator, the LKB1 tumor suppressor, are thought to play a central role
in the anti-cancer function of metformin [47,48]. However, metformin can also stimulate
AMPK-independent pathways which halt cancer cell proliferation [49,50] or it may engage an
AMPK-dependent/LKB1-independent pathway to suppress the proliferation of malignant cells [51].
To date, it has been suggested that the antiproliferative activity of metformin can be attributed either to
its ability to impair insulin/IGF-1-mediated signaling or its inhibitory activity of complex I of oxidative
phosphorylation [52,53]. However, recent data support a “substrate limitation” model (Figure 1)
in order to explain the ability of metformin to suppress tumor cell proliferation. According to this
model, metformin owes its antitumor activity to the inhibition of lipogenic citrate production via the
oxidative metabolism pathway (lipogenic processes are crucial for the synthesis of membranes and
tumor cell proliferation) in mitochondria due to drug-induced depletion of Krebs cycle intermediates
in an LKB1- and AMPK-independent manner. Lack of functional mitochondria endows tumor cells
with insensitivity to metformin. In these cells, sensitivity to the cytostatic effects of metformin can
be restored via silencing ATP citrate lyase (ACL; the enzyme catalyzing the rare limiting step of
acetyl-CoA production), pinpointing to the significance of future therapeutic strategies employing
metformin along with ACL activity inhibition. On the other hand, metformin increases the production
of citrate via a reductive route (the reductive carboxylation of α-ketoglutaric acid). However, this type
of metabolic shift is not sufficient to sustain tumor cell proliferation in the presence of metformin [54].
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Figure 1. Models that have been proposed to explain the inhibition of tumor cell proliferation by
metformin. (A) metformin prevents tumor cell proliferation in a cell non-autonomous fashion through
blocking the insulin/insulin-like growth factor 1 (IGF-1) signaling axis. (B) Metformin-induced
blockage of tumor cell proliferation is cell autonomous and is mechanistically associated with the
inhibition of complex I of the oxidative phosphorylation (OXPHOS). (C) The substrate limitation
model. According to this model, metformin acts in an AMPK-independent manner to block the
usage of glucose and glutamine by oxidative reactions (Krebs cycle) in mitochondria (mt) of tumor
cells. Besides, it promotes a shift towards reductive rather than oxidative α-ketoglutaric acid (α-KG)
metabolism. The reductive carboxylation of glutamine-derived α-KG that takes place either in cytosol
(mediated by isocitrate dehydrogenase 1, IDH1) or in mitochondria (mediated by IDH2) is being
boosted by metformin. Although the presence of metformin favors the production of citrate the
reductive carboxylation of α-KG, the hindrance of OXPHOS in mitochondria induced by the drug
results in a decrease of total citrate derived from either mitochondrial or cytosolic reactions. The drop of
lipogenic citrate leads in the prevention of tumor cell proliferation which requires de novo lipogenesis.
The red “X” symbol denotes inhibition of a signaling pathway while upward and downward pointing
arrows denote up- and downregulation, respectively.

On the other hand, pioglitazone serves as an activator of the peroxisome proliferator-activated
receptor γ (PPARγ). This nuclear receptor is widely expressed in human epithelial tissues and apart
its role in glucose/lipid homeostasis it is also critically involved in cell differentiation and inhibition of
cell growth [26,55]. Both metformin and pioglitazone have been found to modulate metabolic routes
that are critical for tumor cell biology [56–58]. This is consistent with the well-known connection
between altered energy metabolism and cancer [59–61].

2.1. Pre-Clinical Data Suggesting Possible Repurposing

2.1.1. In Vitro Evidence for the Antineoplastic Effects of Metformin

In vitro experimentation suggests a plausible repositioning of metformin in the field of gynecologic
oncology. Metformin is known to decrease the proliferative capacity and clonogenicity of breast
cancer cell lines, regardless of p53 status and the status of estrogen and ErbB2 (elsewhere also



Pharmaceuticals 2016, 9, 24 4 of 20

referred to as Her-2/neu) receptors [62]. In the latter study, metformin negatively influenced the
expression or the activity of various cell cycle- and cell growth-regulatory molecules exemplified by
E2F1, MAPK, AKT and mTOR. Low-dose metformin was reported to display a selective cytotoxicity
over cancer stem cells (CSCs) in breast cancer types with different genetic background [63]. This
finding pays further credit to the validity of CSC theory. The suppressive effects of metformin
on the biosynthetic pathway of estrogens both in breast cancer cells [64] and in adipocytes in
breast tissue [65] underline its multi-level anti-cancer function encompassing the targeting of
pathways operating not only in malignant elements themselves but also in stromal cells in the tumor
microenvironment [29,66]. Unfortunately, recent evidence suggests that the prolonged exposure of
estrogen receptor (ER)-positive human breast cancer cells to metformin upregulates AKT/Snail1,
suppresses ER and renders these cells tolerant to the toxicity of both metformin and tamoxifen; a
phenomenon known as “cross-resistance”, irrespective of AMPK stimulation [67]. In ovarian cancer
cells metformin has been found to exert cytostatic effects [68]. Consistent with data demonstrating
the ability of metformin to eliminate ovarian CSCs [69], it was reported that low-dose metformin
restrains the self-renewing capacity of CD44/CD117-positive ovarian CSCs as well as the expression
of epithelial-to-mesenchymal transition (EMT) markers in vitro [70]. Besides, irrespective of ER status,
metformin exerts anti-EMT effects on 17β-estradiol-treated human endometrial adenocarcinoma cells
via engaging a βKlotho/ERK-dependent pathway. These effects partially depend on AMPKα [71].

Metformin displays antitumor properties not only in studies using breast cancer and ovarian
cancer cells, but also in a series of experiments with other types of malignant cells. In human pancreatic
cancer cells metformin acts in a cytostatic manner. Drug-induced cytostasis in these cells coincides
with an alteration in the expression profile of microRNAs and cell cycle-modulatory molecules [72].
On the other hand, non-small cell lung cancer (NSCLC) cells relay on Nemo-like kinase (NLK) for
their stemness and their ability to proliferate and metformin has been found to inhibit this kinase,
thereby suppressing both NSCLC cell proliferation and stemness [73]. LKB1 seems to be dispensable
for the anti-proliferative activity of metformin in NSCLC cells [51]. The finding that in NSCLC H1299
cells metformin counteracts the biosynthetic processes that depend on mitochondrial reactions [50]
propelled the suggestion of the “substrate limitation” model (Figure 1), as mentioned above.

Head and neck cancer (HNC) encompasses different pathological entities including
nasopharyngeal carcinoma (NPC) and head and neck squamous cell carcinoma (HNSCC), with HNSCC
patients running the risk to develop second primary esophageal squamous cell carcinoma (ESCC) [74].
Metformin has actually been demonstrated to exhibit antitumor activity both in HNC cells and in
studies assessing its antineoplastic properties in esophageal cancer in vitro. Significantly, the expression
of the organic cation transporter 3 (OCT3) which mediates the uptake of metformin into HNSCC cells
is necessary for the drug-induced growth suppression via the inhibition of the mTOR pathway [75].
In esophageal adenocarcinoma (EAC) or nasopharyngeal carcinoma cells the antitumorigenicity of
metformin is associated with the modulation of the expression of cell cycle-regulatory proteins [76]
and DNA repair factors [77], respectively. On ESCC cells, metformin exerts cytostatic effects in an
AMPK-dependent fashion [78].

Metformin, apart from its growth-inhibitory properties has also been reported to affect cancer
cell viability. Actually, metformin triggers apoptosis in vitro, i.e., in gastric [79], pancreatic [80], colon
cancer [47] and salivary adenocarcinoma cells [81]. P53-null colon cancer cells are presumed to
be susceptible to metformin-induced apoptosis owing to their inability to undergo the metabolic
alterations imposed by metformin in the absence of p53 which is a crucial controller of various aspects
of metabolism [47]. This finding is of great importance because it highlights the therapeutic potential
of metformin in the treatment of p53-deficient tumors. Further, metformin in combination with the
glycolytic inhibitor 2-deoxyglucose (2-DG) makes the prostate cancer cell’s life/death decision scale
to tilt towards apoptosis whereas metformin or 2-DG alone exert minor cytotoxicity [82]. Similarly,
2-DG potentiates the toxic effects of metformin in thyroid cancer cells [83]. In prostate cancer cells
metformin also negatively modulates lipogenesis; an anabolic route which is a key characteristic of
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tumor cells [84]. These studies pave the road for the maximal exploitation of metabolic modulators
including metformin in cancer therapeutics. Metformin promotes the apoptosis of quiescent B-cell
chronic lymphocytic leukemia (CLL) cells. Also, this drug prevents CLL cells from entering the cell
cycle upon their stimulation through co-culture with CD40L-positive fibroblasts [85]. In highly invasive
C4-2B cells metformin in conjunction with simvastatin evokes necrosis, thereby circumventing the
resistance to apoptosis characterizing these prostate cancer cells [58]. In hepatocellular carcinoma
(HCC) cells metformin functions as a radiosensitizer via increasing oxidative stress [86] while in
osteosarcoma cells metformin potentiates the cytotoxic effects of cisplatin [87].

Besides, metformin influences the migratory/metastatic activity of various cancer cells. Metformin
can possibly inhibit the metastatic potential of prostate cancer cells through upregulating miR30a
that, in turn, prevents an EMT program mediated by its target SOX4 [88]. The invasive and migratory
potential of prostate cancer cells is also decreased by metformin in prostate cancer cell via the
impairment of the insulin-like growth factor 1 receptor (IGF-1R) axis [89]. The metformin-induced
suppression of the EMT has been described in thyroid cancer cells, too. In this case, this metformin’s
function has been attributed to its ability to inhibit the kinase mTOR [90]. In addition, metformin
dampens the proliferative as well as the invasive potential of MG63 osteosarcoma cells and counteracts
their stemness [91]. The invasiveness of B16F10 mouse melanoma cells is decreased by metformin due
to up-regulation of E-cadherin expression [92].

2.1.2. Pre-Clinical In Vivo Evidence for the Antineoplastic Effects of Metformin

There is a considerable amount of in vivo evidence of the preclinical anti-neoplastic activities of
metformin, as presented immediately below. Data from an animal model of mammary tumor virus
(MMTV)-ErbB2 tumorigenesis underscore the preventive antitumor function of metformin, since it
selectively inhibits the proliferation of a specific cellular subpopulation which is being incriminated
for tumor initiation; those with the CD61(high)/CD49f(high) immunophenotype. Importantly, the
“Achilles heel” of the tumor-initiating cells (TIC)/CSC-rich tumorspheres was shown to be the elevated
ErbB2 whose expression is ablated by metformin [93]. A similar CSC-killing activity was reported
for metformin in ErbB2-positive mouse xenografts where metformin-mediated toxicity towards
human CD44+/CD24´/low breast CSCs is associated with sensitization to the humanized anti-ErbB2
monoclonal antibody trastuzumab [94]. Of note, metformin displays antitumor synergy with several
conventional chemotherapeutic agents aside from trastuzumab. In addition, it does not only prevent
tumor initiation as mentioned above, but also it prevents the relapse of cancer [33]. Moreover,
metformin prolongs the survival of murine ErbB2 transgenes [95] and exhibits chemosensitizing
properties in breast cancer cell line xenografts [63]. Also, metformin in synergy with everolimus
restrains the growth of tumors from xenografts of HCC1428 breast cancer cells [96].

Pre-clinical, in vivo evidence for the antitumor properties of metformin has been also provided for
glioblastoma [97], esophageal cancer [76,78,98] as well as prostate cancer [89], ovarian cancer [68] and
salivary gland adenocarcinoma [81] in mouse models. In fact, metformin inhibits the growth of ESCC
xenograft mouse models; an event which is molecularly associated with the upregulation of Cip/Kip
family members that are known to perturb cell cycle progression [78]. Significantly, metformin inhibits
the growth of human pancreatic cancer xenografts, possibly due to the ablation of the crosstalk among
an insulin receptor (IR) and G protein-coupled receptors (GPCRs), in an AMPK-dependent manner [99].
In addition, in human pancreatic cancer xenografts, metformin causes tumor cells to cease proliferation
and impinges on the expression of microRNAs as well as cell cycle-regulatory molecules [72]. In vivo
evidence for the AMPK-dependent antitumoral activity of metformin associated with mTOR inhibition
was also provided in murine models of chemical-induced colorectal carcinogenesis where metformin
was found to suppress the formation of ACFs [100]. In nude mice with lung adenocarcinoma
metformin inhibits the occurrence of distant metastases, possibly through opposing the phenomenon
of EMT orchestrated by an IL-6/STAT3 axis [101]. Of note, in Ewing sarcoma xenografts adequate
tumor oxygenation is essential for the unperturbed metformin-dependent activation of AMPK which
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possibly mediates the anti-growth function of metformin [102]. In PC-3 xenograft models of human
prostate carcinoma, tumor growth is suppressed via the impaired transcription of the gene coding for
IGF-1R [89].

A marked antitumor synergy among metformin and paclitaxel has been found in transgenic
animal models of ovarian cancer since tumors exposed to both of these agents are 60% lighter than
those solely exposed to paclitaxel or metformin [68]. Metformin exhibits anti-growth effects on
SKOV3 xenografts where in synergy with cisplatin diminishes the subpopulation of ovarian CSCs
with the CD44+/CD117+ immonophenotype. Further, metformin displays anti-EMT properties in
this subpopulation at a dose of 0.1 mM [70]. This is of major importance given the association of
EMT with stemness and their impact on cancer therapeutics and prognosis [103]. In HCC, metformin
can be combined with the multikinase inhibitor sorafenib in order to mitigate sorafenib-induced
down-regulation of the tumor suppressive protein TIP30. In fact, metformin and sorafenib in
combination interfere with a partially AMPK-dependent TIP30/thioredoxin pathway to prevent
extrahepatic metastases [104].

2.1.3. In Vitro Evidence for the Antineoplastic Effects of Pioglitazone

A series of in vitro studies are suggestive of the future exploitation of pioglitazone for the
therapy of upper gastrointestinal (GI) tract cancers (pancreas and liver cancer), gynecologic cancer
(breast cancer), primary brain tumor (glioma) as well as hematological tumors. A drug-induced
downregulation of the transcription of cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) was
reported throughout the course of in vitro experiments using pioglitazone and the proliferation
of various pancreatic cancer cells was halted [105]. In bioptic material from HCC patients the
expression of receptor for advanced end glycation products (RAGE) is elevated compared with
the expression of this receptor in tumor adjacent healthy tissue, as evidenced by tissue microarrays
(TMAs). In HCC cells, short interference RNA (siRNA)-mediated RAGE silencing phenocopies the
anti-proliferative and anti-invasive effects of pioglitazone. These findings suggest a role for RAGE
in the pathophysiology of HCC and a RAGE-dependent mechanism for the antitumor activity of
pioglitazone [106]. In human preadipocytes (obesity in postmenopausal women has been linked
to hormone-dependent breast cancer) pioglitazone negatively controls the levels of aromatase via
derepressing its 15-hydroxyprostaglandin dehydrogenase (15-PGDG)-mediated degradation as well
as by inducing its positive regulator, the BRCA1 tumor-suppressor. This finding favors the notion
that pioglitazone might substitute aromatase inhibitors in breast cancer prevention or treatment.
This is of major clinical importance since aromatase inhibitors have been linked to iatrogenic
osteoporosis [107]. The anti-invasive effects of pioglitazone on the highly metastatic breast cancer cell
line MDA-MB-231 are mitigated by the indole MK886 although this compound exhibits MDA-MB-231
cell-killing properties [108]. This is consistent with previous data demonstrating that MK886 prevents
PPAR-dependent signaling [109]. In glioma cells pioglitazone engages a β-catenin-dependent route
to impede their growth and decrease their invasiveness [110]. Moreover, it has been demonstrated
that pioglitazone exhibits selective anti-growth activity against leukemic rather than normal human
hematopoietic progenitor cells [111]. The latter finding opens the possibility of a future exploitation of
pioglitazone in the field of leukemia therapeutics.

2.1.4. Pre-Clinical In Vivo Evidence for the Antineoplastic Effects of Pioglitazone

Pioglitazone was found to suppress the growth of BxCP-3 xenografts in mice and to inhibit their
ability to give rise to lymph node and distal (pulmonary) metastases [105]. In a mouse model of
prostate cancer, pioglitazone significantly reduces the occurrence of bone metastasis at the clinically
achievable dose of 30 mg/kg/day in synergy with the histone deacetylase (HDAC) inhibitor valproic
acid. This anti-metastatic activity of pioglitazone is possibly attributed to its ability to up-regulate
the expression of E-cadherin through a peroxisome proliferator response element (PPRE) within
its promoter region which becomes PPARγ-responsive only in the presence of HDAC inhibitors.
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The therapeutic applicability of such a combinational scheme is substantiated by the findings that
E-cadherin down-regulation is a common event in prostate cancer whereas the expression of PPARγ is
elevated in this type of malignancy [112]. In animal models, pioglitazone was also found to inhibit
the early-stage chemical-induced hepatocellular carcinogenesis [113] and to suppress tumor growth
via antiangiogenic mechanisms in human NSCLC xenografts in mice [114]. Further, there has been
provided in vivo evidence for a pyruvate dehydrogenase kinase 4 (PDK4)-dependent pathway activated
by pioglitazone by which this PPARγ ligand increases the oxidative stress experienced by lung cancer
cells, thereby ceasing their proliferation [57].

In the KK-Ay mouse model for DM type II and obesity pioglitazone both improves several
metabolic parameters and impairs the development of precancerous lesions in colon (aberrant crypt
foci, ACFs) upon exposure to the potent carcinogen azoxymethane. This finding suggests the
chemopreventive value in colorectal tumorigenesis [115]. Importantly, a former study had shown that
pioglitazone inhibits liver metastasis in human colon cancer xenografts [116], indicating an additional
anti-metastatic role of pioglitazone.

2.2. Clinical Data Suggesting Possible Repurposing

2.2.1. Metformin

A large body of literature indicates that the usage of metformin both lowers the incidence of
various types of cancer (e.g., hepatocellular carcinoma, pancreatic cancer, lung cancer, gynecological
cancer and prostate cancer) in diabetics [17,18,21,117–126] and decreases the mortality in cancer
sufferers with DM type II [127–130]. In accordance with data from experimentation in animals [100], a
pilot study argued for the preventive role of metformin in human colorectal carcinogenesis: short-term,
low-dose (250 mg/d) metformin treatment in nondiabetic subjects with rectal ACFs caused a marked
decrease in ACFs per patient [131]. In addition, a population-based case-control study showed that
peri- and postmenopausal Danish women with DM type II receiving metformin run a lower danger to
develop breast cancer than non-users [132]. In contrast, this is not the case for other anti-diabetic drugs
such as insulin secretagogues and insulin itself [133–135]. Rather, sulfonylureas and insulin have been
associated with increased risk for cancer [17,18].

Retrospective studies reviewing the clinical outcome of HER2-positive breast cancer patients with
diabetes suggest that metformin beneficially affects their cancer-specific survival [136,137]. Another
study, however, reported that the overall survival is not influenced by metformin in triple-negative
breast cancer (TNBC) diabetics receiving adjuvant chemotherapy. Still, metformin manages to lower
the risk for the occurrence of distal metastases [138]. A population-based study which recruited
breast cancer women with or without DM treated with neoadjuvant chemotherapy demonstrated
a significant increase in the rate of pathologic complete response (pCR) among the diabetics who
received metformin and those who did not [139]. However, retrospective analysis of datasets regarding
the cancer-specific outcome in chemotherapy-receiving women suffering from DM type II and invasive
breast cancer indicates that the intake of metformin is not associated with any improval [140]. Data
favouring the notion of the antitumor activity of this antidiabetic agent are also available for diabetic
patients with esophageal cancer [98], prostate cancer [133] as well as in women with endometrial
cancer where it preoperatively halts DNA replication in serum, at clinically attainable dosage [141].
A small phase I clinical study in advanced solid tumor patients who were administered metformin
in conjunction with the mTOR inhibitor temsirolimus reported disease stabilization in 5 out of 11
participants. Unfortunately, when combined even at clinically relevant doses (500 mg of metformin
twice a day and 25 mg/week of temsirolimus) these two medications caused toxic effects; something
which limits the potent future therapeutic value of such a scheme [142]. Unfortunately, a recent
randomized phase II clinical study did not reported any statistically significant difference among the
survival rates of patients in The Netherlands suffering from advanced pancreatic cancer who received
metformin or placebo combined with erlotinib per os and intravenous gemcitabine, at six months [143].
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Altogether, metformin seems to be a promising chemopreventive agent in breast and colorectal
cancer. However, although there is ample evidence for the antitumor function of metformin principally
stemming from population-based case-control studies and retrospective studies as extensively has
been elsewhere reviewed [144], more evidence is needed from phase II studies whereas no data from
a large phase II and III trial have been published so far. In addition, many clinical studies have
yielded inconclusive results [145]. The completion of ongoing clinical trials (e.g., NCT01243385 and
NCT01627067) assessing the anti-cancer utility of metformin is therefore much-awaited.

2.2.2. Pioglitazone

Objective responses and stabilization of disease were observed in a phase II clinical trial
recruiting patients with chemorefractory melanoma and soft tissue sarcoma who were treated with a
combinational scheme of metronomic therapy using trofosfamide, rofecoxib (a COX-2 inhibitor which
is no more commercially available) and clinically relevant doses (45 mg/day) of pioglitazone [146].
Encouraging results (disease stabilization or even complete remission) have been noted in a pilot study
where the participants suffered from advanced vascular malignancies [147]. Conceivably, it would be
particularly interesting to assess whether substituting rofecoxib by another COX-2 inhibitor that has
not been withdrawn in this combinational regimen yields similar benefits.

Unfortunately, clinical data indicate that usage of pioglitazone may jeopardize health since it
has been found to increase the incidence of bladder cancer in DM type II patients [28,148]. For those
individuals that have received pioglitazone for a period of >24 months the risk is even higher, as
evidenced by a retrospective cohort analysis and meta-analysis [149,150]. Yet, another study argues that
further research is needed to allow researchers to make safe inferences regarding the use of pioglitazone
and risk for bladder cancer [151]. According to a more recent meta-analysis of randomized trials,
pioglitazone is not associated with an overall risk for histologically different types of neoplasms.
Instead, pioglitazone decreases the incidence of breast cancer [152] while short-term administration of
pioglitazone does not affect the risk for bladder cancer [153].

Ongoing clinical experimentation (e.g. NCT00780234) may hopefully decipher the relationship
between pioglitazone and the risk of organ-specific carcinogenesis or even overall neoplasia before an
inference can be drawn regarding the anti-cancer or cancer-promoting function of this anti-diabetic
agent. In fact, numerous clinical trials are currently active both for pioglitazone and metformin.

Table 1 indicatively summarizes some of these trials with different types of therapeutic
interventions and different histological types of malignancy. This highlights the tremendous research
interest regarding the repurposing of these drugs in oncology.

Table 1. Selected Active or Completed Clinical Trials on metformin and pioglitazone for cancer
therapeutics or cancer prevention.

Setting Anti-diabetic
Intervention Other Intervention Phase Status ClinicalTrials.

Gov Identifier

Metastatic or unresectable solid
tumor or lymphoma Metformin Temsirolimus I Completed § NCT00659568

Li Fraumeni Syndrome Metformin - I Recruiting NCT01981525
Advanced cancers Metformin Temsirolimus I Recruiting NCT01529593
Hormone-resistant

prostate cancer Metformin Enzalutamide/Laboratory
biomarker analysis I Not yet recruiting NCT02339168

Locally advanced or metastatic
prostate cancer Metformin - II Active, not

recruiting NCT01243385

Breast cancer prevention in obese
/overweight premenopausal

women with metabolic syndrome
Metformin Placebo II Recruiting NCT02028221

Non-small cell lung cancer
(NSCLC) Metformin

Placebo/Stereotactic
body Radiotherapy

(SBRT)
II Recruiting NCT02285855

Colorectal and breast cancer Metformin

Exercise
training/Exercise

training plus
metformin

II Active, not
recruiting NCT01340300
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Table 1. Cont.

Setting Anti-diabetic
Intervention Other Intervention Phase Status ClinicalTrials.

Gov Identifier

Bladder cancer Metformin Simvastatin II Not yet recruiting NCT02360618

Advanced stage ovarian,
fallopian tube and primary

peritoneal cancer
Metformin

Combination
chemotherapy/Laboratory
biomarker analysis

II Recruiting NCT02122185

Locally advanced NSCLC Metformin plus
chemo-radiotherapy Chemo-radiotherapy II Recruiting NCT02115464

Metastatic pancreatic cancer Metformin
Modified FOLFOX

6/ Laboratory
biomarker analysis

II Recruiting NCT01666730

Hormone-dependent
prostate cancer Metformin

Aspirin/Placebo/
Laboratory

biomarker analysis
II Recruiting NCT02420652

Metastatic breast cancer Metformin Placebo II Recruiting NCT01310231

Castration resistant
prostate cancer Metformin Enzalutamide II Not yet recruiting NCT02640534

Hormone receptor positive
metastatic breast cancer in
postmenopausal women

Metformin Everolimus/Exemestane II Active, not
recruiting NCT01627067

Locally advanced rectal cancer Metformin - II Recruiting NCT02437656

Breast cancer prevention Metformin Placebo II Recruiting NCT02028221

Prostate cancer Metformin plus
bicalutamide Bicalutamide II Recruiting NCT02614859

Prostate cancer, Prostate cancer
recurrent Metformin - II Recruiting NCT02176161

Ovarian, Fallopian tube, and
Primary peritoneal cancer Metformin - II Recruiting NCT01579812

Refractory colorectal cancer Metformin Irinotecan II Not yet recruiting NCT01930864

Early stage breast cancer Metformin Placebo III Active, not
recruiting NCT01101438

Prostate cancer Metformin Placebo III Recruiting NCT01864096

Advanced solid tumors Pioglitazone Carboplatin I Active, not
recruiting NCT02133625

PAX8-PPARγ fusion
gene-positive thyroid cancer Pioglitazone - II Recruiting NCT01655719

Pancreatic cancer Pioglitazone - II Recruiting NCT01838317

Oral leukoplakia Pioglitazone Placebo/Laboratory
biomarker analysis II Completed§ NCT00951379

Lung cancer chemoprevention Pioglitazone

Placebo/fluorescence
bronchoscopy/quantitative

high resolution
computerized

tomography (CT)
scan

II Active, not
recruiting NCT00780234

Squamous cell cancer
chemoprevention Pioglitazone - II Enrolling by

invitation NCT02347813

§ No results from these studies have been posted yet.

2.3. Considerations for Using and Repurposing Metformin and Pioglitazone

Metformin, unlike other anti-diabetic drugs such as sulfonylureas, is devoid of major adverse
effects such as drug-induced hypoglycemia or lactic acidosis that is more commonly caused by the
biguanide phenformin [154]. Would metformin be suitable as an antitumor agent under normoglycemic
conditions? According to recent experimental evidence, it is normoglycemia that renders low-dose
metformin effective in killing cancer cells. Actually, hyperglycemia seems to favour MYC-dependent
enhanced aerobic glycolysis (Figure 2) and tumor cell survival in the presence of metformin (a
suppressor of MYC expression), at least in a murine model of ovarian cancer [10]. These data pay credit
to the applicability of repositioning metformin in cancer therapeutics particularly in non-diabetics.
However, it is well-known that metformin exhibits prosenescent effects and cellular senescence
has been linked to various pathologies [155–157]. Hence, the impact of metformin’s prosenescent
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function on overall health merits future investigation by clinical trials assessing the anti-tumor activity
of metformin.
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Figure 2. Pathways associated with the sensitivity or resistance of tumor cells to metformin under
normoglycemic or hyperglycemic conditions. (A) Under normoglycemic conditions metformin opposes
the expression of MYC and tumor cells display sensitivity to metformin-induced killing. (B) Under
hyperglycemic conditions metformin-induced prevention of MYC expression is abolished. MYC
upregulates the expression of pyruvate dehydrogenase kinase 1 (PDK1), which in turn inhibits pyruvate
dehydrogenase. Glycolytic flux is therefore increased and tumor cells display resistance to the toxic
effects of metformin. The red “X” symbol denotes inhibition of a signaling pathway. Upward pointing
arrow denotes upregulation.

Another issue of concern is that at least in mouse models of lung cancer metastasis there is
evidence supporting a dichotomized behaviour of PPARγ that inhibits cancer cell invasiveness but on
the other hand, it fuels the pro-tumorigenic function of non-malignant cells of the myeloid lineage
upon its activation [158]. Further, as it was mentioned above, the usage of pioglitazone has been
incriminated for an increased risk of bladder cancer incidence [28,148–150]. Although it is seemingly
bizarre, a plausible scenario is that pioglitazone may engage an anti-tumor PPARγ/PPRE-dependent
pathway only under “permissive” cellular conditions. Such a striking paradigm is provided by the
study from Annicotte and colleagues [112] where the presence of the HDAC inhibitor valproic acid is a
prerequisite for pioglitazone-mediated anti-metastatic activity in prostate cancer in mice [112]. In other
words, pioglitazone in conjunction with valproic acid or another HDAC inhibitor would possibly not
exert such pro-tumorigenic effects. This notion is corroborated by the known role of HDAC inhibitors
as anti-tumor agents [159–161] and warrants further investigation.

2.4. Pitfalls and Limitations Stemming from the Use of Mouse Models to Study the Effects of Anti-Diabetic
Drugs on Human Cancer Biology

It should be noted that although animal models that have been used successfully to recapitulate
many aspects of human carcinogenesis, there are several limitations [162]. Characteristically, the
(MMTV)-ErbB2 transgenes recapitulating human breast carcinogenesis carry the viral MMTV-LTR
promoter in order to ectopically express the ErbB2 oncoprotein in mammary epithelium (ErbB2 is
amplified in up to 30% human breast cancers). MMTV may be accidentally integrated within the
int-5/aromatase gene, thereby leading to overexpression of the gene product. However, only a
subset of human breast tumors overexpress the human homologue of int-5. Another issue is that the
(MMTV)-ErbB2 model develops ER alpha (ERα)-negative tumors; something which is physiologically
relevant only for ~50% of human breast tumors [163]. The importance of this is also highlighted by the
fact that ER-positivity has been associated with cross-resistance to metformin and tamoxifen upon
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the prolonged exposure of human breast cancer cells to metformin, as previously mentioned [67].
In addition, human breast tissue is more fibroblastic in comparison with mammary tumors while
malignant cells from mammary tumors display a different metastatic pattern compared to human
breast cancer cells [163].

Further, there are well-characterized bioenergetic inter-species differences [164] as well as
differences at the level of regulation of endocrine function [165]. In the latter case, the role of the leptin
system is critical [165] while it is widely known that leptin signalling influences AMPK activity [166].
Besides, there has been reported an interplay among leptin and PPARγ [167,168]. Overall, all these
issues should be seriously taken into consideration when mouse models are employed to study the
effects of metformin or pioglitazone on cancer biology.

3. Conclusions and Future Perspectives

The aforementioned “atypical” antitumorigenic agents would not displace classical chemotherapy
regimens but they could possibly augment their efficacy at as low doses as possible, by virtue of new
combinational schemes. In addition, many of them exhibit chemopreventive value. The data obtained
by clinical studies so far are very encouraging towards this direction. These non-antineoplastic
drugs should not been considered as “novel” antitumoral compounds since most of them have been
introduced within the market for more than a decade. Consequently, a multi-year clinical experience
has been obtained regarding their use; at least dosing and mode of administration for their current
therapeutic index. From this point of view, they don’t belong to the same category with hundreds of
synthetic or physically isolated compounds which are daily evaluated for their antitumor activity with
no former knowledge by clinicians. Further, since these drugs exhibit potent dual therapeutic indices,
proper dosing/administration schedule could achieve multiple therapeutic benefits in the exhausted
organism of cancer patients (cancer cachexia) which can’t be overloaded with pharmacological agents.
Hence, their potent future use in oncology seems quite advantageous. Hopefully, the above-mentioned
agents could alter the status quo of cancer therapeutics. This is consistent with the fact that drug
repurposing is an emerging concept.

Inarguably, more phase II and phase III clinical studies are needed to assess the anti-cancer
properties of metformin and its applicability at the clinical setting far beyond the prevention of
breast/colorectal cancer as well as to extirpate any doubts regarding the double-edged sword role
of pioglitazone in cancer. The completion of several ongoing clinical studies (e.g. NCT01627067 and
NCT00780234) is much-awaited.

The major goal is the design of therapeutic schemes with maximization of the efficacy and
minimization of the adverse effects. Researchers and clinicians should always bear in mind that the
clinical goal is a reasonable benefit-hazard ratio. Experimentally, pharmaceutical compounds could be
considered as molecular “probes” revealing a perplexed cellular microworld which can be molecularly
manipulated by them. At the clinical level, they could possibly control pathological processes including
tumorigenesis and target their root causes. The experimental results from pharmacological intervention
in animals should be extrapolated to humans with great caution. Exploiting the already available
knowledge of approved non-antineoplastic drugs against cancer could save precious time from bench
to bedside and pave the road for alternative efficacious medical practices.
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