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ABSTRACT: Disturbance of the thyroid hormone homeostasis A
has been associated with adverse health effects such as goiters and LV \
impaired mental development in humans and thyroid tumors in

rats. In vitro and in silico methods for predicting the effects of ¢ L O

small molecules on thyroid hormone homeostasis are currently °j©\k‘\0/‘|:(>

being explored as alternatives to animal experiments, but are still in ”(:( C 3
an early stage of development. The aim of this work was the e

development of a battery of in silico models for a set of targets machine learning

involved in molecular initiating events of thyroid hormone models l‘
homeostasis: deiodinases 1, 2, and 3, thyroid peroxidase (TPO),

thyroid hormone receptor (TR), sodium/iodide symporter, 9 MIEs of thyroid

thyrotropin-releasing hormone receptor, and thyroid-stimulating hormone homeostasis

hormone receptor. The training data sets were compiled from the

ToxCast database and related scientific literature. Classical statistical approaches as well as several machine learning methods
(including random forest, support vector machine, and neural networks) were explored in combination with three data balancing
techniques. The models were trained on molecular descriptors and fingerprints and evaluated on holdout data. Furthermore, multi-
task neural networks combining several end points were investigated as a possible way to improve the performance of models for
which the experimental data available for model training are limited. Classifiers for TPO and TR performed particularly well, with F1
scores of 0.83 and 0.81 on the holdout data set, respectively. Models for the other studied targets yielded F1 scores of up to 0.77. An
in-depth analysis of the reliability of predictions was performed for the most relevant models. All data sets used in this work for
model development and validation are available in the Supporting Information.

B INTRODUCTION thyroid gland.'"> Thyroid peroxidase (TPO), a heme
containing peroxidase located at the apical membrane of the
thyrocytes, catalyzes the iodination as well as the coupling of
tyrosine residues to thyroglobulin to form tetraiodothyronine
(T4) and, to a lesser extent, the more active form
trilodothyronine (T3). Deiodinases (DIO), a group of
selenocysteine-containing enzymes, regulate thyroid hormone
signaling through the deiodination of thyroid hormones,
resulting in the formation of thyroid hormone metabolites
with differing activity. DIO1 not only plays an important role
in systemic T3 production in the thyroid but also in recycling
iodide from thyroid hormone metabolites in excreting organs
like the liver and kidney. DIO2 and DIO3 regulate local
thyroid hormone signaling in peripheral tissue through

Thyroid hormones regulate physiological processes such as
basal metabolism and the growth and development of the
pituitary gland, heart, liver, bone, and brain." Disturbances of
the thyroid hormone homeostasis have been linked to goiters,
hypothyroidism, and impaired mental development in
humans*~® and thyroid tumor formation in rats.”” Thyroid
hormone homeostasis is maintained by a complex system
involving thyroid hormone synthesis, distribution via the
bloodstream, metabolism, elimination, and a negative feedback
loop between the hypothalamic—pituitary—thyroid (HPT)
axis. In brief, the hypothalamus secretes the thyrotropin-
releasing hormone (TRH), which binds to the thyrotropin-
releasing hormone receptor (TRHR) in the anterior pituitary,
triggering the production and secretion of the thyroid

stimulating hormone (TSH)." TSH binds to the TSH Special Issue: Computational Toxicology
receptor (TSHR) 1?f the 't}%y'roid gland, initiating thyroid Received: July 29, 2020
hormone synthesis. ~ As an initial step of the thyroid hormone Published: November 13, 2020

synthesis, the sodium iodide symporter (NIS), an intrinsic
membrane transporter located at the basolateral membrane of
thyrocytes, mediates the active transport of iodide into the
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activation (DIO2) and inactivation (DIO3) of thyroid
hormones. DIO2-expressing tissues include the pituitary
gland, skeletal muscle, bone, brown adipose tissue, and the
thyroid, while DIO3 is mainly present in placental tissue and
the developing embryo as well as in neurons in the brain."
The transcription of thyroid hormone-regulated genes is
initiated through the binding of thyroid hormones (T3 in
particular) to thyroid hormone receptors (TR). Upon
hormone binding, the TR—thyroid hormone complex trans-
locates into the nucleus and interacts with response elements
on the DNA, leading to the transcription of thyroid hormone-
regulated genes.'*

Chemicals have been reported to disturb the HPT axis
through a variety of mechanisms. In the context of regulations
(EU) no. 528/2012 and (EC) no. 1107/2009, the European
Food Safety Authority published a guideline for the
identification of endocrine disrupting compounds. This
guideline defines scientific criteria for the determination of
endocrine-disrupting properties of chemicals," leading to an
increased need for methods to detect endocrine-mediated
effects.

The Organization for Economic Co-operation and Develop-
ment (OECD) proposes a tiered approach for the evaluation
of potential endocrine disruptors using all existing toxicological
data. Level 1 of this tiered approach involves physical and
chemical property analysis, read-across, quantitative structure—
activity relationship (QSAR) analysis, and further in silico
methods. Level 2 involves in vitro assays for individual end
points, and Levels 3—5 involve in vivo assays providing
different layers of information.'® In vitro models are available
for many key events related to the HPT axis,"” but none of
these have been validated and accepted by the OECD vyet. In
silico and in vitro methods can guide product development and
avoid higher-tier regulatory testing, hence reducing the need
for in vivo studies in accordance with the 3R principle.'®
Further, in vitro and in silico models can be used to build and
confirm adverse outcome pathways (AOPs); multiple HPT-
axis-related AOPs are already available at
https://aopwiki.org/.19 AOPs can serve as guidance for
integrated testing and assessment strategies and enable the
integration of in vivo and in vitro data.

A variety of in vitro methods for the evaluation of end points
involved in thyroid hormone homeostasis have been reported
in the scientific literature. Moreover, the Endocrine Disruptor
Screening Program of the United States Environmental
Protection Agency (U.S. EPA) has started high-throughput
in vitro assays for key events in the regulation of thyroid
hormone homeostasis and has fed their testing results into the
Toxicity Forecaster (ToxCast) database.”” Many of these high-
throughput assays show high rates of positive outcomes. These
are in part related to nonspecific effects such as cytotoxicity,
protein synthesis inhibition, nonspecific enzyme inhibition,
and others. For this reason, any compounds reported as active
by these assays are generally subjected to testing in orthogonal
assays.

In vitro data have been utilized to develop in silico models.
For example, Rosenberg et al.*! have developed QSAR models
for predicting the interaction of substances with the TPO
based on data obtained within ToxCast phase 1 and phase 2
(consisting of primarily pesticides and chemicals of research
and regulatory interest) as well as E1K (such as chemicals of
interest to the EPA’s Endocrine Disruption Screening
Program). Rosenberg et al. first built a model on the 1126
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chemicals in the ToxCast phase 1 and 2 data sets and tested it
on the ToxCast E1K data set (containing 771 compounds that
are not included in the ToxCast phase 1 and 2 data sets), on
which it obtained a balanced accuracy of 85%. In addition, the
authors generated a classifier on the combined data set. This
classifier obtained an averaged balanced accuracy of 83%
during a five-time two-fold stratified cross-validation. Several
QSAR models for predicting the binding affinity of small
molecules to the TR have also been reported.”*™>*

The aim of this study was the development of a battery of
machine learning models for the prediction of interactions of
small molecules with proteins involved in molecular initiating
events (MIEs) of thyroid hormone homeostasis, including the
three DIOs (DIO1, DIO2, and DIO3), TPO, TR, NIS, TRHR,
and TSHR. In addition to logistic regression (LR), random
forest (RF), gradient boosting (XGB), support vector machine
(SVM), and neural networks (NN) were explored as well as
strategies for the generation of multi-task models.

The in silico approaches presented in this work could
provide guidance in the assessment of the safety profiles of
small molecules during early development phases. The models
could also prove useful in mode of action prediction for
endocrine disruptors.

B MATERIALS AND METHODS

Data Sets. For DIO1, TPO, TR, NIS, TRHR, and TSHR, data
sets with measured binary assay outcomes (“active”, “inactive”) were
obtained from the ToxCast database®® (Figure 1; Table 1). All these
data sets have in common that they include at least 50 active
compounds after data processing (see below for details on the data
processing procedure). Binary activity labels were assigned according
to the “hitc” value (“active” if the “hitc” value is one and “inactive” if it
is zero; Table 2). The hitc value is calculated by fitting a curve to
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Figure 1. Overview of the protein families involved in MIEs of
thyroid hormone homeostasis that are investigated in this work.
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Table 2. Overview of the Data Sets Used for In Silico Model Development

target abbreviation assay name

DIO1 NHEERL_MED_hDIOI1_dn

DIO2 DIO?2 inhibition

DIO3 DIO3 inhibition

TPO NCCT_TPO_AUR_dn

TR TOX21_TR_LUC_GH3_Antagonist
NIS NIS_RAIU_inhibition

TRHR TOX21_TRHR_HEK293_Antagonist
TSHRAnt TOX21_TSHR_Antagonist_ratio
TSHRAg TOX21_TSHR_Agonist_ratio

number of
active compounds inactive compounds ratio
109 1610 1:15
178 1551 1:9
183 1545 1:8
256 796 1:3
1251 5091 1:4
5SS 747 1:14
70 6548 1:94
116 6591 1:57
202 6587 1:33

concentration—response data and determining whether the minimum
activity threshold, defined individually for each assay, was reached.”®

For DIO1, TPO, and NIS, the ToxCast database only includes
compounds that were tested in a multiconcentration assay (after they
had previously been tested active in a single-concentration assay).
Therefore, information on inactive compounds (these are the
compounds that were tested negative in the single-concentration
assay) was collected from the scientific literature (note that these
works originate from the same lab as large parts of the ToxCast
database). More specifically, data on 1678 compounds inactive on
DIO1 were collected from Olker et al,”” data on 746 compounds
inactive on TPO were collected from Friedman et al.,*® and data on
663 compounds inactive on NIS were collected from Wang et al.*’

For DIO2 and DIO3, all data used in this work were extracted from
Olker et al. The data are derived with a colorimetric single-
concentration assay measuring the release of iodide from the
hormone substrate (at 200 M concentration). Compounds
inhibiting either deiodinase by at least 50% were then tested at
multiple concentrations in the same assay setup. For the purpose of
this study, binary activity labels were assigned according to the
following rules: Any compounds with inhibition rates in the
multiconcentration assay of 20% or higher were labeled as “active”;
all other compounds, including those showing <50% inhibition in the
single-concentration assay, were labeled as “inactive”.

The compounds tested in the assays for the three DIOs, TPO, TR,
NIS, TRHR, and TSHR are part of the Tox21 (Toxicology in the 21st
Century program) and ToxCast (EPA’s Toxicity Forecaster) projects.
The Tox21 program is a collaboration between United States
government agencies to develop high-throughput assays for the
determination of adverse effects of small molecules on human health.
The Tox21 library contains over 9000 substances, covering
commercial chemicals, pesticides, food additives, and medical
compounds. The ToxCast project is run by the U.S. EPA and has
screened around 4500 substances in more than 700 high-throughput
assays so far. The substances screened in the ToxCast project include
not only a high number of pesticides but also food additives,
pharmaceutical compounds, and cosmetics.’® The ToxCast com-
pound library has been built incrementally, by adding new subsets of
compounds in each phase. For the assays considered in this work,
different subsets of the ToxCast data sets or the complete Tox21
compounds library were tested in each assay (Table 1; see also the
“Compound library” column in the Supporting Information Excel
file).

The ToxCast database provides information (flags; see Table S1 for
details) that can help in the identification of potentially false-positive
and false-negative assay outcomes. For the seven data sets collected
from the ToxCast database, data points tagged with any flag that
indicate a potential quality issue were filtered out.

The results of confirmatory assays for TR and TSHR are also
included in the ToxCast database and were used for refining the
corresponding data sets with the following procedure: For the
compounds tested in the confirmatory assay of TR (“TOX21 TR -
LUC_GH3_Antagonist_Followup”),®" the activity labels of the initial
data set were corrected with the confirmatory assay information. For
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the TSHR end point, any compounds tested positive in an assay setup
that lacks the TSHR reporter (“TOX21 TSHR wt ratio”) were
removed from the data (as positive results in this assay indicate that a
compound’s activity is not caused by a specific interaction with the
TSHR; Figure 2; Table 3).

—
— @@ 0
Raw data from
ToxCast database and
publications
-

!

Correct activity labels for
TR and TSHR data with
information from
confirmatory assays

Processed
data sets

i

Process data:

Filter compounds that
have any flag set in
the ToxCast database

- Collect SMILES for
compounds in the data sets

- Standardize structures

- Remove duplicate structures
with conflicting labels

= =

Figure 2. Data processing workflow from the raw data to the final
processed data sets used for modeling.

Table 3. Number of Compounds for Each Class at Different
Steps in the Data Processing Workflow

number of compounds

after filtering of
compounds with

processed data sets
used for model

raw data any ToxCast flag development
end point active inactive active inactive active inactive
DIO1 136 1683 119 1683 109 1610
DIO2 194 1625 - - 178 1551
DIO3 194 1625 -4 -4 183 1545
TPO 489 830 264 810 256 796
TR 2376 5929 1354 5§74 1251 5091
NIS 282 756 S5 756 S5 747
TRHR 317 7554 81 7161 70 6548
TSHRAnt 336 7535 116 7206 116 6591
TSHRAg 489 7382 222 7192 202 6587

“Data not in the ToxCast database - no flag filtering step.

A “global thyroid toxicity” data set was generated by merging the
nine data sets (see section Structure Preparation for details). This
data set as well as the data source of each data point and the assay
setup on which each compound was tested are provided as Supporting
Information (“Complete data set” Excel sheet). Two complementary
Excel sheets in the Supporting Information file report the data points
filtered out due to a ToxCast flag (“Flag filtered compounds” Excel
sheet) and the raw and standardized SMILES with the standardization
steps applied on each compound (“Raw and standardized SMILES”
Excel sheet).

The DrugBank,’® containing a total of 11,355 approved,
experimental, or withdrawn drugs, served as a reference data set to

https://dx.doi.org/10.1021/acs.chemrestox.0c00304
Chem. Res. Toxicol. 2021, 34, 396—411
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Table 4. Overview of the Criteria Employed for Filtering Compounds for Cytotoxicity and of Resulting Data Set Compositions

number of compounds after
filtering cytotoxicity

end point data source cytotoxicity filter active inactive
DIO1 ToxCast database Z-score > 3 17 1610
DIO2 No data - - -
DIO3 No data - - -
TPO Friedman et al.** selectivity value > 1 188 796
TR ToxCast database TOX21_TR_LUC_GH3_Antagonist_viability hitc value = 1 422 5072
NIS Wang et al.”’ Hit2 value = 0 31 747
TRHR ToxCast database Z-score > 3 S 6552
TSHRAnt ToxCast database Z-score > 3 6593
TSHRAg ToxCast database Z-score > 3 41 6590

represent the drug-like chemical space. The EU Coslng database,>
containing 1089 compounds, was utilized for the representation of the
chemical space of cosmetic substances. Herbicides, insecticides, and
fungicides were represented by all 522 compounds in the ChEMBL
database®® that have a mechanism of action classification assigned
according to the Fungicide Resistance Action Committee (FRAC),
Herbicide Resistance Action Committee (HRAC), or Insecticide
Resistance Action Committee (IRAC) systems.

Data Sets Filtered for Cytotoxicity and Nonspecificity. In an
attempt to further increase the quality of the data sets utilized for
model development, any compound for which there was any data
available suggesting that its measured activity could be related to
cytotoxicity, the inhibition of cell growth or multiplication, or
nonspecific protein inhibition was removed from the data sets. For the
end points, for which these types of interference have been specifically
studied and published (i.e., TPO, TR and NIS), the information was
collected from the related publications (Table 4). For DIO1, TRHR,
TSHRAnt, and TSHRAg, the Z-score from the ToxCast database,
based on the ACy, of the assay of interest and of a cytotoxicity assay,
was used for determining cytotoxicity. For DIO2 and DIO3, no
information on the cytotoxicity of the compounds tested in these
assays was identified. In the case of TPO, the selectivity value
calculated by Friedman et al.>® served as the criterion for identifying
cytotoxic compounds and nonspecific inhibitors. Any compounds
with a selectivity value below 1.0 were discarded. In the case of TR,
cytotoxicity data were collected from the viability assay provided as
part of the ToxCast database (assay “TOX21 TR LUC_GH3 An-
tagonist_viability”). For NIS, the outcome of a cytotoxicity filter was
obtained from the work of Wang et al.*’ In the case of DIO1, TRHR,
and two TSHR end points, compounds with a Z-score from the
ToxCast database lower than 3.0 were removed. With this
information, data sets containing only compounds that did not
show any interference were compiled for DIO1, TPO, TR, NIS,
TRHR, TSHRAnt, and TSHRAg. This data set is also provided as
Supporting Information (“Filtered data set” Excel sheet). In the
Supporting Information, filtered out compounds in this data set are
tagged with the label “filtered out data point”, and the data source for
the filtering is indicated as well.

Software and Hardware Setup. All calculations were performed
on Linux workstations running Red Hat Enterprise 7.8 and equipped
with Intel Xeon Gold 6136 processors (3.00 GHz) and 64 GB of main
memory.

KNIME®® was used for the preparation of the structures (with the
ChemAxon Standardizer’® and RDKit Canon SMILES®” nodes) and
descriptor calculation (RDKit Count-Based Fingerprint and RDKit
Descriptor calculation nodes). The principal component analysis
(PCA) as well as model training and evaluation were performed in
Python with the packages scikit-learn®® and Keras.*

Structure Preparation. The molecules tested in one or several of
the nine assays (including those assays not included in the ToxCast
database) originate from one or more chemical libraries compiled
within the ToxCast program (phases 1, 2, and 3). The SMILES
strings for these compounds were obtained from the ToxCast
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database, where available. In the absence of such information, the
NCI/CADD Chemical Identifier Resolver'® was queried with the
CAS number instead. Ultimately, for compounds without a match, the
“RDKit from IUPAC” node of RDKitin KNIME was used to try to
derive a structure from the chemical name.

All structures in the modeling data sets were processed and
standardized with the ChemAxon Standardizer node in KNIME.
More specifically, the tool was used for removing solvents, stripping
salts, detecting and annotating aromaticity, removing stereochemical
information, neutralizing charges, mesomerizing structures, and
removing small fragments. Canonical SMILES were derived from
the standardized molecules with RDKit (with default parameters) and
used for deduplication. Duplicate compounds with conflicting activity
labels for an assay were removed. The global thyroid toxicity data set,
generated by merging the nine end-point-specific data sets based on
the previously generated canonical SMILES, consists of 8001
substances.

Descriptor Calculation. Count-based Morgan fingerprints with a
radius of 2 bonds and a length of 2048 bits were calculated with the
“RDKit Count-Based Fingerprint” node of RDKit in KNIME. In
addition, all 119 one-dimensional (1D) and two-dimensional (2D)
physicochemical property descriptors implemented in the “RDKit
Descriptor Calculation” node were computed, which describe, among
other properties, the number of particular types of atoms, the
numbers of bonds and rings in a molecule, as well as polarity and
solubility. Prior to model building, the 1D and 2D descriptors were
subjected to Z-score normalization using the “Normalizer” node in
KNIME. Descriptors for which no variance was observed for the
global thyroid data set were removed.

Chemical Space Analysis. Dimensionality reduction was
performed on the global thyroid data set with the PCA
implementation of scikit-learn, based on a subset of 23 physically
meaningful and interpretable molecular descriptors generated with
RDKit (Table S2).

Machine Learning Methods. Five machine learning approaches
for classification were explored: LR, RF, XGB, SVM, and NN. LR
classification models employ a mathematical function that is a linear
combination of one or more independent variables. RF is an ensemble
learning method that utilizes a multitude of decision trees for making
predictions. The XGB algorithm makes decisions based on an
ensemble of decision trees, too, with the special feature that each new
tree is designed to correct the mistakes made by the previous one.
SVMs project the features into a hyperplane that maximizes the
distance to each class point in space and which then acts as the
decision boundary. Multilayer perceptron NN are formed by nodes,
or so-called “neurons”, located in different interconnected layers.
Information is transferred back and forth between layers to update the
functions in the neurons, with the objective of minimizing the error
between the correct class and the prediction.

The NN models were generated with Keras, and all other types of
models were implemented with scikit-learn in Python. The
optimization of hyperparameters (Table S) was performed during a
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grid search within a 10-fold cross-validation framework. The F1 score
was used as the optimization criterion.

Table 5. Overview of Hyperparameters Applied for Each
Method

method hyperparameters” values”
logistic regression C 0.7,0.8, 1
random forest number of estimators 500, 1000
min_samples_leaf 1,2
gradient boosting estimators 500, 1000
support vector C 0.01, 1, 10
machine gamma scale, auto
neural network number of layers 3
neurons (4000, 1000, 1), (1000,
500, 1)
dropout rate 0, 0.3
learning rate 0.001, 0.0001

“Hyperparameters for which the default values were preserved are not
reported. YA grid search was conducted to identify the optimum value
for parameters for which more than one value is reported in this table;
otherwise, the value was fixed.

Generation and Evaluation of Single-Task Models. To
address data imbalance (excess of inactive compounds in this case),
weight balancing, undersampling, and oversampling techniques were
explored.

For the weight balancing approach, balanced weights for the active
and inactive classes were calculated with scikit-learn and employed in
combination with the ML methods: RF, LR, SVM, and NN. For XGB,
balanced weights were not used, as the method itself is designed to
deal with class imbalance by successively constructing training sets
with misclassified examples.

An inner 10-fold cross-validation (CV) was applied for hyper-
parameter selection, and an outer 10-fold CV was applied for
performance assessment.

For the undersampling approach, the following workflow was
developed, which generates an ensemble of models built on different
training sets (Figure 3):

Input molecules

}

100 random splits
(with replacement)

80% training set Q—l—f 20% test set

100 models with
different parameters

Undersampling l
Balanced data set Group models based
All active compounds and part on hyperparameters
of the inactive compounds
‘ Evaluate model on l
test set

10-fold cross-validation

Ensemble of models
with best score S
Hyperparameter selection \ S =mean F1 score * No. of models
for ML methods AN 4
(LR, RF, XGB, SVM and NN)

Best Model —/

Figure 3. Workflow for generating and testing models based on
training sets balanced by undersampling. The hyperparameters of the
ML models are optimized during a grid search within a 10-fold CV
framework. The performance of the resulting best model is evaluated
on the test set. The result of the workflow is an ensemble of models
with optimized hyperparameters for each method.
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(1) Preparation of the data sets: The data were divided into a
training set (80%) and a test set (20%). To evade class
imbalance, the number of inactive compounds (majority class)
in the training set was reduced by random selection, while all
active compounds were retained. For data sets with an active-
to-inactive ratio of <1:10, the ratio was changed to 2:3. For
data sets with an active-to-inactive ratio >1:10, the ratio was
changed to 1:2 (Table 6).

Table 6. Composition of the Training Sets after
Undersampling

number of
active inactive ratio of active and inactive
end point compounds compounds compounds
DIO1 87 147 1:2
DIO2 142 213 2:3
DIO3 146 219 2:3
TPO 208 307 2:3
TR 1001 1501 2:3
NIS 44 88 1:2
TRHR 56 112 1:2
TSHRAnt 93 186 1:2
TSHRAg 162 324 1:2

(2) Hyperparameter optimization: Hyperparameter optimization
was performed on the resampled data sets within a 10-fold CV
framework. The 10 models obtained from the CV were
grouped based on the selected hyperparameter values to
calculate the mean F1 score for each hyperparameter set. The
best model of the group with the highest mean value was
selected and subsequently evaluated on the test set.

(3) Generation of the final ensemble of models: By repeating this
workflow 100 times, an ensemble of 100 models, trained on
different balanced data sets, was obtained for each method. In
order to determine the best overall hyperparameters for the
end point classification problem and ensure model robustness,
the 100 models were grouped according to their hyper-
parameter values, and the best ensemble of models was chosen
as the predictive model. The selection of the best ensemble is
based on a score calculated as the mean F1 score plus the
number of models in the ensemble.

For the oversampling approach, the SMOTENC*" method was
employed. Molecular fingerprints were defined as categorical features,
and the “sampling strategy” parameter, which defines the resulting
ratio between the minority and majority class, was set to 0.7. The RF,
LR, XGB, SVM, and NN models were trained on these oversampled
data sets, with an inner 10-fold CV for hyperparameter selection and
an outer 10-fold CV for performance estimation.

Generation and Evaluation of Multi-task Models. A multi-
task model was generated based on the global thyroid toxicity data set.
Additional three multi-task models were generated from subsets of the
global data set that include only a subset of end points. All models
were derived with multilayer perceptron NNs with a shared
architecture for all tasks. Only the output layer is independent for
each learned task. Missing values in the training set (related to the fact
that not all compounds have been tested in all assays) were not
considered during model training and evaluation by masking (i.e.,
ignoring) them during the loss and performance calculation. Class
imbalance was addressed by balancing the class weights for the loss
calculation based on the active-to-inactive ratio in the training set. A
workflow similar to the one used for the single-task models (but
skipping the undersampling step) was employed to derive an
ensemble of models (Figure 3). A grid search for hyperparameter
optimization was carried out within a 10-fold CV framework (Table
7), and four combinations of assay end points were evaluated. The
combinations covered two to nine end points, starting with TPO and
TR, and incrementally adding (i) the three DIOs, (ii) NIS and
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Table 7. Overview of Combinations of Hyperparameters
Explored

number of
layers parameter values”
4 neurons (8000, 4000, 1000, X), (4000, 2000, 500, X)
dropout rate 0, 0.3
regularizer 0.000001
rate
learning rate  0.0001
5 neurons (9000, 4000, 1000, 100, X), (5000, 2000,
1000, 100, X)
regularizer 0, 0.0000001
rate
learning rate  0.0001

““X” in the number of neurons denotes the number of end points
employed for each multi-task model (i.e., number of neurons in the
output layer).

TRHR, and (iii) both TSHR end points. In the case of the multi-task
models, the performance was evaluated and optimized on the mean
F1 score among all end points included in the model.

Metrics for Model Performance Evaluation. Six different
metrics were employed for the evaluation of model performance:

(1) Precision: measures the proportion of true positive predictions
out of all positive predictions (eq 2).

(2) Recall: measures the proportion of correctly identified positive
samples (eq 3).

(3) F1 score: is the harmonic mean of precision and recall (eq 4).
It is robust against data imbalance.

(4) Matthews correlation coefficient (MCC): considers all four

classes of predictions (true positive, true negative, false

positive, and false negative predictions; eq 5). MCC values
range from —1 to +1, with a value of +1 indicating perfect
prediction. The metric is robust against data imbalance.

Balanced accuracy: quantifies the average recall obtained for

each class and, therefore, is robust against data imbalance (eq

6).

(6) Area under the receiver operating curve (AUC): is a measure
of the ability of a model to distinguish between positive and
negative samples. The AUC is calculated as the bidimensional
area under the receiver operating curve (eq 7).

TP
TP + FP

()

precision =

()

TP
recall = ——
TP + FN (3)
precision X recall
Flscore =2 X —mm———
precision + recall (4)
MCC = TP X TN — FP X FN
J(TP + EP)(TP + EN)(TN + FP)(TN + FN)
(%)
balanced accuracy = (% i %)
R 2 (6)
1
AUC = Ti x
x=0 FPR(x) (7)

where FN is false negatives, FP is false positives, TN is true negatives,
TP is true positives, FPR is false positive rate, and TPR is true positive
rate.

B RESULTS AND DISCUSSION

In this study, five machine learning methods (RF, LR, XGB,
SVM, and NN) were employed with the aim to develop
predictive classifiers for nine end points involved in thyroid
hormone homeostasis: DIO1, DIO2, DIO3, TPO, TR, NIS,
TRHR, TSHRAnt, and TSHRAg. Because of a lack of active
compounds across all training sets (the active class represents
only 1 to 32% of the training data), a weight balancing
approach, an undersampling method, and an oversampling
strategy were explored. In addition, the use of multi-task
models was investigated as a possible avenue to obtain better
performing and more widely applicable in silico models.

Chemical Space. The chemical space represented by the
training data defines the applicability domain of a model. An
in-depth analysis of the composition and properties of the
ToxCast and Tox21 data sets was conducted by Richard et
al.*° In their work, Richard et al. describe how the chemicals
included in the ToxCast data sets were selected (e.g,
compounds with available in vivo toxicity results, donated by
pharmaceutical companies, or known endocrine disruptors)
and how this selection yielded a high chemical structure
diversity and a broad chemical property coverage.

Table 8. Percentage of Compounds in the Reference Data Sets Covered by a Compound in the End-Point-Specific Data Sets at

the Given Tanimoto Similarity Thresholds

end point
Tanimoto similarity DIO1 DIO2 DIO3 TPO TR NIS TRHR TSHRAnt TSHRAg
% coverage pesticides 1.0. 57 57 57 47 56 35 65 65 70
>0.8 58 58 58 48 57 36 66 65 71
>0.6 67 68 68 58 68 47 76 76 79
>0.4 84 84 84 78 85 68 87 89 90
>0.2 99 99 99 98 929 98 99 99 99
% coverage cosmetics 1.0 16 16 16 9 37 7 39 40 39
>0.8 20 20 20 11 41 9 43 44 43
>0.6 34 34 34 19 58 17 59 60 59
>0.4 69 70 70 52 98 49 86 86 86
>0.2 95 95 95 92 98 92 98 98 98
% coverage drugs 1.0 S S S 3 22 2 20 20 20
>0.8 S S 3 24 3 22 22 22
>0.6 10 10 10 7 37 6 33 34 33
>0.4 28 29 29 22 62 20 60 60 60
>0.2 95 95 95 93 98 91 98 98 98
402 https://dx.doi.org/10.1021/acs.chemrestox.0c00304
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Figure 4. PCA based on a selection of interpretable molecular descriptors generated with the RDXKit for the end-point-specific data sets. Active
compounds are colored in red and inactive compounds in purple. The shift of the active compounds toward higher values on the y-axis is mainly

due to a high number of aromatic rings.

In order to determine the relevance of the data employed in
this study, we compared the chemical space covered by our
global thyroid toxicity data set (containing measured data on
the nine modeled thyroid end points for 8001 compounds) as
well as the end-point-specific data sets to the chemical space
covered by pesticides (all compounds in ChEMBL that are
linked with the HRAC, IRAC or FRAC systems), cosmetic
substances (from the EU Coslng database), and drugs (from
DrugBank). We found that the global thyroid toxicity data set
covers pesticides (coverage 78%) better than cosmetic
substances (39%) and drugs (25%). Analysis of the end-
point-specific data sets shows that at least 47% of all
agrochemicals are represented by training set compounds
with a Tanimoto coefficient (based on Morgan2 fingerprints)
of 0.6 or higher (Table 8). For cosmetics and drugs, this
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percentage is only 17% and 6%, respectively. Only in the case
of TR, TRHR, and both TSHR end points, the coverage of
cosmetics and drugs is higher (58% and 33%; at a similarity
threshold of 0.6). The higher coverage is related to the fact that
the size of the training sets for these end points is much larger
and that the compounds tested in these assays include the
Tox21 compound library, which has a higher percentage of
cosmetics and drugs.

PCA scatter plots derived from the global thyroid toxicity
data set using physically meaningful and interpretable
molecular descriptors (Figure 4) show a strong overlap of
the areas most densely populated by the active and inactive
compounds of any of the target-specific subsets. A small
number of outliers is observed for any of the data sets. These
are mostly macrocyclic molecules or large compounds with a
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high number of rings. For most end points, the active
compounds tend to have high values in the second component
of the PCA (y-axis), which are primarily a result of high
numbers of aromatic rings.

Molecular diversity within the end-point-specific data sets
was analyzed with plots of the pairwise similarities (based on
atom-pair fingerprints)** among (a) all pairs of active
compounds, (b) all pairs of inactive compounds, and (c) all
pairs consisting of one active and one inactive compound. The
distribution of similarities among these three sets of
compounds is comparable and shows a tailing toward small
similarities (examples for DIO1 and TPO are shown in Figure
S and are representative of all targets; the figures for all other

DIO1 TPO

4 =—Active-to-active compound similarity
|\ —Inactive-to-inactive compound similarity
6 \ — Active-to-inactive compound similarity

0

0.0

0.2 0.4 0.6
Tanimoto similarity

0.8 1.0 0.0 0.2 0.4 0.6

Tanimoto similarity

0.8 1.0

Figure S. Examples of the distribution of pairwise Tanimoto
similarities based on atom-pair fingerprints for three types of
compound pairs: (a) active-to-active, (b) inactive-to-inactive, and
(c) active-to-inactive. The distributions for all other end-point-specific
data sets are provided in Figure SI.

investigated targets are provided in Figure S1). This analysis
confirms the high molecular diversity of the compounds
included in the data sets, as it was also concluded by Richard et
al.’® Note that the distribution of pairwise similarities among
the active compounds is comparable to the distribution of
pairwise similarities between the active and inactive com-
pounds.

To further analyze the chemical diversity of the data sets, we
calculated the number of distinct Murcko scaffolds in each
end-point-specific data set and in the global thyroid toxicity
data set. Additionally, also the number of compounds without
a Murcko scaffold (i.e., without a ring system) and the number
of compounds with a unique scaffold (defined as the sum of
compounds with a unique Murcko scaffold and compounds
without Murcko scaffold) were calculated (Table 9). From this
analysis, it can be seen that there is a high number of distinct
scaffolds in the data sets (between 330 distinct Murcko
scaffolds for NIS and 2327 for the global data set) and that
around half of the compounds have a unique scaffold (between
45% for the global data set and 61% for the NIS data set).

The relationship between specific chemical groups and
active compounds for the different assays was analyzed by
searching the list “SMARTS Patterns for Functional Group
Classification” distributed by Open Babel,** which contains
309 SMARTS patterns, in the respective inactive and active
compounds of each data set. The number of hits per class was
analyzed, and a ratio, defined as the number of hits in active
compounds divided by the number of hits in inactive
compounds, was calculated. Only functional groups with ratios
>1.7 were considered. The total number of hits was also taken
into account, and only functional groups found in at least six
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Table 9. Number of Distinct Murcko Scaffolds and
Compounds without a Ring System

percentage of

number of distinct number of compounds unique
end point Murcko scaffolds  without ring systems scaffolds”
DIO1 554 45§ 53%
DIO2 557 456 52%
DIO3 557 456 52%
TPO 418 231 55%
TR 1877 1608 48%
NIS 330 202 61%
TRHR 1810 1712 47%
TSHRAnt 1834 1733 47%
TSHRAg 1876 1728 47%
global data 2327 1871 45%

set

“Unique scaffolds are defined as the sum of compounds with unique
Murcko scaffold and compounds without Murcko scaffold.

compounds were regarded. Following these criteria, only for
the TPO and TR end points, a relationship between some
functional groups and active compounds could be established.
Compared to inactive compounds, a high proportion of active
compounds for TPO have at least one primary aromatic amine,
phenol, sulfenic derivative, enol, thiourea, vinylogous acid, and
phosphoric acid derivative (Table 10). Among the compounds
active on TR organometallic compounds, diarylthioethers and
enamine groups are over-represented.

Single-Task Classification Models. For each of the nine
thyroid-related end points, the data obtained from the ToxCast
database and relevant publications were employed for training
and evaluation of single-task classification models (see
Methods for details). The models were developed based on
molecular fingerprints and physicochemical descriptors. All
possible combinations of the five ML algorithms and three data
balancing techniques were explored.

The performance of the models based on any of the five ML
algorithms was in general very similar. For example, the
maximum difference in the F1 scores observed among ML
algorithms in combination with the oversampling approach
was no higher than 0.10 (maximum difference observed for the
NIS end point, with F1 scores of 0.70 and 0.60 for the LR and
RF models, respectively).

The impact of the data balancing approach on model
performance was also, in general, small. The largest differences
in the mean F1 scores for different balancing approaches
among the ML models for the same end point were between
0.02 (for TR) and 0.19 (for TRHR) (see Figure 6 for a
comparison of the F1 scores obtained by the RF models; the
figures for all other models are provided in Figure S2).
However, a tendency for ML models to perform best when
trained on oversampled data was observed. The maximum
difference in F1 scores between a ML method trained on
oversampled data and one trained on undersampled or
imbalanced data (using weight balancing) was —0.23 (for the
TRHR model with SVM in combination with undersampling).
Only in one case, which is the RF model for NIS, the model
based on undersampled data performed favorably to the model
based on oversampled data (F1 score 0.66 vs 0.60). The
biggest differences related to data sampling were observed for
the TRHR and the two TSHR end points, for which the
undersampling approach yielded up to 0.24 lower mean F1
scores than the other two sampling approaches. The reason for
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Table 10. Number of Hits of Functional Groups in the Inactive and Active Compounds of the Data Sets

SMARTS hits for the functional groups (inactive:active compounds)®

end primary aromatic organometallic sulfenic
point amine compounds phenol derivative
TPO 20:40 - 48:95 6:15
TR - 7:27 - -

vinylogous phosphoric acid
diarylthioether ~enol enamine thiourea acid derivative
- 1:6 - 1:8 10:20 13:27
9:49 - 7:20 - - -

“Only values with ratios (active/inactive compounds) >1.7 and with at least 6 hits in the active compounds are shown.

F1 score RF

0.90
0.80 I 1
0.70 I [
0.60 I I [
0.50
0.40
0.30

DIO1 DIO2 DIO3  TPO TR NIS  TRHR TSHRAntTSHRAg

mweight balancing  ®oversampling undersampling

Figure 6. Comparison of the mean F1 score obtained with the RF
method in combination with the different data sampling techniques
(weight balancing, oversampling, and undersampling) for the nine
thyroid end points.

this is likely the extreme imbalance of the training sets for these
three end points, with only 1-3% of active compounds.
Undersampling in these cases leads to a substantial loss of
information on inactive compounds, which is otherwise
preserved. However, the gain in performance related to
oversampling comes at the cost of an increased standard
deviation across models trained on different splits of the data.

Because of the overall favorable performance of models
trained on oversampled data, further discussion focuses on
these models. Unless stated otherwise, all results refer to mean
values obtained by 10-fold cross-validation. Although the main
text only discusses the F1 score results, MCC values, balanced
accuracies, and AUC values are also provided in Table 11.

The classification models derived for DIO1, DIO2, and
DIO3 all showed comparable performance, with mean F1
scores ranging from 0.67 to 0.71, depending on the ML
method used (Table 11). Within the individual end points, the
largest difference in F1 scores between ML methods was just
0.04. SVM produced the best model for DIO1 (mean F1 score
of 0.71) and DIO2 (mean F1 score of 0.71), whereas NN
worked best for DIO3 (mean F1 score of 0.71).

The models for the TPO and TR end points yielded mean
F1 scores between 0.77 (for TR with LR and SVM) and 0.83
(for TPO with XGB). The best-performing algorithm for TPO
was XGB (mean F1 score of 0.83), while RF performed best
on the TR data set (mean F1 score of 0.81). For the NIS
models, the mean F1 scores ranged from 0.60 (with RF) to
0.70 (with LR). Linear models (LR and SVM) outperformed
decision trees (RF and XGB) and NNs on this data set, with
up to 0.10 higher F1 scores. The standard deviation of the F1
score among the 10-fold CV models ranges from 0.08 to 0.10
with the different algorithms. The high standard deviation may
be related to an overfitting of models as a result of the low
number of active compounds in the training set (only S5 active
compounds and 747 inactive compounds).
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It should also be considered that the data sets for the DIOs,
TPO, and NIS include data measured in single- and
multiconcentration assays. The class labels for the single-
concentration results were set considering the inhibition cutoff
of 50%, while for the multiconcentration results, the class
labels were derived from a more precise curve fitting on the
concentration—response data (for DIO1, TPO, and NIS) or
from an inhibition cutoff of 50% (for DIO2 and DIO3; see
Materials and Methods for details). The combination of these
two types of data may increase the uncertainty of the models
and result in lower performance. This difference in the cut-offs
for the multiconcentration results may also be the reason why
for DIO2 and DIO3, a higher percentage of active compounds
does not seem to be beneficial to model performance when
compared to DIOI. Although for the latter end point the
number of active compounds is lower, they were identified by
curve fitting instead of the fixed 50% inhibition threshold
applied for DIO2 and DIO3, which may cause a higher
number of false positives. In the case of TPO, the better
performance of the models could be explained, to some extent,
by the fact that the active compounds were also derived from
the concentration—response curve and that the percentage of
active compounds is higher. Similar causes could explain the
performance of the TR models, for which all data was derived
from the multiconcentration assays and which has a higher
percentage of active compounds.

For the TRHR end point, where the number of active
compounds is also small (70 active compounds and 6545
inactive compounds), the standard deviation of the mean F1
score was between 0.08 and 0.12. However, the mean Fl
scores were higher than for NIS and ranged from 0.68 (with
XGB) to 0.77 (with SVM). The mediocre results and the
variability of these models may be caused by the assay design
itself. In this assay, the activity of compounds against this
receptor is derived from the concentration of intracellular
calcium as a marker of GPCR activation (via fluorescence) and
is thus prone to interference, for example, by any alteration of
intracellular calcium or autofluorescence.

The outcomes of the two TSHR assays were predicted with
mean F1 scores ranging from 0.60 (for TSHRAnt with LR) to
0.69 (for TSHRAg with RF). For TSHRAnt, the best results
(mean F1 score of 0.65) were obtained with NN, whereas for
TSHRAg, the best results (mean F1 score of 0.69) were
obtained with RF. An important limitation of the data used for
model development is related to assay technology, which
employs fluorescent antibodies coupled to a second messenger
to derive the activity of the compounds against TSHR.** Since
this second messenger is nonspecific and may be activated via
several pathways, and fluorescence measurements may be
positive due to fluorescent compounds and dyes, the false-
positive rate in the data may be substantial.

Overall, the presented models could contribute to the first
level of the OECD approach for the evaluation of potential
endocrine disruptors, by making available models for an initial
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Table 11. Mean and Standard Deviation of the Performance of Different Methods for All Modeled End Points

end point method F1 score
DIO1 RF 0.68 (+ 0.07)
LR 0.68 (& 0.06)
XGB 0.70 (+ 0.08)
SVM 0.71 (+ 0.07)
NN 0.70 (+ 0.05)
DIO2 RF 0.70 (+ 0.05)
LR 0.67 (£ 0.05)
XGB 0.70 (+ 0.06)
SVM 0.71 (+ 0.04)
NN 0.69 (& 0.05)
DIO3 RF 0.69 (& 0.05)
LR 0.70 (£ 0.05)
XGB 0.69 (% 0.05)
SVM 0.68 (+ 0.04)
NN 0.71 (+ 0.05)
TPO RF 0.81 (& 0.05)
LR 0.80 (+ 0.06)
XGB 0.83 (+ 0.04)
SVM 0.80 (+ 0.05)
NN 0.82 (+ 0.04)
TR RF 0.81 (+ 0.01)
LR 0.77 (+ 0.02)
XGB 0.80 (+ 0.02)
SVM 0.77 (+ 0.04)
NN 0.79 (% 0.01)
NIS RF 0.60 (+ 0.10)
LR 0.70 (+ 0.08)
XGB 0.66 (+ 0.09)
SVM 0.68 (+ 0.08)
NN 0.66 (+ 0.10)
TRHR RF 0.76 (+ 0.10)
LR 0.72 (+ 0.09)
XGB 0.68 (+ 0.08)
SVM 0.77 (+ 0.11)
NN 0.72 (+ 0.12)
TSHRAnt RF 0.62 (£ 0.05)
LR 0.60 (+ 0.06)
XGB 0.63 (+ 0.06)
SVM 0.63 (% 0.06)
NN 0.65 (+ 0.06)
TSHRAg RF 0.69 (+ 0.04)
LR 0.66 (+ 0.06)
XGB 0.67 (+ 0.05)
SVM 0.66 (+ 0.04)
NN 0.68 (+ 0.06)

MCC balanced accuracy AUC
0.41 (+ 0.15) 0.64 (+ 0.06) 0.87 (£ 0.04)
0.37 (+ 0.12) 0.67 (£ 0.07) 0.83 (& 0.08)
0.45 (+ 0.15) 0.66 (+ 0.07) 0.84 (+ 0.05)
0.44 (+ 0.15) 0.68 (+ 0.06) 0.86 (+ 0.04)
0.43 (+ 0.10) 0.67 (+ 0.06) 0.86 (+ 0.08)
0.43 (+ 0.11) 0.66 (+ 0.04) 0.85 (£ 0.06)
0.35 (+ 0.10) 0.67 (£ 0.05) 0.81 (+ 0.05)
0.41 (+ 0.11) 0.67 (+ 0.05) 0.81 (& 0.06)
0.43 (+ 0.09) 0.68 (+ 0.04) 0.84 (+ 0.04)
0.39 (+ 0.10) 0.67 (+ 0.04) 0.82 (% 0.05)
041 (% 0.10) 0.66 (£ 0.05) 0.85 (+ 0.04)
0.39 (+ 0.09) 0.69 (£ 0.04) 0.82 (+ 0.05)
0.40 (+ 0.11) 0.67 (+ 0.05) 0.82 (& 0.06)
0.38 (+ 0.08) 0.66 (£ 0.04) 0.85 (+ 0.04)
0.42 (+ 0.11) 0.68 (+ 0.05) 0.85 (+ 0.06)
0.63 (+ 0.10) 0.79 (£ 0.05) 0.91 (+ 0.04)
0.60 (+ 0.12) 0.80 (+ 0.07) 0.88 (+ 0.05)
0.67 (+ 0.09) 0.82 (+ 0.05) 0.90 (+ 0.04)
0.60 (+ 0.10) 0.80 (£ 0.05) 0.88 (+ 0.05)
0.64 (& 0.08) 0.81 (+ 0.04) 0.90 (+ 0.04)
0.62 (+ 0.03) 0.80 (+ 0.01) 0.92 (+ 0.01)
0.54 (+ 0.04) 0.76 (+ 0.02) 0.87 (+ 0.03)
0.61 (+ 0.04) 0.79 (£ 0.02) 091 (+ 0.02)
0.54 (£ 0.09) 0.75 (+ 0.04) 0.87 (+ 0.05)
0.59 (+ 0.02) 0.77 (& 0.02) 0.89 (+ 0.02)
0.23 (+ 0.20) 0.58 (+ 0.07) 0.86 (+ 0.10)
0.41 (+ 0.16) 0.68 (+ 0.06) 0.86 (+ 0.08)
0.32 (+ 0.19) 0.63 (+ 0.07) 0.82 (+ 0.11)
0.40 (+ 0.15) 0.66 (+ 0.08) 0.84 (+ 0.10)
0.32 (+ 0.20) 0.64 (+ 0.09) 0.81 (+ 0.12)
0.58 (+ 0.17) 0.70 (£ 0.09) 091 (+ 0.05)
0.46 (+ 0.18) 0.69 (+ 0.09) 0.86 (+ 0.07)
0.39 (£ 0.15) 0.66 (+ 0.10) 0.84 (+ 0.14)
0.57 (+ 0.22) 0.73 (+ 0.11) 0.90 (+ 0.03)
0.45 (£ 0.25) 0.69 (£ 0.13) 0.83 (x 0.07)
0.30 (+ 0.13) 0.58 (+ 0.04) 0.87 (% 0.06)
0.22 (+ 0.14) 0.58 (+ 0.04) 0.78 (& 0.09)
0.28 (+ 0.15) 0.60 (£ 0.04) 0.82 (+ 0.06)
0.32 (£ 0.15) 0.59 (+ 0.05) 0.82 (+ 0.07)
0.32 (+ 0.13) 0.62 (+ 0.05) 0.76 (+ 0.08)
0.44 (+ 0.08) 0.63 (+ 0.03) 0.89 (+ 0.03)
0.34 (+ 0.13) 0.62 (+ 0.06) 0.80 (+ 0.06)
0.36 (+ 0.11) 0.63 (+ 0.04) 0.83 (+ 0.04)
0.38 (+ 0.07) 0.62 (+ 0.03) 0.82 (& 0.04)
0.37 (+ 0.11) 0.64 (£ 0.05) 0.79 (+ 0.07)

screen to detect the interaction of small molecules with key
targets related to thyroid hormone homeostasis. Moreover, the
models could help to build or confirm HPT-axis related AOPs.
However, it is important to highlight the intrinsic nature of
the modeled assays. These are high-throughput in vitro assays,
which usually show high rates of (false) positive outcomes due
to interferences, as shown by Paul-Friedman et al.*' for the
case of TR. Therefore, compounds showing activity in these
assays should be tested in orthogonal assays, and the same
principle should be applied to the presented models.
In-Depth Analysis of Model Performance and
Prediction Reliability. Among all end points investigated,
the best models were obtained for TPO and TR. As these well-
performing models will be of primary relevance to inves-
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tigators, we conducted additional analyses with them in order
to gain an in-depth understanding of model performance and
the reliability of predictions. Since all algorithms showed a
similar performance on TPO and TR, the analysis is
exemplified for the RF models in combination with over-
sampling, which obtained a mean F1 score of 0.81 for both end
points during 10-fold CV.

First, we investigated how the distance of the prediction
probability to the decision boundary relates to the reliability of
a prediction. More specifically, we gradually reduced the
coverage of the model by removing compounds from the test
set which are predicted with probabilities close to the decision
threshold, starting with those closest to the boundary (Figure
7). For both the TPO and TR models, the F1 scores increased
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Figure 7. Changes in the F1 score (solid lines) and coverage (dashed
lines), as compounds with predicted probabilities close to the decision
boundary for the RF model of TPO (green) and TR (blue) were
considered out of the applicability domain and removed.

as more compounds close to the decision boundary were
removed, indicating that there was a higher rate of wrong
predictions among compounds closer to the cutoff. We also
investigated the number of compounds that are not covered by
the model, as we increase the minimum distance to the
decision threshold. When excluding around 20% of the test
compounds, the TPO model had an F1 score of 0.86 (+0.05)
and the TR model an F1 score of 0.89 (+0.07). Reducing the
coverage of the model to those compounds predicted with high
confidence could therefore increase the validity of the model.

The similarity of the query compounds to the training data
can be decisive for prediction success. To determine how this
affects model performance, for each compound in the test set,
the (average) Tanimoto similarity of the ECFP fingerprint to
the one, three, and five nearest neighbors in the training set
was calculated. For both the TPO and TR end points, a linear
relationship between the similarity of the compounds and the
F1 score was observed, consistent when considering different
numbers of nearest neighbors (Figure 8). For the TPO model,
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Figure 8. F1 scores as a function of the Tanimoto similarity between
the compounds in the test set and in the training set. The similarity
was calculated based on the ECFP fingerprint between one, three, or
five nearest neighbors.

the F1 score was 0.21 points higher for compounds that are
similar to the training data (Tanimoto similarity higher than
0.8) than for compounds that are not represented by
structurally related molecules in the training data (Tanimoto
similarity lower than 0.2) when considering one nearest
neighbor. For the TR model, this difference was 0.18 points.
Determining the similarity of new compounds to those in the
training sets can therefore help to estimate the reliability of the
predictions.
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Single-Task Models Generated from Filtered Data
Sets. The data modeled so far originate from high-throughput
screening assays and are therefore often error-prone. False
positive outcomes may occur if, for instance, a nonspecific
interaction between a compound and a protein is measured, or
if a compound is falsely perceived as active due to its
cytotoxicity. On the other hand, false negative outcomes may
be caused by the volatility or low solubility of compounds,
which reduces their concentration in the assay sample. In some
cases, they may also be caused by the cytotoxicity of
compounds, as it impedes the identification of a possible
interaction.

Available information about the specificity and cytotoxicity
of the assay outcomes was collected from the ToxCast
database as well as other publications, and the affected
measured data were filtered out from the data sets (see
Materials and Methods for details). After this filtering step,
sufficient amounts of data for model development (i.e., at least
50 active compounds) remained available only for TPO and
TR. Compared to the complete data sets, the filtered data sets
for TPO and TR contain 27% and 66% less active compounds
(total of 68 and 829 active compounds less), respectively. For
TPO, the number of inactive compounds remains the same,
and for TR, it is reduced by only 0.3% (16 compounds). Note
that filtering does not mitigate the problem of false-negative
outcomes related to, for example, compound volatility or
solubility issues.

With the filtered data sets for TPO and TR, classification
models with the same five ML algorithms in combination with
oversampling were developed. For TPO, the models obtained
F1 scores of up to 0.81 (with RF in combination with
oversampling; Table 12). However, the best F1 score obtained
by models trained on the unfiltered data set was marginally
higher (0.83). Also for TR, the highest F1 score obtained by
the models built on the filtered data set (0.68, obtained with
the RF model in combination with oversampling) was 0.13
points lower than the best F1 score obtained by the models
trained on the complete data set. The observed lower
performance of the models on the filtered data sets may be
related to the substantial reduction of active compounds,
which leads to a significant loss of information.

Although reducing the number of compounds to only those
more specific for the inhibitory or antagonistic activity of the
targets does not improve the ability of the model to
differentiate between active and inactive compounds, these
models may have more biological relevance, as they represent a
more specific mechanism. However, the substantial reduction
of the data sets severely narrows the coverage of the chemical
space by the models and therefore their applicability domain.

Multi-task Classification Models. In a further attempt to
maximize the performance and scope of in silico models, we
explored the use of multi-task models for toxicity prediction,
which present the opportunity to combine information and
learn a common representation for the molecules.”® These
models are trained on multiple end points simultaneously and
may hence benefit from regularization and transfer learning
(Figure 9). This could be particularly beneficial in the case of
small or imbalanced training sets, like some of the ones
handled in this work. For the implementation of multi-task
models, we selected NN as they are the preferred approach for
multi-task models in the literature*”** and benefit most from
the use of larger data sets.
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Table 12. Mean and Standard Deviation of the Performance of Different Methods for the Models Built on the Filtered Data
Sets for Nonspecific and Cytotoxic Compounds for TPO and TR

end point method F1 score MCC balanced accuracy AUC
TPO RF 0.81 (+ 0.05) 0.63 (+ 0.10) 0.78 (+ 0.04) 0.91 (40.03)
LR 0.79 (+ 0.07) 0.59 (+ 0.13) 0.79 (+ 0.06) 0.87 (+ 0.04)
XGB 0.80 (+ 0.04) 0.60 (+ 0.09) 0.79 (+ 0.04) 0.89 (& 0.02)
SVM 0.79 (+ 0.03) 0.58 (+ 0.07) 0.78 (£ 0.04) 0.89 (& 0.03)
NN 0.79 (+ 0.05) 0.58 (+ 0.11) 0.77 (£ 0.05) 0.88 (+ 0.04)
TR RF 0.68 (+ 0.05) 0.39 (+ 0.10) 0.65 (+ 0.04) 0.88 (4 0.02)
LR 0.63 (+ 0.03) 0.28 (+ 0.05) 0.62 (£ 0.02) 0.77 (+ 0.05)
XGB 0.67 (£ 0.05) 0.37 (+ 0.10) 0.64 (+ 0.04) 0.85 (+ 0.04)
SVM 0.66 (+ 0.04) 0.34 (+ 0.07) 0.66 (£ 0.05) 0.82 (+ 0.04)
NN 0.64 (£ 0.04) 0.29 (+ 0.07) 0.61 (+ 0.04) 0.81 (& 0.04)
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Figure 9. Representation of single-task (left) and multi-task (right)
NNs. On the single-task models, only one problem (assay result) is
solved at a time, while multi-task models can learn and solve different
problems simultaneously.

Four multi-task models were built based on different
combinations of end points, each covering two to nine end
points. As the single-task models for TPO and TR showed
good performance (indicating that the training sets for these
end points have a high information content), these end points
were included in all multi-task models. The other end points
were incrementally added to the training data of the multi-task
models.

The multi-task models were developed within a workflow
that generates 100 models built on different training sets and
with optimized hyperparameters (see Materials and Methods
for details). The 100 models are grouped based on their
hyperparameters, and one group of models with common
hyperparameters is selected as the final model. This selection is
based on the number of models in the ensemble and its mean
F1 score over the respective test sets of the single models. The
performance of the multi-task models was evaluated on the
mean F1 score of the selected ensemble.

In all cases, the performance of the multi-task NN models
was similar to that of the single-task NN model implementing
the oversampling approach (Figure 10). The best mean F1
scores obtained among the models with different end point
combinations were of 0.81 for TPO (vs 0.82 for the single-task
NN model), 0.79 for TR (vs 0.79), 0.69 for DIO1 (vs 0.70),
0.69 for DIO2 (vs 0.69), 0.68 for DIO3 (vs 0.71), 0.64 for NIS
(vs 0.66), 0.72 for TRHR (vs 72), 0.64 for TSHRAnt (vs
0.65), and 0.66 for TSHRAg (vs 0.68) (Table 13). The mean
F1 score of the multi-task models was also in general
comparable to the one obtained by the best single-task
model (Figure 10).

Those end points implemented in models with different
combinations of end points showed similar performance in all
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Figure 10. Comparison of single- and multi-task models. Results for
single-task methods are divided in (a) best method (orange) and (b)
NN method (blue). Performance of multi-task NN is shown in green.

combinations (difference in the mean F1 score up to 0.02
points), suggesting that an increase in the number of end
points and data sets represented by a model does not
contribute much to the learning process. Although all targets
are related to thyroid hormone homeostasis, their structure
and functions as well as the assays employed for measuring
their function are diverse. The transfer of information between
end points is then limited to simple molecular features, without
benefiting from common biological features. Since these
features are already contained in the descriptors used as
input for all the models, there would be no information gain in
the combination of these end points, explaining the similar
results to the single-task models.

B CONCLUSIONS

We have compiled a comprehensive set of experimental data
on the interference of small molecules with nine targets
involved in molecular initiating events of thyroid hormone
homeostasis (DIO1, DIO2, DIO3, TPO, TR, NIS, TRHR, and
TSHR antagonism and agonism) from the ToxCast database
and published studies. Five ML algorithms in combination
with three data balancing approaches were explored for the
generation of single-task models. In addition, NNs were
explored for the development of multi-task models combining
several end points.

The classifiers for TPO and TR showed high predictive
performance during a 10-fold CV, with mean F1 scores of up
to 0.83 and 0.81, respectively. The models for the other end
points (DIO1, DIO2, DIO3, NIS, TRHR, TSHRAnt, and
TSHRAg), for which the quantity and quality of the available
data were more limited, yielded mean F1 scores between 0.65
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Table 13. Mean F1 Score and Standard Deviation for the Multi-task Models With Different End Point Combinations

F1 score

end point model 1 model 2 model 3 model 4

DIO1 0.67 (£ 0.05) 0.69 (+ 0.03) 0.68 (+ 0.05)
DIO2 0.68 (+ 0.05) 0.68 (+ 0.04) 0.69 (+ 0.04)
DIO3 0.67 (£ 0.04) 0.67 (+ 0.04) 0.68 (+ 0.04)
TPO 0.81 (+ 0.03) 0.81 (+ 0.03) 0.80 (+ 0.03) 0.80 (% 0.03)
TR 0.79 (+ 0.02) 0.79 (% 0.02) 0.79 (+ 0.01) 0.78 (+ 0.01)
NIS 0.63 (+ 0.08) 0.64 (+ 0.08)
TRHR 0.72 (+ 0.02) 0.72 (% 0.10)
TSHRAnt 0.64 (+ 0.05)
TSHRAg 0.66 (+ 0.04)

and 0.77. Overall, the impact of the selected ML algorithm and
data balancing method on model performance was minor.
Larger differences in the performance of the different models
were observed for end points for which the amount of data
available for model development is very limited (mainly NIS,
TRHR, and TSHR). For these end points, models derived in
combination with weight balancing and oversampling usually
performed better than models derived in combination with
undersampling (F1 scores up to 0.24 higher). However, this
increase in performance comes with the cost of a higher
standard deviation during CV. The performance of the multi-
task models was comparable to those of the single-task models,
indicating that these models were not able to benefit from a
transfer of information. We also showed that the reliability of
the predictions is correlated with the similarity of the test
compounds and the training instances as well as with the
distance of the predicted probability from the decision
boundary.

The initial data sets were further filtered with comple-
mentary information available on the reliability of assay
outcomes (related to cytotoxicity and nonspecific protein
inhibition). However, the substantial reduction of training data
caused by this refinement procedure resulted in models that
did in no case outperform the models trained on unfiltered
data. Although the chemical space represented by these models
is narrower than the chemical space of those derived from the
unfiltered data, these models may be of higher biological
relevance as they represent a more specific interaction of the
compounds with the target protein.

Overall, the models presented in this work can help in the
identification of substances with the potential to disturb the
thyroid hormone homeostasis and point out which key events
are affected. Thus, they may help to prioritize compounds for
further testing in early stages of development and to support
read-across. This will ultimately reduce animal testing and
increase efficiency of product development and regulatory
testing.
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