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Uterine corpus endometrial carcinoma (UCEC) is the second most common type of gynecological tumor. Several research studies
have recently shown the potential of different ncRNAs as biomarkers for prognostics and diagnosis in different types of cancers,
including UCEC. 'us, we hypothesized that long noncoding RNAs (lncRNAs) could serve as efficient factors to discriminate
solid primary (TP) and normal adjacent (NT) tissues in UCEC with high accuracy. We performed an in silico differential
expression analysis comparing TP and NT from a set of samples downloaded from the Cancer Genome Atlas (TCGA) database,
targeting highly differentially expressed lncRNAs that could potentially serve as gene expression markers. All analyses were
performed in R software. 'e receiver operator characteristics (ROC) analyses and both supervised and unsupervised machine
learning indicated a set of 14 lncRNAs that may serve as biomarkers for UCEC. Functions and putative pathways were assessed
through a coexpression network and target enrichment analysis.

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is the sec-
ond most common type of gynecological tumor, in either
developed or underdeveloped countries [1]. According to
the epidemiologic data from the International Agency for
Research on Cancer (IARC) of the World Health Organi-
zation (WHO), UCEC comprises 4.8% of cancer incidence
worldwide and 2.1% of cancer-related mortality rate [2].'is
cancer originates at glandular epithelial cells of the endo-
metrium, which is the mucous layer of the inner uterus [3]
and is specified according to clinical and endocrine char-
acteristics by the International Federation of Gynecology
and Obstetrics (FIGO): type I carcinomas are estrogen

dependent and associated with endometrial hyperplasia,
whereas type II carcinomas are estrogen independent and
associated with endometrial atrophy [3].

Obesity, aging, early menarche, late menopause, nulli-
parity, breast cancer, and diabetes mellitus history are some
of the endogenous risk factors for developing the disease [4].
Other risk factors include dietetic factors, tamoxifen (https://
pubchem.ncbi.nlm.nih.gov/compound/2733526) therapy
[5], radiotherapy, and high levels of estrogen [6]. 'e
standard treatment is surgery to remove fallopian tubes and
the ovary, which is effective at most cases when treating stage
I disease [7]. For advanced stages, surgery followed by
treatments such as radiation therapy, chemotherapy, or a
combination of both is the best treatment.
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Several researches have recently shown the potential of
different noncoding RNAs (ncRNAs) as biomarkers for
prognostics and diagnosis in different types of cancers
[3, 8–10], including UCEC [11, 12] although, currently, no
biomarker is consistently used for those purposes in UCEC
[13]. Long noncoding RNAs (lncRNAs) are a class of
ncRNAs that are at least 200 base pairs long and have
multiple functions, albeit these cannot be inferred by their
sequences. Most of the lncRNAs are long intergenic
(lincRNAs) [14], which are sequences that do not overlap
messenger RNAs (mRNAs) [15]. Another class of lncRNAs
are antisense RNAs (asRNAs), which are transcribed from
the opposite strand of the sense transcripts of either protein-
coding or non-protein-coding genes [16]. Some have been
associated with chromatin-modifying complexes that confer
either repressive or activating modifications [17, 18]; how-
ever, the specific functions of the majority of lncRNAs are
still unknown.

In UCEC, the lncRNA HOTAIR was found to be
overexpressed [19] and apparently contributes to the cis-
platin-induced resistance by inhibiting autophagy [20]. 'e
silencing of in vivo expression of HOTAIR suppressed
significantly the endometrial tumorigenesis, leading to
smaller tumors [21, 22]. Another lncRNA, MALAT1, is
known to be overexpressed during endometrial hyperplasia
and also during early carcinoma stages; however, its ex-
pression is significantly lower in advanced stages, as well as
during metastasis [23].

Given their role in modulating UCEC progression, we
hypothesized that lncRNAs could efficiently discriminate
solid primary tumor (TP) and adjacent normal tissue (NT)
with high level of confidence. To test our hypothesis, we
performed an in silico differential expression analysis
comparing TP and NTfrom a set of patients, targeting highly
differentially expressed lncRNAs that could potentially serve
as biomarkers for UCEC. 'ese potential biomarkers were
tested using both supervised and unsupervised machine
learning. Also, their relationship with other genes was
verified by gene coexpression networks and enrichment
analysis. From our knowledge, previous works considered
only the mRNAs [24, 25], focused in drivers of many cancers
(not exclusive) [24], subtypes [26], or other types of uterine
carcinoma (nonendometrial) [27]. Similar approaches,
based on support vector machine (SVM), have been recently
applied to detect biomarkers and key network elements in
other tumors [28–31].

2. Results and Discussion

From the 46 selected samples (TP and NT from 23 patients)
of the total RNA data, we obtained a total of 8,700 tran-
scripts, after normalization and filtering, that went through
the differential expression analysis. In order to assess the
relationships with other regulatory RNAs and pathways, we
also analyzed miRNA data, from which we selected 42
samples (TP and NTfrom 21 patients, all featured in the total
RNA data as well), and 1,881 miRNAs were attained.

'e total RNA normalization and filtering of the data
guaranteed that the outliers had been removed, and the

samples were well normalized (Figure 1), meaning a re-
duction in the expression deviation and the obtention of an
acceptable false positive rate [32, 33]. Both steps indicate that
all the differences further found on the expression of the
transcripts in TP when compared to NT were most likely
caused by the different environments. Considering a
|logFC|≥ 5 and a FDR <0.01 cutoff, a total of 191 transcripts
were differentially expressed (Figure 2). Additionally, 67 of
them were upregulated in tumor. We chose high values of
fold change to ensure that we selected genes with high
potential to discriminate the groups and serve as biomarkers.

Seventeen lncRNAs were significantly differentially
expressed and were chosen as the main candidates to cor-
rectly distinguish TP from NT samples (Table 1). Sixteen of
them were downregulated in tumor, while only one of them,
LINC01376, was upregulated, indicating that its expression is
essential for maintaining the tumor environment. In order
to predict whether the candidates were good for classifi-
cation models, we plotted AUC-ROC curves for each of
them. Five candidates had an AUC greater than 0.7, thus
demonstrating high confidence results: LINC01376,
BRWD1-AS1, LINC00244, LINC02475, and ZNF667-AS1
(Figure 3).

'ree of the top five candidates are lincRNAs. 'e full
range of biological function of lincRNAs remains to be
deeply explored [34]. Dysregulation of the expression of
lincRNAs may be pervasive in human cancers and drives
cancer development and progression [35]. Previous re-
searches demonstrated that there are SNPs on LINC01376
associated with breast cancer [36, 37]. Notably, it was the
only lncRNA upregulated in our analysis with a logFC of
5.88, and it scored the best AUC (0.913) among all
candidates.

LncRNAs may be a product of a partially or fully
complementary region of a protein-coding gene and may act
as a cis regulatory lncRNA, in accordance with the sequence

Samples

0

1

2

3

4

5

lo
g1

0 
(F

PK
M

)

Figure 1: Boxplot after normalization of total RNA samples
(training set data). Primary tumor samples (TP) (sky blue); ad-
jacent tumor samples (TP) (purple). Black line inside the boxes
indicates the median position. Dotted lines indicate the expression
deviations.
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complementarity (antisense lncRNA), or may be a lincRNA,
acting as a trans regulatory element. Also, lncRNAs can
connect to DNA, regulating the transcription process, or
bind to proteins affecting their stability ([38]). Antisense
lncRNAs are known to regulate the transcription output
RNA in mammals, affecting the mRNA expression [39, 40]
and stabilizing the mRNA [40]. Some antisense lncRNAs
may act on their neighboring coding genes, reducing the
complementary mRNA expression [41, 42], while others
clearly upregulate the expression of the corresponding
mRNA and protein [43].

Members of the BRWD1 gene family are involved in
cellular processes such as cell cycle progression, signal
transduction, gene regulation, and apoptosis [44]. BRWD1-
AS1 is downregulated in UCEC, with a logFC of approxi-
mately − 5.05, and scored the third highest AUC (0.820). It is
possible that BRWD1-AS1 could be essential for the normal
regulation of the corresponding mRNA, thus its down-
regulation may lead to cell survival considering that BRWD1
has an important role in apoptosis. It is important noticing,
however, that BRWD1was not differentially expressed in our
analysis. Another lncRNA-AS that stood out in our analysis
was ZNF667-AS1, with a logFC of approximately − 5.16 and
an AUC of 0.717. Other studies have demonstrated that

ZNF667-AS1 is commonly downregulated in several cancer
types, including UCEC [36, 37]. Vrba and colleagues [45]
showed that it is expressed in all normal finite lifespan
human cells examined to date and is downregulated or lost
in immortalized human mammary epithelial cells. Addi-
tionally, they demonstrated that its downregulation is due to
DNA hypermethylation [45]. In cervical cancer, ZNF667-
AS1 inhibited the proliferation of cancer cells and its
downregulation was negatively correlated with the overall
survival of patients, tumor size, and FIGO stage [46].

To evaluate if our combined set of differentially
expressed lncRNAs is able to correctly separate TP from NT
samples, we performed the SVM approach. From the sev-
enteen lncRNAs, three of them (PLCG1-AS1, LINC01411,
and LINC02249) presented elevated expression variation
and low AUC and could not be considered good models.
'us, 14 remained during the SVM analysis. 'e results for
all tested sets are shown in Table 2. 'e first set contained all
14 selected lncRNAs and obtained an accuracy of 0.9583,
indicating that this set is an efficient classificationmodel.'e
second set contained 5 lncRNAs that had an AUC greater
than 0.7 and attained an accuracy of 0.9167. 'e third and
final sets contained the top 2 lncRNAs that attained the best
overall AUC, obtaining an accuracy of 0.9167 (Figure 4).
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Figure 2: Differentially expressed genes highlighted. (a) Volcano plot of the differential expression analysis of total RNA in primary tumor
(TP) compared with adjacent tissue (NT). TP upregulated transcripts (67 genes) with log fold change (logFC)> 5 (red). TP downregulated
transcripts with logFC< − 5 (124 genes) (green). Horizontal purple line indicates the − log 10 (FDR)� 2 (FDR� 0.01) cutoff. Grey vertical
lines indicate logFC� − 5 and logFC� 5 cutoffs. (b) Heat map of the expression of the 50 most differentially expressed transcripts.
Dendrogram: the clustering of TP samples (sky blue); the clustering of NT samples (purple). Top left: colorkey for the heat expression
quantification.
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'us, even a set composed only by the two top AUC rep-
resentatives is good enough to discriminate the samples with
an accuracy of 91.67%, identical to the accuracy of the top 5
set. 'e unsupervised hierarchical cluster (Figure 5) dem-
onstrated that all NT samples clustered together with high
group support. TP samples were more dispersed and some of
them were closer to NTs than to other TPs. 'is might be
explained due to the higher expression variability in TP
samples usually observed in many cancer types, such as
melanoma [47], breast cancer [48], lung cancer [49], and
hepatocellular carcinoma [10].

In order to look for pathways and biological functions of
the lncRNAs from our set, we performed a correlation
analysis among the expression data of all differentially
expressed transcripts (including miRNAs). A gene coex-
pression network was plotted from the result of the corre-
lation analysis (Figure 6) and was assessed alongside
enrichment analyses. ClueGO (v. 2.3.3) [50] indicated that
CHD5 and WRB (downregulated) and EHMT1 (upregu-
lated) were involved in the histone H3K27 methylation.
Trimethylation of H3K27 has been associated with tran-
scriptional inhibition of genes in endometrial cancer [51]. In
addition, EZH2, which is a methyl-transferase for H3K27, is
upregulated in many tumors [52, 53], consequently causing
low expression levels of the genes regulated in this part of the
genome. In this study, EZH2 is slightly upregulated in
UCEC, although the difference was not statistically signif-
icant, considering a FDR <0.01. Previous studies have
demonstrated that downregulation of H3K27 methylation
process in tumor may contribute to its progression by en-
hancing the expression of oncogenes [54, 55].

Many studies first identified CHD5 as a tumor sup-
pressor gene in neuroblastomas [56–60]. Subsequent re-
search showed increasing evidence that it functions as tumor
suppressor in several other types of cancer, including
ovarian [61], breast [62], lung [63], and colorectal cancer
[64]. 'us, CHD5, commonly found downregulated in
cancer due to deletion of region 1p36, where it is located,
may act as a master regulator, controlling the key processes
for the suppression of a variety of tumors [65]. Clonal al-
teration was found at the region 1p36 in endometrial cancer
[66], which might explain why CHD5 is downregulated with
a logFC of -5.40 in our analysis. Furthermore, in our
coexpression network, CHD5 is positively and strongly
linked to three lncRNAs of our set: TCF4-AS1, LINC02249,
and LINC02475, whichmay indicate that they possibly play a
role on the expression of CHD5. To our knowledge, all three
lncRNAs have not been biologically associated with cancer
to date, nor to any other disease. CHD5 was also positively
correlated to hsa-mir-767, which is downregulated in UCEC.
Downregulation of this miRNA has also been detected in
lung adenocarcinoma cells [67], whereas upregulation was
detected in human melanoma [68]. No miRNA prediction
binding site tool (see Section 4) identified a statistically
supported connection between hsa-mir-767 and CHD5.

Gene ontology enrichment analysis performed on
pathfindR (v. 1.2.1) [69] showed that GPR161 (upregulated)
was associated with the negative regulation of the hedgehog
signaling pathway. However, previous studies revealed that
abnormal activation of this pathway is related to cell pro-
liferation in endometrial cancer [70, 71]. According to the
Human Protein Atlas [72], high expression of GPR161 is
associated with low survival probability in UCEC (66%
probability of 5-year survival in GPR161 high and 79% in
GPR161 low, p � 0.0016) but it is not prognostic for UCEC.
Additionally, GPR161 has been found to be upregulated in
breast cancer as well, acting as a promoter of cell prolifer-
ation and invasion [73]. 'e coexpression network reveals
that this gene is positively correlated with MIR545, a pre-
mir, which has been linked to cell proliferation in colorectal
cancer [74] and hepatocellular carcinoma [75]. We also
found that MIR545 is upregulated in endometrial cancer
with a 7.8 logFC. 'ose results indicate that GPR161 and
MIR545 are probably promoting cell proliferation on UCEC
as well, but other elements may also be involved. Again, no
miRNA prediction binding site tool (see Section 4) identified
a statistically supported connection between MIR545 and
GPR161.

KEGG analysis also performed on pathfindR (v. 1.2.1)
[69] indicated that the upregulated genes HDAC7,
GTF2A1L, and MAPKAPK2 were involved in the viral
carcinogenesis pathway. Previous studies have demonstrated
that inhibition of histone deacetylases, such as HDAC7,
induces apoptosis, cell cycle arrest, and growth inhibition in
endometrial cancer cells [76–79]. Moreover, LINC01376, the
only lncRNA that is upregulated in UCEC from our set,
positively and strongly correlates with HDAC7 (r� 0.91),
which reinforces LINC01376 as a marker. Again, based on
the Human Protein Atlas [72], high expression of HDAC7 is
associated with low survival probability in UCEC

Table 1: Long noncoding RNAs that discriminate TP from NT
samples.

lncRNA logFC FDR AUC
LINC01376 5.88492063377296 2.37514982980919e− 26 0.913
BRWD1-
AS1 − 5.05883480566089 2.3408685424323e− 50 0.820

LINC00244 − 5.11057542483241 2.25688066033936e− 13 0.892
LINC02475 − 5.15921206745447 8.93670161058092e− 06 0.744
ZNF667-
AS1 − 5.16386849714406 8.14134337771604e− 08 0.717

DEPDC1-
AS1 − 5.17825782522368 2.06667461632931e− 25 0.633

LINCR-
0001 − 5.20814071478136 4.04097876674846e− 10 0.601

LINC00504 − 5.29670533561579 2.78034526756707e− 08 0.535
LINC00632 − 5.38175032295688 4.77496645881152e− 16 0.659
MACC1-
AS1 − 5.38578795348022 2.25613841195626e− 10 0.694

TCF4-AS1 − 5.64269979170812 0.000474000179607125 0.516
SHANK2-
AS1 − 5.92292108357159 4.02699887083864e− 05 0.624

WDR86-
AS1 − 6.32585914185104 9.39257125151877e− 13 0.643

LINC01411 − 7.78029289441235 2.81489971171908e− 06 0.471
PLCG1-AS1 − 7.93247628000136 1.81453269242651e− 06 0.674
SLC8A1-
AS1 − 8.15747923329883 4.51757852734348e− 09 0.511

LINC02249 − 9.64327159184569 2.76479236381279e− 07 0.578
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Figure 3: ROC curve of the lncRNAs that obtained AUC greater than 7; sensitivity (true positive rate) (y axis); 1-specificity (x axis) (false
negative rate).
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(p � 0.045), but it is not considered a prognostic for UCEC.
Based on KEGG (https://www.genome.jp/kegg/),MAPKAPK2
also participates in cellular senescence.

In order to look for more putative pathways and bi-
ological functions of the lncRNAs from our set, we per-
formed an in silico prediction of lncRNA function. As
stated before, characterization of most lncRNAs remains
to be done; therefore, we were able to predict the functions
of seven lncRNAs from our set: BRWD1-AS1, LINC00504,
SHANK2-AS1, MACC1-AS1, WRD86-AS1, LINC00632,
and ZNF667-AS1. 'e first four were strongly associated
with male reproductive system pathways, such as sper-
matogenesis, male gamete generation, and sperm motility.
'e alteration of this pathway is not a novelty in endo-
metrial cancer [80, 81]. LINC00632 and ZNF667-AS1 were
potently related with neural functions such as neuron
projection, synapse organization, and neurotransmitter
secretion and transport, whereas WRD86-AS1 was linked
to the spliceosome complex and RNA splicing, as well as to
breast, thyroid, and colorectal cancers.

Even though there have been lncRNAs reported as
oncogenic drivers [82], survival analysis performed for each
lncRNA from our set did not associate their expression
profile to a specific prognostic; consequently, none of them
can be reckoned as drivers. However, these lncRNAs can still

act as biomarkers, once we demonstrated that they effec-
tively distinguish TP from NT.

3. Conclusions

In summary, our data suggest a set of 14 lncRNAs as highly
effective biomarkers of UCEC, albeit none can be reckoned
as drivers and coexpression associated genes are not
prognostic. Moreover, this set can be reduced to the two top
lncRNAs (LINC01376 and BRWD1-AS1) with a minimal
reduction in accuracy and specificity. 'is data must be
validated in clinical samples, but it is predicted to contribute
in the diagnosing UCEC. While there have been similar
works on lncRNAs [83] that paved the way for our study, we
focused on looking for prognostics and diagnostics bio-
markers for UCEC, considering only highly expressed
lncRNAs and honing on strong statistical analyses to sup-
port our findings. In addition, the elucidation of how these
lncRNAs play a part in the establishment and progression of
UCEC may contribute to new diagnostic options in the
future.

4. Materials and Methods

All data analyzed in this study are available at the Cancer
Genome Atlas (TCGA), and all analyses were performed

Table 2: SVM analysis for the three tested sets of lncRNAS.

Set∗ Accuracy CI (95%) p value Kappa Sensitivity Specificity
First set 0.9583 0.7888, 0.9989 1.49e − 06 0.9167 0.9167 1.0000
Second set 0.9167 0.6262, 0.9526 1.794e − 05 0.8333 0.9167 0.9167
'ird set 0.9167 0.73, 0.9897 1.794e − 05 0.8333 0.9167 0.9167
∗'e first set is comprised of 14 lncRNAs; the second set is composed of the five lncRNAs with AUC> 0.7; the third set is composed by the AUC’s top two
lncRNAs, as shown in Table 1.

N
T

TP

2.32

2.34

2.36

2.38

LI
N

C0
13

76

2.52.0 3.0 3.51.5
BRWD1.AS1

Figure 4: Scatter plot of the fitted support vector machinemodel based on the expression of the top 2 lncRNAs. Classes: primary tumor (TP)
and adjacent tissue (NT). Support vectors instances: x. Expression values are in log 10 scale.
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using the R software (v. 3.4.0) (https://www.R-project.org/
). Data download, preprocessing, and differential ex-
pression analysis were performed using TCGABiolinks
package (v 2.7.1) [84], available at Bioconductor digital
repository (https://www.bioconductor.org/). Total RNA
and miRNA data must be separately downloaded from
TCGA. For the total RNA data, 587 samples were
downloaded: 35 NTs and 551 TPs. We analyzed an initial
set of 23 patients that had both NT and TP samples, thus a
total of 46 samples. 'e results were then visualized on
volcano plots, and the 50 most differentially expressed
transcripts (top 50) were featured on a heatmap, plotted
using the package gplots (v. 3.0.1). For the miRNA data, a
total of 579 samples were downloaded, 33 NTs and 545
TPs. We analyzed a set of 21 patients (all included in the
total RNA analysis) that had both TP and NTsamples, thus
a total of 42 samples.

For the putative lncRNA biomarkers, we first performed
a supervised predictionmodel using the area under the curve

(AUC) of the receiver operating characteristic (ROC) with
the pROC package (v. 1.13.0) [85], then a supervised
learning model using support vector machines (SVM), with
the caret package (v. 6.0–81). Next, we performed an un-
supervised model using hierarchical cluster analysis with
1000 bootstrap replications. Clusters with unbiased
grouping support p values (au) of approximately 95% were
considered as statistically significant groups. Hierarchical
clusters were plotted using the pvclust package (v. 2.0–0)
[86]. We also performed a Kaplan–Meier survival analysis
considering the expression of the lncRNAs only on TP
samples for the purpose of appraising whether they could
be considered drivers for UCEC. At last, in order to look for
pathways and biological functions of the lncRNAs of our
set, we set up a coexpression network that was assessed
alongside enrichment analyses. We also used FuncPred
[87], an online tool that performs in silico prediction of
lncRNA function by using tissue specific and evolutionary
conserved expression.
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4.1. Download and Data Preprocessing. 'e UCEC harmo-
nized total RNA expression data (hg38) and miRNA ex-
pression data downloaded from TCGA were obtained
through RNA-seq using Illumina HiSeq platform. Total
RNA andmiRNA are separately download due to differences
in the data composition. First, we set the query for the
download of the total RNA data, using the function
GDCquery with the following options: project� “TCGA-
UCEC,” data.category� “Transcriptome Profiling,”
data.type� “Gene Expression Quantification,”
workflow.type� “HTSeq—Counts” and legacy� FALSE. 'e
query for the microRNA data uses the following options:
project� “TCGA-UCEC,” data.category� “Transcriptome
Profiling,” data.type� “miRNA Expression Quantification”
and legacy� FALSE. 'en, we downloaded both data using
the function GDCdownload with the previously set queries
and the option method� “api.” 'e function GDCprepare
was then used to transform the downloaded total RNA data
into summarized experiment data, making it suitable for the
analyses.

'e data normalization was performed first by GC
content, using the function TCGAanalyze_Normalization
with the options geneInfo� geneInfoHT and
method� “gcContent,” and then by gene length, changing the
method option to “geneLength.” 'en, a quantile filter was
applied using the function TCGAanalyze_Filtering with the
option method� “quantile” and qnt.cut� 0.25. Finally, the
Spearman correlation among samples was checked using the
R function cor and both NT and TP sample groups were
separated with the function TCGAquery_SampleTypes.

4.2. Differential Expression and Survival Analysis. We con-
sidered as differentially expressed those genes with a false
discovery rate (FDR)< 0.01 and log fold change
(logFC)≥ |±5|, using the function TCGAanalyze_DEA with
the options fdr.cut� 0.01, logFC.cut� 5, and
method� “glmLRT.” 'is high cutoff was chosen in sense to
detect the genes with the highest potential for group
differentiation.

Considering the expression on TP samples of all dif-
ferentially expressed lncRNAs, we performed a Kaplan–
Meier survival analysis with the function TCGA_Survi-
valKM and the following options: Survresult�TRUE,
p.cut� 0.5, $reshTop� 0.67, and $reshDown� 0.33. Sur-
vival curves for each lncRNA were generated and analyzed
separately.

4.3. ROC Analysis. For the ROC analysis, we focused in the
differentially expressed lncRNAs. 'e individualized results
were visualized on a AUC-ROC curve plot, which is a graph
showing the performance of a classification model at all
classification thresholds. 'e evaluation metric used was the
AUC, which represents the degree or measure of separa-
bility, that is, how much the model is capable of dis-
tinguishing between two groups [88].

4.4. Support Vector Machine (SVM) Analysis. For the SVM,
we first set a randomly chosen seed of 3033, making our
work replicable, with the function set.seed (3033). 'en, we
used the function trainControl() that controls the
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computational nuances of the train() method. At this point,
we applied a 1000 bootstrap replication, with the option
method� “boot” and number� 1000.

Next, we set our train and prediction data. 'e train data
contained the selected differentially expressed lncRNAs
from the 23 initial patients. Here, three lncRNAs were cut
out of the analysis for presenting elevated expression vari-
ation. Our prediction model data contained the same
lncRNAs, however, from 24 samples, different from the 46
samples we have been working on: 12 TPs and the remaining
12 NTs from TCGA database that did not have TP/NT
correspondence in the same patient. 'e expression data
from the 24 new patients were analyzed apart from the set of
23 patients. To train our data, we tested both land radial
kernel methods, using the function train() with the previ-
ously set trainControl as a parameter, along with the options
preProcess� c (“center,” “scale”), tuneLength� 10, and
method� “svmLinear” or method� “svmRadial”. Next, we
tested our classifier at specific cost (C) values for linear
method, using the function expand.grid with cost values
ranging from 0 to 5 and adding the tuneGrid parameter with
the set grid to the train() function.

'is process was repeated for three different sets of
lncRNAs. 'e first set contained all selected lncRNAs, and
the best performance was obtained using linear kernel
method, with cost� 0.25. 'e second set had the ones that
attained an AUC greater than 0.7. 'e best performance was
obtained using the linear kernel method, with cost� 1. 'e
third set had the two lncRNAs that attained the best AUC.
'e best performance was obtained using a radial basis
function kernel method, with standard values of
sigma� 0.07 and cost� 5.

4.5. Coexpression Network and Enrichment Analysis. A
Spearman correlation analysis among the expression data of
all differentially expressed transcripts and miRNAs was
performed in order to plot a gene coexpression network.'e
cutoff for the statistically significant correlations was r> 0.7
and r< − 0.7 and p value <0.05. 'e network was visualized
using Cytoscape (v. 3.5.1) [89]. For better clearance of the
network, only the following correlations of interest were
plotted: lncRNA-miRNA, lncRNA-mRNA, and miRNA-
mRNA. 'e coexpression network was analyzed alongside
enrichment analyses performed on ClueGo (v. 2.3.3) [50]
and pathfindR (v. 1.2.1) [69].

4.6. miRNA Interaction Prediction. 'e miRNAs and their
putative targets were used to predict their interaction using
the online software TargetScan (release 7.1) [90] and miRDB
[91].
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