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Abstract

Background: Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major
goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases.
N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed
that aberrant m6A modifications are involved in many diseases. Findings: In this study, we present a user-friendly web
server called “m6ASNP” that is dedicated to the identification of genetic variants that target m6A modification sites. A
random forest model was implemented in m6ASNP to predict whether the methylation status of an m6A site is altered by
the variants that surround the site. In m6ASNP, genetic variants in a standard variant call format (VCF) are accepted as the
input data, and the output includes an interactive table that contains the genetic variants annotated by m6A function. In
addition, statistical diagrams and a genome browser are provided to visualize the characteristics and to annotate the
genetic variants. Conclusions: We believe that m6ASNP is a very convenient tool that can be used to boost further
functional studies investigating genetic variants. The web server “m6ASNP” is implemented in JAVA and PHP and is freely
available at [60].
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Introduction

Due to rapid improvements in high-throughput sequencing
technology, the cost and time requirements of these technolo-
gies have been greatly reduced, which has triggered the explo-
sive growth of high-throughput sequencing data associated with
various diseases. The major goal of these high-throughput se-
quencing studies is to identify disease-causing variants. How-
ever, distinguishing the few disease-causing variants from the
majority of passenger variants remains a major challenge. Com-

putational methods that accurately interpret and prioritize the
large amount of variants are urgently needed.

Many types of variants have different effects on the function
of genes. Nonsynonymous variants, which alter the amino acids
in a protein sequence, are among the most studied classes of
variants. Alterations in the protein sequence can cause protein
dysfunction due to a variety of different mechanisms. For ex-
ample, variants in critical sites of the catalytic domain may af-
fect protein catalytic functions [1] and variants in amino acids
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critical to the protein structure may affect protein-protein in-
teractions [2], protein stability [3], and other important fea-
tures [4]. Moreover, certain amino acid changes can affect post-
translational modification, such as phosphorylation [5, 6], lysine
modification [7], and glycosylation [8]. Currently, most bioinfor-
matics tools mainly focus on interpreting nonsynonymous vari-
ants. For example, SIFT [9] and PolyPhen-2 [10] can predict the
tolerance of nonsynonymous variants through sequence conser-
vation; several tools, such as PhosphoSNP [11] and MIMP [12],
predict whether amino acid changes affect post-translational
modifications.

Compared to nonsynonymous variants, synonymous vari-
ants are neglected by most studies investigating diseases, partic-
ularly studies investigating tumors [13]. These variants are un-
derstudied because they do not alter the amino acid sequence
of a protein and are considered ”silent” variants. These variants
are treated as ”neutral” variants in evolutionary studies. How-
ever, growing evidence suggests that synonymous variants also
affect the function of genes and cause various diseases [14]. Syn-
onymous variants can result in abnormal post-transcriptional
regulation, such as mRNA splicing [15], stability [16], and trans-
lation speed [17]. Many studies have shown that abnormalities in
post-transcriptional regulation are closely related to genetic dis-
eases and complex diseases [18-20]. Several bioinformatics tools
that predict the effect of variants on post-transcriptional regu-
lation are available, such as MutPred Splice [21] and SILVA [22],
which primarily focus on mRNA splicing.

The post-transcriptional modification of mRNA is also an
important post-transcriptional regulatory mechanism, and N6-
methyladenosine (m6A) modification is among the most highly
abundant in post-transcriptional modification [23], which regu-
lates the metabolic processes of most RNA, including the splic-
ing [24], stability [25], and translation of mRNA [26]. m6A modi-
fication is closely related to multiple diseases. Recently, FTO, an
m6A demethylase, has been found to play an important role in
the development of recessive lethality syndrome [27]. Abnormal
m6A regulation can lead to individual developmental retarda-
tion [28], head malformations [27], mental retardation [29], brain
dysfunction [30], and cardiac malformations [31]. More recently,
increasing evidence has shown that dysregulation of m6A modi-
fication was closely related to cancer development. It was shown
that abnormal modification of m6A and its regulators can lead to
leukemia [32], prostate cancer [33], breast cancer [34, 35], blad-
der cancer [36], and liver cancer [37]. Therefore, it is important
to evaluate the effect of variants on m6A modification, providing
new perspective for understanding the variants, particularly for
synonymous variants, thus helping to find more disease-causing
variants.

A number of bioinformatics tools have been developed for
predicting m6A sites, most of which are based on sequence char-
acteristics. IRNA-methyl [38] and pRNAm-PC [39] used a sup-
port vector machine to construct a prediction model based on
the distribution sequence characteristics. SRAMP [40] is a ran-
dom forest-based tool trained on the single-nucleotide resolu-
tion m6A sites from miCLIP-Seq experiments [41, 42]. However,
these tools are not specifically designed to deal with the variant
data to evaluate the effects of the variants on m6A modification.
It is highly desirable to develop a specific tool for predicting the
effects of variant on m6A modification.

Here, we developed an accurate m6A site prediction tool that
is superior to other similar tools. Based on the m6A site predic-
tion tool, we constructed a web server called “m6ASNP” that is
dedicated to predicting if methylation status of an m6A site is

altered by variants around the site. We then applied m6ASNP to
the variants collected from dbSNP.

Data collection

To construct the prediction model, we first obtained the single-
base-resolution m6A sites from two recently published miCLIP
experiments. We collected 16,079 human m6A sites from Lin-
der et al. [41] and 43,155 human m6A sites from Ke et al.
[42]. Specifically, in Ke’s paper, two tissue samples from mouse
are also tested, from which we collected 8,748 and 30,078 N6-
methyladenosines in liver and brain, respectively. We then com-
bined these datasets to obtain a nonredundant dataset that con-
tains 55,548 sites in human and 36,192 sites in mouse. For the
human model, we used 35,871 nonredundant m6A sites as the
positive training set, and the remaining 19,677 m6A sites were
used as the positive test set. Similarly, for the mouse model,
25,334 m6A sites were preserved as the positive training set,
and another 10,858 m6A sites were used as the positive test set.
The negative datasets were generated according to the distri-
bution of the positive sets. Because the majority of m6A sites
conformed to a DRACH motif, we first defined the potential m6A
sites as adenine sites that conform to the AC motif. Using the
positive datasets as references, we extracted the nonmethylated
adenines that were followed by a cytosine in the same exon as
the negative dataset. From the human genome, we extracted
1904,016 adenine sites as the negative training set, while the
negative test set consisted of 1,286,588 adenine sites. In the case
of the mouse genome, 1,519,570 adenine sites were extracted as
the negative training set and 625,600 adenine sites were con-
structed as the negative test set (Supplementary Data).

To decipher the potential applications of m6ASNP, we fur-
ther collected a complete set of genetic variants from dbSNP
for human and mouse. The single-nucleotide variations (SNVs)
within the exonic regions were preserved for subsequent anal-
ysis. A total of 13,079,416 and 2,668,046 SNVs were collected in
human and mouse, respectively. To investigate the potential role
of these SNVs in reshaping the m6A event, m6A sites from two
miCLIP-seq studies [41, 42], two PA-m6A-seq experiments [43],
and 244 MeRIP-seq samples were integrated. Using m6ASNP,
we also predicted the potential m6A-associated variants from
the above dataset. In addition, a transcriptome-wide prediction
was also performed. Overall, 311,706 and 40,308 m6A-associated
variants were obtained from human and mouse, respectively.

In order to identify the potential roles of m6A-associated
variants in post-transcriptome regulation, the RNA-binding pro-
tein (RBP) binding sites from starBase2 [44] and CLIPdb [45],
the miRNA–RNA interactions from starBase2, and the canonical
splice sites (GT-AG) from Ensembl annotations were collected. In
addition, we also obtained a large number of disease-associated
single-nucleotide polymorphism (SNPs) from different datasets
(GWAS catalog [46], Johnson and O’Donnel [47], dbGAP [48], GAD
[49], and ClinVar [50]) to perform disease-association analysis.

Results
Construction of m6ASNP

As illustrated in Fig. 1A, m6ASNP was developed using a random
forest algorithm (see Methods section for more details). In order
to evaluate the contribution of different encoding features, we
first computed the mean decrease of Gini impurity (also known
as Gini importance) for the human and mouse model. The dis-
tribution plot of Gini importance in different features showed
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Figure 1: The construction of m6ASNP. A) The computational pipeline for identifying m6A-associated variants. (1) The single-nucleotide-resolution data were collected

from recently published miCLIP-seq experiments. (2) The primary sequence and secondary structure features were extracted for subsequent model training process.
(3) Genetic variants, such as somatic variants or germline SNPs, were input into the computation pipeline. (4) The flanking sequence around the potential m6A residue
was constructed for both wild-type and mutant samples based on the inputted variants. (5) The loss and gain variants were predicted according to the above data. B)

On the human model, 4-, 6-, 8-, and 10-fold cross-validation was performed. C) The performance comparison was made between m6ASNP and other state-of-the-art
tools on the human test set. D) The evaluation results of 4-, 6-, 8-, and 10-fold cross-validation in mouse model. E) The performance comparison between m6ASNP
and other state-of-the-art tools on the mouse test set.

that the primary sequence was the most effective feature for
predicting potential m6A sites. Nucleotides in the DRACH mo-
tif around the N6-methyladenosine were dominated for classifi-
cation (Supplementary Fig. S1A). However, secondary structures
were still observed to contribute the prediction of m6A sites.
Further evaluation on the prediction capability of primary se-
quence and secondary structure indicated that the addition of
structural features to the sequence features can improve the
accuracy and robustness of both models (Supplementary Fig.
S1B). Therefore, in the final model of both human and mouse,
we combined those features to obtain a better performance.
Next, to evaluate the performance of m6ASNP, 4-, 6-, 8-,and 10-
fold cross-validations were performed on both the human and
mouse models. In both species, the area under the curves of all
the validations were close and larger than 0.84 (Fig. 1B and D), in-
dicating that m6ASNP is an accurate and robust predictor. To fur-
ther assess the prediction capability in unknown data, we then
compared m6ASNP with the two other publicly available predic-
tors, iRNA-Methyl and SRAMP, in the independent test set. As a
result, the performance of m6ASNP was found to be superior to
all other predictors in both the human and mouse models (Fig.
1C and E).

To balance the prediction accuracy, we selected three thresh-
olds with high, medium, and low stringencies for classification
based on the evaluation result from 10-fold cross-validation. The
high, medium, and low thresholds were selected by controlling
the false-positive rate at 0.05, 0.1, and 0.15, respectively. Table 1
presents the detailed performance under these three selected

thresholds. In general, the high threshold provides the most
stringent criterion and is usually used in large-scale prediction.
The medium threshold is a balanced criterion and may be appro-
priate for most cases. The low threshold is the loosest criterion.
When users expect to retain as many potential sites as possible,
this threshold would be the best option.

Usage of m6ASNP

In m6ASNP, a standard variant call format (VCF) or a simplified
tab delimited file are supported as input data (Fig. 2A). As an ex-
ample, we applied m6ASNP to the “common and clinical” vari-
ants VCF file obtained from ClinVar that contains 7,397 variants.
The predicted m6A-associated variants are presented in an in-
teractive table (Fig. 2B). Of the 7,397 variants, 206 are predicted
to affect the m6A modification, either functional gain or loss
of modification. The web server will conduct a comprehensive
annotation and statistical analysis for all the predicted m6A-
associated variants. The m6A-associated variants from ClinVar
are mainly enriched in enzyme-binding and DNA-binding gene
ontology (GO) molecular functions (Fig. 2C). The sequence lo-
gos are presented to show the changes of gained and lossed
m6A sites between the reference and mutant sequences (Fig.
2D). The “GGACU” motif is more obvious in mutant sequences
compared to reference sequences for functional gain variants.
While for functional loss variants, the “GGACU” motif is less no-
ticeable in mutant sequences. A circos plot is presented to have
an overview of all the m6A-associated variants (Fig. 2E).
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Table 1: Prediction performance from 10-fold cross-validation under high, medium, and low thresholds

Human Mouse

Threshold Ac Sn Sp MCC Pr Ac Sn Sp MCC Pr

High 0.7235 0.2781 0.9461 0.3158 0.7208 0.7154 0.2477 0.9492 0.2894 0.7092
Medium 0.7487 0.4497 0.8981 0.3973 0.6882 0.7465 0.4467 0.8964 0.3918 0.6832
Low 0.7589 0.5837 0.8465 0.4439 0.6554 0.7591 0.5956 0.8409 0.4471 0.6518

Characteristics of m6A-associated variants predicted by
m6ASNP

We further applied m6ASNP to all the variants in dbSNP. As a re-
sult, we obtained 133,394 functional gain and 214,884 functional
loss m6A-associated variants. Among these m6A-associated
variants, 6,235 located at or near the m6A sites from miCLIP
experiments and 55,381 located at or near the m6A sites from
MeRIP-Seq experiments. To characterize m6A-associated vari-
ants predicted by m6ASNP, we performed a systematic compari-
son between m6A-associated variants and non-m6A-associated
variants (non-m6A variants). We found that m6A-associated
variants were enriched in protein-coding genes (dbSNP147,
95.77%; dbSNP146, 92.12%) and significantly concentrated in
CDS and 3′UTR (Supplementary Fig. S2A and Table S1). Inter-
estingly, in both CDS and UTR regions, m6A-associated vari-
ants were more conserved than non-m6A variants (Fig. 3A). For
those conserved m6A-associated variants, a significant portion
was synonymous compared to all conserved variants (Fig. 3B,
P < 0.0001, hypergeometric test). To further explain the func-
tional role of m6A-associated variants, we divided the predicted
m6A-associated variants into two groups: the functional gain
and functional loss variants. The conservation analysis was per-
formed on these two groups, and the results were compared to
non-m6A variants in both CDS and UTR regions (Supplementary
Fig. S3A). Strikingly, in most cases, the functional loss variants
were found to be more conservative compared to the gain vari-
ants, suggesting that the loss of existing m6A sites may undergo
stronger selective pressure than the gain mutations on potential
adenylate sites. Moreover, m6A-associated variants were pre-
dicted to be more deleterious than non-m6A variants in both the
CDS and UTR regions (Fig. 3C, 2-tailed population test). Again, for
the predicted data, the functional loss variants appeared to have
a higher deleteriousness compared to the functional gain vari-
ants and the non-m6A variants (Supplementary Fig. S3B). Taken
together, we conclude that m6A-associated variants, especially
the functional loss variants, may have important roles and could
be driven by positive selection in mammalian genomes. Further-
more, there were more m6A-associated variants located near the
splice sites relative to the non-m6A variants, mostly distributed
in the 20–30 bpflanking region of the splicing sites, implying that
the variants were likely to affect RNA splicing as the means of
changing the m6A levels (Fig. 3D). Moreover, the m6A-associated
variants preferentially locate in genes with multiple transcripts
(Supplementary Fig. S2B). These results were in agreement with
the findings reported by Xiao et al. [24].

m6A-associated variants in disease

Genome=wide association studies (GWAS) have revealed many
disease-related variants. However, the pathogenesis mecha-
nisms for most of these disease-related variants had not been
known. We found 1,919 m6A-associated variants from human
dbSNP were recorded either in GWAS studies or the ClinVar

database. These 1,919 m6A-associated variants were related
to various diseases, including cardiovascular phenotype, mus-
cular dystrophy, tuberous sclerosis syndrome, and cancer. Of
them, hereditary cancer (436 variants, 22.74%, P = 2.27e-30, Chi-
squared test), Familial breast cancer (96 variants, 5.01%; P =
8.33e-9, Chi-squared test) and hereditary nonpolyposis colorec-
tal cancer (73 variants, 3.81%; P = 5.5e-5, Chi-squared test) were
the top enriched disease types (Supplementary Table S2). Our
findings provide insights into the potential pathogenesis mech-
anism for many disease-related variants whose functions were
not clear before.

Synonymous variants have been neglected in most previ-
ous studies of disease. Since m6ASNP can be used to predict
the effect of both nonsynonymous and synonymous variants,
this tool could significantly supplement the function of current
annotating tools that mainly focus on nonsynonymous vari-
ants. Indeed, among the m6A-associated variants predicted by
m6ASNP, 59.86% and 25.67% are synonymous variants in mouse
dbSNP and human dbSNP, respectively. By using m6ASNP, we
identified many m6A-associated synonymous variants that have
been shown to be disease related. For instance, rs139362268, a
synonymous variant of PALB2, is related to breast cancer and
pancreatic cancer. Interestingly, we observed that rs139362268
occurred in the m6A site of PALB2, in which m6A peaks were
detected in six MeRIP-Seq experiments (Supplementary Fig.
S4A). We speculated that the cancer-related synonymous vari-
ant rs139362268 might be functional through dysregulation of
m6A modification.

m6A-associated variants in post-transcriptional
regulation

It has been reported that m6A sites could recruit RBPs that play
critical roles in post-transcriptional regulations [52]. We sys-
tematically examined the genomic positional relationship be-
tween m6A-associated variants and RBPs to determine whether
m6A-associated variants function through RBPs. We found the
m6A-associated variants were significantly enriched in RBP-
binding regions compared to the non-m6A variants (Supplemen-
tary Fig. S4B). More than 50% of the human m6A-associated
variants were located within RBP-binding regions. We found
19 RBPs were significantly overlapped with the regions having
m6A-associated variants (Supplementary Table S3). As expected,
the m6A reader YTHDF2 and m6A eraser ALKBH5 were signifi-
cantly overlapped with the regions having m6A-associated vari-
ants compared to the randomly selected regions. Moreover, GO
annotations demonstrated that these RBPs are enriched in RNA
splicing, RNA translation, and miRNA regulation (Supplemen-
tary Table S3). Among them, SFRS1, a known splicing factor, is re-
portedly involved in alternative splicing and is co-localized with
ALKBH5 in a demethylation-dependent manner, suggesting it
might participate in the regulation of RNA methylation [53].

It has been reported that m6A sites are enriched in miRNA
target sites and regulated by miRNAs [54]. Consistent with this,



Jiang et al. 5

Figure 2: A snapshot of the m6ASNP web server. A) The main interface. Variants can be input as standard VCF format or tab-delimited flat format. A file uploading
module was implemented to support large-scale prediction of m6A-associated variants. B) The prediction results were listed in the interactive table, allowing fast

retrieval of the result data. C) The gene ontology annotation was performed on the predicted m6A-associated variants. D) To present the alterations of the m6A motif,
the sequence logos were generated automatically for both functional gain and loss variants. E) The gain and loss m6A-associated variants, as well as the original SNPs,
were illustrated in the circos plot at a genomic level by the BioCircos [51] library.

we found m6A-associated variants predicted by m6ASNP oc-
curred significantly more frequently in miRNA target sites than
the non-m6A variants (Supplementary Fig. S4C). The miRNAs
with a significant number of m6A-associated variants are listed
in Supplementary Table S4. Among them, miR-132-3p and miR-

212-3p were mainly expressed in the brain and played critical
roles in neuronal functions as well as circadian clock entrain-
ment [55], which is consistent with m6A function [56]. Interest-
ingly, m6A-associated variants related to miR-132-3p and miR-
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Figure 3: Characteristics of m6A-associated variants predicted by m6ASNP. A) The cumulative distribution function of phastCons score for different levels of m6A-

associated variants and non-m6A variants in mouse dbSNP and human dbSNP. B) Proportional distribution of different variant types for the conserved m6A-associated
variants. C) Proportional distribution of the m6A-associated variants and non-m6A variants at three deleterious levels predicted by a combination of five variant
function predictors. A 2-tailed test of the population proportion was used to assess significance. D) Proportional distribution of m6A-associated variants and non-m6A
variants at different distances from the splicing sites.

212-3p were identified in both human and mouse, suggesting a
conservation of function in these variants.

Discussion

There is growing evidence that aberrant m6A modification is a
potential pathogenesis mechanism in many diseases including
cancer, which suggests the variants that disrupt m6A modifica-
tion might cause diseases. However, currently there is still a lack
of methodology for annotating variants from high-throughput
sequencing studies by m6A function. To address this, we de-
veloped a novel computation model, m6ASNP, that is dedi-
cated to predicting the variants that disrupt m6A modification.
Using m6ASNP, we performed further functional analysis on
m6A-associated variants. By integrating dataset regarding RBP-
binding regions, miRNA-targets and splicing sites, m6ASNP can
help to reveal the potential relationship among variants, m6A
modification, and other post-transcriptional regulation. Also,
in the disease-association analysis, more than 2,000 disease-

related variants that may be linked with alterations of m6A
modification were identified. This finding further proves that
m6ASNP is a promising tool for studying the potential role of
m6A variants in clinical investigation.

In conclusion, m6ASNP is a useful computational web server
for annotating variants by m6A function. m6ASNP will serve as
a supplemental method to run in parallel with other annotating
tools to comprehensively predict the function of the variants, for
both synonymous and nonsynonymous, in the high-throughput
sequencing studies of diseases.

Methods
Construction of m6A site prediction model

The sequences of the flanking regions 30 nucleotides upstream
and downstream of a given m6A residue were extracted. To
transform the primary sequences to numeric vectors, each nu-
cleotide was encoded by four distinct variables. In total, 60 nu-
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meric variables were generated for a single m6A residue. As re-
ported in recent studies [57, 58], specific RNA secondary struc-
tures around the potential adenosines can affect the enzymatic
process of RNA methylation. We therefore added secondary
structure features to our prediction model. Using the Nussi-
nov algorithm [59], we first predicted the secondary structure
for each m6A residue and marked the structure state (paired or
not paired) with a bracket or dot. For example, a given m6A nu-
cleotide with the sequence TTCCGGGACTGGCAGG could be rep-
resented as (((())))((.())). Next, we extracted the secondary struc-
ture triplet, formed by the structure state of the three adja-
cent nucleotides obtained from the predicted RNA structure.
The number of occurrences of each triplet in the sequence was
counted and normalized to produce a 27-dimension feature vec-
tor. Combining all the primary sequences and secondary struc-
ture features, we constructed an 87-dimension vector for each
m6A residue. These vectors were subsequently used as the in-
put for a random forest classifier for training and prediction.

The random forest classifier for human and mouse were
trained separately on the above-collected training set. The tree
number was optimized as 500 and the features used for each
splitting were set to 9. To assess the performance, we used 4-,
6-, 8-, and 10-fold cross-validation on the training set. The addi-
tional test set was also applied in our study to evaluate the ro-
bustness. The sensitivity, specificity, and Matthew’s correlation
coefficient were used to measure the predictor’s performance.

Construction of m6ASNP

Based on the m6A site prediction model, we then developed a
computational pipeline to predict the effect of variants on m6A
modification. First, variants were mapped to known transcripts.
The wild-type and mutant form of the transcript sequences were
then generated for m6A site prediction. For an m6A site that oc-
curred in the wild-type transcript and disrupted in the mutant
transcript, we defined it as an m6A-associated loss variant. The
m6A-associated gain variant was conversely formed. To mea-
sure the altered degree of m6A modifications, equation 1 was
defined as follows:

S = ln
(

RF Scorewild−type

RF Scoremutant

)
(1)

where S denotes the alteration score that quantitatively
represented the degree of m6A alterations between reference
and mutant samples and RF Score is the predicted score of a
given m6A site from the random forest model. Obviously, alter-
ation scores higher than 0 represent m6A-gain alterations, while
scores lower than 0 represent m6A-loss alterations. In some
m6A-associated loss variants, alteration scores were assigned to
MAX, which means that the core AC motif is destroyed by ge-
netic variants, leading to complete losses of m6A at those sites.

To provide convenience to the research community, we de-
veloped a web server called “m6ASNP” to specifically predict
the effect of variants on m6A modification. m6ASNP was imple-
mented using JAVA and PHP and is freely accessible at [60].

Derivation of the m6A-associated variants

Based on miCLIP-seq, PA-m6A-seq, and MeRIP-seq data, we then
combined them with the SNV data from dbSNP and performed
m6A-association prediction using m6ASNP. Following the same
procedure proposed in our previously published work [61], we

constructed three confidence levels of annotations of m6A-
associated variants for subsequent analysis.

The first annotation was the high-confidence-level data that
contained the m6A-associated variants derived from miCLIP-seq
and PA-m6A-seq experiments. Notably, the PA-m6A-seq can only
detect m6A signal in a resolution of ∼23 nt. Therefore, in or-
der to obtain precise modification sites, we scanned through all
the peak regions and extracted adenosine sites that conformed
to DRACH motif as the final m6A sites. On this basis, we re-
tained the variants that located near the m6A sites as the m6A-
associated variants.

The second annotation was the medium-confidence-level
data. We first downloaded all the published MeRIP-seq data from
the GEO database. According to the standard analysis pipeline
for MeRIP-seq data, we applied MACS2 [62], MeTPeak [63], and
Meyer’s method [64] to identify the m6A peaks in each study sep-
arately. In general, in MeRIP-seq experiments, if a given region
is identified as enriched in most of the adopted methods, it is
more likely to be a true modification signal. Therefore, to ob-
tain reliable m6A peaks, a tool called MSPC [65] was then applied
to construct consensus peaks from the above three methods.
In those consensus peaks, we then applied m6ASNP to predict
m6A-associated variants that significantly change the DRACH
motif.

The third annotation was the low-confidence-level data,
where we used the whole transcriptome sequences for predic-
tion. With a high threshold, m6ASNP will predict the potential
m6A-associated variants from all collected genetic variants.

In summary, we constructed 13,703 high-confidence-level,
54,222 medium-confidence-level, and 243,880 low-confidence-
level m6A-associated variants for human. Another 935 high-
confidence-level, 9,404 medium-confidence-level,and 17,739
low-confidence-level data were also constructed for mouse.

Annotation of m6A-associated variants

All the identified m6A-associated variants were annotated by
the transcript structure, including the CDS, 3′ UTR, 5′ UTR,
start codon, and stop codon. For the annotation of noncoding
RNA DASHR [66], miRBase (version 21) (miRBase, RRID:SCR 003
152) [67], GtRNAdb [68], and piRNABank [69] were used. To test
whether the m6A-associated variants were more preferentially
distributed in specific transcript structures, we calculated the
proportion of variants that located in a given transcript struc-
ture. In order to avoid bias, only the variants that were anno-
tated in mRNA were used, and the proportion in 5′-UTR, CDS,
and 3′-UTR were calculated. A 2-tailed proportion test was then
adopted to compare the proportion difference between m6A-
associated variants and non-m6A variants. In addition, in or-
der to evaluate their conservation scores and deleteriousness,
we further annotated the m6A-associated variants by ANNO-
VAR (updated 1 February 2016) (ANNOVAR, RRID:SCR 012821)
[70]. To avoid any bias, we only preserved those variants located
in mRNA for analysis and compared the conservative and dele-
terious differences between m6A-associated variants and non-
m6A variants in the same exon. As the selective pressures were
quite different in protein-coding sequences and untranslated
regions, the above comparison was carried out separately for
the CDS and UTR regions. Specifically, the conservation scores
were calculated by phastCons with 100-way and 60-way gene
conservation profiles for the human and mouse, respectively
[71]. The deleteriousness of each variants was measured by inte-
grating the prediction results from five pieces of software (SIFT
[72], PolyPhen2 HVAR [10], PolyPhen2 HDIV [10], LRT [73], and

https://scicrunch.org/resolver/RRID:SCR_003152
https://scicrunch.org/resolver/RRID:SCR_012821
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FATHMM [74]). We defined an aggregate score by counting the
number of above-listed methods that consider an SNV to be
deleterious. A deleterious score of 0 means that the variant is
predicted to be tolerated in all methods, while a deleterious
score of 5 means that the corresponding variant is predicted to
be deleterious in all five predictors. As a result, the aggregate
score may range from 0 to 5, and a higher score indicates a higher
probability of deleterious.

Disease-association analysis

A linkage disequilibrium (LD) analysis was performed for each
GWAS disease-associated SNP. We used Haploview (Haploview,
RRID:SCR 003076) to obtain the LD mutations using a parameter
r2 > 0.8 in at least one of the four populations from CHB, CEU, JPT,
and TSI. Then, we selected all m6A-associated variants by map-
ping the variants to GWAS disease-associated SNPs and their LD
mutations. Moreover, we collected ClinVar data to annotate the
m6A-associated variants with specific functions.

Post-transcriptional regulation association analysis

First, the m6A-associated variants were intersected with the
collected RBP regions for the same sample. We matched all
m6A-associated variants with miRNA targets to obtain the m6A-
associated variants that potentially impacted the miRNA-target
interactions. Additionally, we extracted 100 bp upstream of the 5′

splicing sites and 100 bp downstream of the 3′ splicing sites. Sub-
sequently, we matched the m6A-associated variants to these re-
gions to obtain the splicing sites affected by the m6A-associated
variants.

Identification of significant RBPs and miRNAs

To determine whether the m6A-associated variants were signifi-
cantly enriched in RBP regions, an empirical evaluation was per-
formed for each RBP. Using YTHDF2 as an example, the process
may be described as follows.

First, we calculated the number of m6A-associated vari-
ants within the YTHDF2-binding regions (defined as NRBP). Sec-
ond, because certain m6A-associated variants randomly occur
within the YTHDF2-binding regions, we estimated the back-
ground count of m6A-associated variants for YTHDF2 (defined
as NB). Thus, we extracted the longest transcript for each gene
from the gene annotation files. The weight of the ith gene was
defined as follows:

w(i ) = L (i )
n∑

i=0
L (i )

(2)

n∑
i=0

w(i ) = 1 (3)

where n was the total number of genes annotated and L(i) was
the length (bp) of the ith gene. Then, we extracted the same-
length reads of all YTHDF2-binding regions, which was defined
as NB, using weighted random sampling of all transcripts col-
lected above. We repeated this procedure 50,000 times and then
obtained the frequency FRBP when NB was greater than NRBP in
the cycle. This frequency may be regarded as an estimation of
the probability that observing NB greater then NRBPin random
condition. Next, the Benjamini-Hochberg method was applied

to control the false positives. An adjusted FRBP less than 0.05 was
considered a small probability event, suggesting that the m6A-
associated variants were more likely to occur in the RBP-binding
regions of YTHDF2. All significant RBPs are listed in Supplemen-
tary Table S2. Certain significant miRNAs, which are listed in
Supplementary Table S3, were obtained by performing a simi-
lar analysis of miRNA targets.

Availability of supporting source code and
requirements

Project name: m6ASNP
Project home page: https://m6asnp.renlab.org
https://github.com/RenLabBioinformatics/m6ASNP
RRID:SCR 016048
Operating system(s): platform independent
Programing language: PHP, java, javascript
License: GPLv3

Availability of supporting data

The training data and test data collected from Linder et al. and Ke
et al. are available in the supplementary data. These and snap-
shots of the code are also available in the GigaScience GigaDB
repository [75].

Additional files

Supplementary Figure S1: The feature contribution of the hu-
man and mouse model. Distribution plot of the feature’s Gini
importance for both (A) human and (B) mouse model. The pre-
diction capabilities of different combination of features for (C)
human and (D) mouse model.

Supplementary Figure S2: A systematic comparison of the
m6A-associated variants and non-m6A variants. (A) Proportional
distribution of the variants at different m6A confidence lev-
els and non-m6A variants located in the CDS and 3′ UTR. A
two-tailed test of population proportion was performed to as-
sess significance. (B) Boxplots show the gene isoforms of the
m6A-associated variants and non-m6A variants in different
databases. One-sided Wilcoxon signed-rank test was performed
to determine the significance. “∗∗” indicates a significance level
of P ≤ 0.01, while “∗” indicates P ≤ 0.05.

Supplementary Figure S3: The characteristics of m6A-
associated variants predicted by m6ASNP. (A) The conservation
differences between functional gain and functional loss vari-
ants. (B) The comparison of mutation deleteriousness between
functional gain and functional loss variants.

Supplementary Figure S4: Association analysis of m6A-
associated variants. (A) An example of m6A-associated variants
in disease. The red rectangle in exon 10 represents a synony-
mous mutation in PALB2, i.e., rs139362268, while the green rect-
angle represents the m6A site. The 1 to 6 numbering indicates
the different samples, followed by HepG2, GM12878, Momo-
mac-6, HeLa, shMETTL14 in A549 and shGFP in A549. MeRIP-seq
peak tracks of input, and the IP samples were scaled to the same
level and colored in red and blue. (B-C) Proportional distribu-
tion of different levels of m6A-associated variants and non-m6A
variants located within the RBP-binding regions and miRNA tar-
get regions. A two-tailed test of population proportion was per-
formed to assess significance. “∗∗” indicates a significance level
of P ≤ 0.01, while “∗” indicates a significance level of P ≤ 0.05.

https://scicrunch.org/resolver/RRID:SCR_003076
https://m6asnp.renlab.org
https://github.com/RenLabBioinformatics/m6ASNP
https://scicrunch.org/resolver/RRID:SCR_016048


Jiang et al. 9

Supplementary Table S1: The distribution characteristics of
m6A-associated variants in different transcript structures.

Supplementary Table S2: Significant disease phenotypes in
m6A-associated.

Supplementary Table S3: Significant RBPs in m6A-associated
variants Supplementary Table S3. Significant RBPs in m6A-
associated variants.

Supplementary Table S4: Significant miRNAs in m6A-
associated variants.

Supplementary Data 1. Single nucleotide resolution m6A
sites (Training data, hg19).
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