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Background: Immunotherapy has become the new standard of care for recurrent and
metastatic head and neck squamous cell carcinoma (HNSCC), and PD-L1 is a widely used
biomarker for immunotherapeutic response. However, PD-L1 expression in most cancer
patients is low, and alternative biomarkers used to screen the population benefiting from
immunotherapy are still being explored. Tumor microenvironment (TME), especially tumor
immune-infiltrating cells, regulates the body’s immunity, affects the tumor growth, and is
expected to be a promising biomarker for immunotherapy.

Purpose: This article mainly discussed how the immune-infiltrating cell patterns impacted
immunity, thereby affecting HNSCC patients’ prognosis.

Method: The immune-infiltrating cell profile was generated by the CIBERSORT algorithm
based on the transcriptomic data of HNSCC. Consensus clustering was used to divide
groups with different immune cell infiltration patterns. Differentially expressed genes
(DEGs) obtained from the high and low immune cell infiltration (ICI) groups were
subjected to Kaplan–Meier and univariate Cox analysis. Significant prognosis-related
DEGs were involved in the construction of a prognostic signature using multivariate
Cox analysis.

Results: In our study, 408 DEGs were obtained from high- and low-ICI groups, and 59 of
them were significantly associated with overall survival (OS). Stepwise multivariate Cox
analysis developed a 16-gene prognostic signature, which could distinguish favorable and
poor prognosis of HNSCC patients. An ROC curve and nomogram verified the sensitivity
and accuracy of the prognostic signature. The AUC values for 1 year, 2 years, and 3 years
were 0.712, 0.703, and 0.700, respectively. TCGA-HNSCC cohort, GSE65858 cohort,
and an independent GSE41613 cohort proved a similar prognostic significance. Notably,
the prognostic signature distinguished the expression of promising immune inhibitory
receptors (IRs) well and could predict the response to immunotherapy.
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Conclusion: We established a tumor immune cell infiltration (TICI)-based 16-gene
signature, which could distinguish patients with different prognosis and help predict
the response to immunotherapy.

Keywords: head and neck squamous cell carcinoma, immune cell infiltration, prognosis, response to
immunotherapy, immune inhibitor receptor

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is categorized
into oral cavity, nasal cavity, nasopharynx, oropharynx,
hypopharynx, larynx, and others. It ranks as the 10th most
common malignancy with 600,000 new cases worldwide
reported each year (Ferlay et al., 2015). Smoking and drinking
are considered to be the two main causes of HNSCC. Recently,
accumulating evidence has established a causal role of high-risk
human papillomavirus (HPV) infections in the etiology of
HNSCC (Castellsagué et al., 2016). HPV-related HNSCC
displays significantly increased sensitivity to
chemoradiotherapy and is associated with improved prognosis
(Chaturvedi et al., 2011; Dok et al., 2020).

Conventional therapies such as surgery and radiotherapy form the
basis of early-stage HNSCC treatment, with the 5-year OS reaching
80–90% for surgery and 65–80% for radiotherapy. Despite the
extended screening and improvement in treatment in the past few
years, more than 50% of HNSCC patients are at an advanced stage
when diagnosed, and the 5-year survival rate is only 34.9% (Chauhan
et al., 2015). More than 50% of locally advanced patients would
develop recurrence or distant metastasis within 2 years, following
radical treatment (Sacco and Cohen, 2015). For patients with the late
stage, the treatment opportunity is limited after first-line treatment
failure. The prognosis of these patients is extremely poor. The 5-year
survival rate of these patients is only 3.6%, and the median survival
time is less than half a year (Machiels et al., 2015).

In recent years, immunotherapy has achieved great success in
a variety of tumors such as non–small cell lung cancer (NSCLC),
triple-negative breast cancer (TNBC), melanoma, and other
tumors (Luke et al., 2017; Migden et al., 2018; West et al.,
2019; Mansfield et al., 2020; Schmid et al., 2020; Paz-Ares
et al., 2021). The use of immune checkpoint inhibitors both as
second-line and first-line treatments has also led to significant
improvement in HNSCC patient prognosis (Ferris et al., 2016;
Bauml et al., 2017; Burtness et al., 2019). However, only a part of
HNSCC patients could benefit from immunotherapy; most
patients have primary resistance or gradual resistance to
immunotherapy. The exact mechanism remains incompletely
illustrated. Recent studies suggested that the response to
immunotherapy might rely on tumor microenvironment
(TME). TME was composed of complex components such as
extracellular matrix, stromal cells, endothelial cells, immune cells,
and various soluble molecules (Wang et al., 2020). Among them,
immune-infiltrating cells, including T cells, NK cells, B cells, and
macrophages, were the most active and acted directly on tumors.
The heterogeneity of tumor immune cell infiltration was another
vital factor that determined the best response to the patient’s
immunotherapy. Patients with enriched T-cell infiltration might

respond better to immunotherapy. On the contrary, patients with
poor T-cell infiltration might be resistant to immunotherapy, and
additional intervention was needed for those patients (Gajewski
et al., 2013; Srinivasan et al., 2018).

Moreover, immune-infiltrating cells proved to be an
independent prognostic factor in cancers. For instance,
increased infiltration of NK cells was correlated with an
improved survival of melanoma, hematological malignancies,
and other solid tumors (Fang et al., 2017). Tumor-infiltrating
CD4+T cells and CD8+T cells were correlated with superior
prognosis of breast cancer, colorectal cancer, glioblastoma, and
cervical cancers (Saito et al., 2016; Maimela et al., 2019).

The TME analysis of HNSCC also proved that immune-
infiltrating cells, cytokines, and immunomodulatory molecules
determine the host’s antitumor immune response ability (Ferris,
2015; Chen and Mellman, 2017). Therefore, a better
understanding of the TME, especially the tumor-infiltrating
cells, is essential for improving response to immunotherapy
and the prognosis of HNSCC patients. In this study, we used
the CIBERSORT algorithm to generate a tumor immune cell
infiltration profile of HNSCC and then explored the potential
relationship between immune-infiltrating cells and patients’
prognosis and immunotherapeutic response. We hope this
study will provide valuable insights into the complex tumor
immune microenvironment and help us understand how
immune status affects cancer cells and immunotherapy.

MATERIALS AND METHODS

Data Acquisition and Processing
The HNSCC RNA-seq data and the corresponding clinical
information were downloaded from The Cancer Genome Atlas
database (TCGA, https://portal.gdc.cancer.gov/) and Gene
Expression Omnibus database (GEO, https://www.ncbi.nlm.
nih.gov/gds). The GSE65858 dataset generated by Illumina was
processed using the lumi software package. The GSE41613
dataset from Affymetrix was processed using the RMA
algorithm. As for TCGA-HNSCC microarray data, RNA-seq
data in the form of fragments per kilobase of transcript per
million mapped reads (FPKM) were adjusted to the form of
transcripts per kilobase of transcript per million mapped reads
(TPM) using the function tpm in the edge package. We presented
the expression profile of TCGA cohort similar with the results
from the GSE65858 cohort and GSE41613 cohort, so that the data
were comparable among samples (Wagner et al., 2012; Zeng et al.,
2019). The batch effects between different datasets within the
same platform were adjusted by the ComBat method (Leek et al.,
2012). The workflow of our study was shown in Figure 1.
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Consensus Clustering for
Immune-Infiltrating Cells
The CIBERSORT algorithm (Newman et al., 2015) was applied to
generate the immune cell infiltration profiles. Then, consensus
clustering was performed to determine different immune cell
infiltration patterns using the ConsensusClusterPlus package
(Wilkerson and Hayes, 2010). The ESTIMATE algorithm
(Yoshihara et al., 2013) was used to generate immune score,
estimate score, and stromal score using the “ESTIMATE”
package of R.

Weighted Gene Co-expression Network
Analysis
The weighted gene co-expression network analysis (WGCNA)
was used to identify the co-expressed gene modules using the
WGCNA package of R. A threshold was set to β = 0.5 to ensure a
scale-free network. The dendrogram visually displayed the
clustering of genes, and the heatmaps showed the correlation
between co-expressed gene modules and TICI. In our study,
positive correlation modules with high relevant coefficients from
the GSE65858 cohort and TCGA cohort were identified. Finally,
the overlapping co-expressed genes from these two cohorts were
visualized as Venn diagram using the VennDiagram package of R
and were used for stepwise prognosis-related gene identification.

Functional and Pathway Annotation
The gene ontology (GO) function and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis were
performed for the overlapping co-expressed genes using the
clusterProfiler package.

Establishment of the Prognostic Signature
and Preliminary Exploration of the Genes of
the Signature
Kaplan–Meier and univariate Cox regression analyses were
performed to identify the prognosis-related genes. With
multivariate Cox analysis, we developed a prognostic
signature. The risk formula is as follows:

Risk score � ∑n

i�1coefi p expi

Coefi, expi, and n represented the multivariate Cox regression
coefficient, the gene expression value, and the number of genes in
the prognostic signature, respectively. Next, the roles of the genes
in the prognostic signature were explored in mRNA and protein
expression levels with the HPA database (https://www.
proteinatlas.org/) (Uhlen et al., 2010).

Verification of the Prognostic Signature
The risk scores of the 635 HNSCC patients were calculated according
to the risk formula, and theHNSCCpatients were assigned into high-
and low-risk groups according to the optimal cutoff value of the risk
score based on the maximum value of (sensitivity + specificity-1) in
the ROC curve (Youden index) using the surv_cutpoint function of
the survminer R package. Kaplan–Meier analysis, risk curves, ROC

curves, nomogram, and univariate and multivariate Cox analyses
were used to evaluate the prognostic signature. In addition, TCGA-
HNSCC subgroup, GSE65858 subgroup, and an external GSE41613
cohort were used as the validation groups to verify the gene
prognostic signature.

Since the prognostic signature was developed based on the
TICI, the correlation analysis of signature genes with immune-
infiltrating cells and immune score was performed. The
expression of immune inhibitor receptors (PD-L1, PD-1,
CTLA-4, LAG3, HAVCR2, and TIGIT) in the high- and
low-risk groups was also compared. Moreover, the Tumor
IMmune Estimation Resource database (TIMER: https://
cistrome.shinyapps.io/timer/) (Li et al., 2017) was used to
investigate the association between prognostic genes of the
signature and immune-infiltrating cells (CD8+T cells,
CD4+T cells, B cells, macrophages, neutrophils, and
dendritic cells).

Mutation and Prognostic Signature
The Masked Somatic Mutation data (VarScan) of HNSCC was
downloaded from TCGA database and was processed using the
maftools package of R (Mayakonda et al., 2018). The mutation
characteristics in HNSCC were analyzed, and the correlation
analysis between mutation and risk score was performed.

Gene Set Enrichment Analysis
GSEA (version GSEA 4.1.0) was performed to annotate the
function and pathway enrichment of the prognostic signature.

Statistical Analysis
Perl was used for data processing. R (MathSoft, version 4.0.3) was
used for plotting and statistical analysis. The packages used were
as follows: limma, pheatmap, ggplot2, org.Hs.eg.db,
clusterProfiler, VennDiagram, WGCNA, preprocessCore,
estimate, enrichplot, survival, glmnet, survminer, survivalROC,
beeswarm, and rms. Meta-analysis was performed to assess
heterogeneity of different cohorts and to generate the hazard
rate of the risk score of each dataset using the Stata software
(Texas, U.S., StataIC 15).

The Mann–Whitney test was performed for continuous
variables of two groups, and the Kruskal–Wallis test was
performed for continuous variables of multiple groups (with
the Bonferroni correction for pairwise comparisons among
multiple groups). The log-rank test and Cox regression were
used for survival analysis. All tests were two-sided, and for all
statistical tests, a value of p < 0.05 was considered statistically
significant unless otherwise specified.

RESULTS

Establishment and Evaluation of
TICI-Related Groups
The immune cell infiltration profile was generated based on
the transcriptomic data of TCGA cohort (n = 411) and
GSE65858 cohort (n = 224). The clinical characteristics of
these two cohorts are shown in Table 1. The patients were
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divided into two immune infiltration patterns using
consensus clustering (Figure 2A). In our study, the cluster
with high infiltration of CD8+T cells, activated memory
CD4+T cells, activated NK cells, follicular helper T cells,
memory B cells, naive B cells, plasma cells, and M1 and
M2 macrophages was named the high tumor immune cell
infiltration (TICI) group. On the other hand, the cluster with
low infiltration of the aforementioned immune cells but with
high infiltration of resting immune cells or inflammatory cells,
such as resting memory CD4+T, resting NK cells, neutrophils,
M0 macrophages, and mast cells, was named the low TICI

group (Figure 2B). Kaplan–Meier analysis of these tumor
immune-infiltrating cells indicated that high infiltration of
activated CD4+T cells, CD8+T cells, follicular helper T cells,
and naive B cells was related with favorable prognosis, while
high infiltration of M0 macrophages, neutrophils, and mast
cells was related with poor prognosis (Supplementary Figure
S1). Perhaps not surprised, the high-ICI group was associated
with an improved survival rate, and the low-TICI group was
related with a poor survival rate (Supplementary Figure S2).

Next, we explored the immune features of these two ICI-related
groups. First, the estimate score and immune score were higher in the

TABLE 1 | Characteristics of the 635 HNSCC patients.

Characteristic Clinical feature Total GSE65858 TCGA-HNSCC p-value

Gender Female 151(23.78%) 38(16.96%) 113(27.49%) 0.004
Male 484(76.22%) 186(83.04%) 298(72.51%)

Age ≤65 408(64.25%) 148(66.07%) 260(63.26%) 0.536
>65 227(35.75%) 76(33.93%) 151(36.74%)

Stagea Stage I–II 128(20.16%) 45(20.09%) 83(20.19%) 0.399
Stage III–IV 450(70.87%) 179(79.91%) 271(65.94%)
Unknown 57(8.98%) 0(0%) 57(13.87%)

T stagea T1-2 255(40.16%) 98(43.75%) 157(38.2%) 0.951
T3-4 333(52.44%) 126(56.25%) 207(50.36%)
Unknown 47(7.4%) 0(0%) 47(11.44%)

N stagea N0 203(31.97%) 72(32.14%) 131(31.87%) 0.080
N1-3 350(55.12%) 152(67.86%) 198(48.18%)
Unknown 82(12.91%) 0(0%) 82(19.95%)

M stagea M0 368(57.95%) 218(97.32%) 150(36.5%) 0.109
M1 6(0.94%) 6(2.68%) 0(0%)
Unknown 261(41.1%) 0(0%) 261(63.5%)

aStaging according to the seventh edition AJCC guidelines.
The clinical characteristic differences between TCGA and GSE65858 datasets based on the χ2 test and with continuity correction where appropriate.

FIGURE 1 | Workflow for our study. TICI, tumor immune cell infiltration.
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FIGURE 2 | (A)Consensus clustering matrix for k = 2. (B)Heatmap of immune-infiltrating cells. (C–E) Immune score, estimate score, and stromal score in the high-
and low-TICI groups. (F–J) Expression of PD-L1, PD-1, CD28, CD80, and CD86 in the high- and low-TICI groups. (K) Expression of HLA genes in the high- and low-TICI
groups. (L) Immune-infiltrating cells in the high- and low-TICI groups.
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high-ICI group, while the stromal score was higher in the low-ICI
group (Figures 2C–E). The expression of immune-related genes such
as PD-L1, PD-1, CD80, CD28, CD86, and human leukocyte antigen
(HLA) family genes was also significantly higher in the high-ICI
group (Figures 2F–K). The infiltration of the immune cells between
the two groups is shown in Figure 2L.

Taken together, high- and low-ICI groups were presented
with distinct immune cell infiltration characteristics, different
immune-related molecule expression, and were associated
with different prognosis. Compared with the low-TICI
group, the high-TICI group might have good
immunoreactivity.

FIGURE 3 | Identification of TICI-related co-expressed genes. (A,B) Clustering dendrograms of TCGA dataset (A) and GSE65858 dataset (B). (C,D) Correlation
heatmaps of different modules and TICI in TCGA dataset (C) andGSE65858 dataset (D). (E) Identification of the overlapping co-expressed genes from the blackmodule
in TCGA dataset and the turquoise module in the GSE65858 dataset using VennDiagram software.
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Weighted Gene Co-expression Network
Analysis
In TCGA dataset, the black module (|r| = 0.4, p = 4e−16) and
green–yellow module (|r| = 0.43, p = 6e−20) were highly positively
related with high-TICI compared with the other modules and were
chosen as the candidatemodules because the blackmodule hadmuch
more TICI-related genes than the green–yellow module and was
finally chosen for subsequent analysis. Similarly, the turquoise
module (|r| = 0.41, p = 3e−10) in the GSE65858 dataset highly
relevant to high-TICI was selected for subsequent analysis
(Figures 3A–D). Ultimately, a total of 408 overlapping genes
from the black module in TCGA dataset and the turquoise
module in the GSE65858 dataset were obtained and participated
in subsequent identification of prognosis-related genes (Figure 3E).

GO and KEGG Analysis
The expression of the 408 overlapping genes between high- and low-
TICI groups is shown in Figure 4A. GO and KEGG analysis were
performed to explore the biological characteristics of the 408 genes.
For biological processes (BP), these genes mainly participated in
T-cell activation, lymphocyte differentiation, leukocyte cell–cell
adhesion, and lymphocyte and leukocyte proliferation. In terms of
cellular components (CC), these genes were related to the MHC
protein complex. The changes in molecular function (MF) showed
that these genes were correlated with immune receptor activity,
cytokine binding, MHC class II receptor activity, cytokine receptor
activity, and MHC class II protein complex binding. The KEGG
pathway analysis indicated that these genes were mainly enriched in
signal pathways such as hematopoietic cell lineage, intestinal immune
network for IgA production, cell adhesion molecules, and Th1, Th2,
and Th17 cell differentiation (Figures 4B–E).

Evaluation and Validation of the 16-Gene
Prognostic Signature
Using multivariate Cox analysis, we obtained the following risk
formula:

Risk score = (P2RY8 p 0.490331935) + (FLT3LG p

−0.363760832) + (GIMAP1 p 0.387873078) + (CD79A p

−0.168052271) + (SLAMF6 p 0.368179613) + (FGD3 p

−0.238932879) + (IKZF3 p 0.193711011) + (FAM107A p

−0.263580347) + (MAP4K1 p 0.373764051) + (GZMM p

−0.223385774) + (CCR7 p −0.508653299) + (P2RY10 p

0.321200005) + (XCR1 p −0.277393854) + (NLRC3 p

−0.374350099) + (UBASH3A p −0.454714574) + (ABCB1 p

−0.45779747).
Also, the multivariate Cox analysis of the 16 genes is shown in

Figure 5A. Based on the risk formula, we calculated the risk score
for each of the 635 HNSCC patients. According to the maximum
value of the Youden index, we obtained the optimal cutoff value
of the risk score, and the patients were divided into high- (n =
259) or low-risk group (n = 376) based on the cutoff value
(Figure 5B). The Kaplan–Meier analysis showed that the low-
risk group had significantly favorable prognosis compared with
the high-risk group (Figure 5C). Moreover, the patients in the
low-risk group also had better OS in different clinical subgroups
(age (≤65 versus >65 years old), sex (male versus female), T stage
(T1-2 versus T3-4), N stage (N0 versus N1-3), and pathological
stage (stage I–II versus stage III–IV)) (Supplementary Figure
S3). The AUC values were 0.712 for 1 year, 0.703 for 2 years, and
0.700 for 3 years (Supplementary Figure S4A). The risk score,
the survival status, and the expression features of the 16
prognostic genes of the 635 HNSCC patients are shown in
Figures 5D–F. In addition, we integrated age, gender, T stage,

FIGURE 4 | (A) Heatmap of the overlapping co-expressed genes; (B–E)GO and KEGG analysis for the overlapping co-expressed genes. BP (B), CC (C), MF (D),
and KEGG pathway (E).
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N stage, and risk score for prognosis analysis and drew an OS
nomogram (Supplementary Figure S4B). The calibration curves
further confirmed the prognostic value of the gene signature
(Supplementary Figures S4C–E). Univariate Cox analysis
indicated that the risk score (HR = 2.781, 95%CI: 2.132–3.626,
p < 0.001) was closely related with the OS (Supplementary
Figure S4F). When the clinical parameters (age, gender,
pathology stage, T stage, and N stage) were included into the
multivariate Cox regression analysis, we observed that the risk
score (HR = 2.579, 95%CI = 1.953-3.404, p < 0.001) was an
independent prognostic predictor (Supplementary Figure S4G).

In our study, TCGA subgroup, GSE65858 subgroup, and an
independent GSE41613 dataset were used to further verify the
prognostic signature. Perhaps not surprising, the OS of HNSCC
patients in the low-risk group of TCGA cohort and GSE65858
cohort were significantly longer than that of the high-risk group
(Supplementary Figures S5A,B). The 1-, 2-, and 3-year AUC
values in TCGA cohort were 0.702, 0.701, and 0.703, respectively,
and those in GSE65858 cohort were 0.737, 0.713, and 0.684,

respectively (Supplementary Figures S5D,E). GSE41613 was an
independent cohort composed of 97 HNSCC patients. According
to the optimal cutoff value of the risk score, the patients in the
GSE41613 cohort were assigned into a high- or low-risk group.
Patients in the low-risk group had improved OS compared with
the high-risk group (Supplementary Figure S5C). The 1-, 2- and
3-year AUC values of the GSE41613 cohort were 0.701, 0.600, and
0.567, respectively (Supplementary Figure S5F).

In order to confirm the predictive performance of these
cohorts, meta-analysis was performed using the Stata software.
Comparing the standardized mean difference (SMD) of these
cohorts, we observed no obvious heterogeneity among TCGA
cohort, GSE65858 cohort, the merger cohort (TCGA +
GSE65858), or even GSE41613 cohort (p = 0.727) which
indicated that these cohorts were comparable and the merger
of TCGA cohort and GSE65858 cohort was reasonable
(Supplementary Figure S5G). Considering that 1-, 2- and 3-
year AUC values of the GSE41613 cohort were 0.701, 0.600, and
0.567, respectively, we performed multivariate Cox analysis on

FIGURE 5 | (A)Multivariate Cox analysis for the 16 genes in the prognostic signature. (B) Best cutoff value based on the ROC curve. (C) Kaplan–Meier analysis for
the high- and low-risk groups. (D–F) Distribution of risk score, survival status, and the expression feature of the 16 prognostic genes of the 635 HNSCC patients.
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the HNSCC patients within 3-year OS. The result showed that the
risk score was an independent risk factor with HR being 2.25
(95%CI: 1.81–3.34, p < 0.05) in TCGA cohort, HR being 3.12

(95%CI: 1.98–4.91, p < 0.05) in the GSE65858 cohort, HR being
2.63 (95%CI: 2.04–3.39, p < 0.05) in the merger cohort, HR being
1.80 (95%CI: 1.14–2.84, p < 0.05) in the GSE41613 cohort, and
HR being 2.50 (95%CI: 2.11–2.97, p < 0.05) of the total combined
effect (Supplementary Figure S5H).

Preliminary Exploration of the Prognostic
Genes in the Prognostic Signature
Next, the 408 overlapping genes were subjected into
Kaplan–Meier analysis and univariate Cox analysis. A total of
59 prognosis-related genes were further identified (Table 2) and
were introduced into multivariate Cox analysis. Finally,
16 prognosis-related genes (P2RY8, FLT3LG, GIMAP1,
CD79A, SLAMF6, FGD3, IKZF3, FAM107A, MAP4K1,
GZMM, CCR7, P2RY10, XCR1, NLRC3, UBASH3A, and
ABCB1) were determined and participated in the
construction of the prognostic signature. The Kaplan–Meier
analysis of the 16 genes in the prognostic signature is shown in
Supplementary Figure S6.

In mRNA expression levels, P2RY8,MAP4K1, IKZF3, FGD3,
CD79A, CCR7, FLT3LG, and NLRC3 were highly expressed in
HNSCC tissues. On the other hand, XCR1, ABCB1, and
FAM107A were highly expressed in normal tissues
(Figure 6). We further checked the protein levels of these
prognostic genes between the HNSCC and normal tissues
with the HPA database. Notably, we observed that the
protein levels of XCR1, FGD3, and CD79A were moderately
expressed in HNSCC tissues. The CCR7 protein level was highly
expressed in HNSCC tissues, and the protein levels of P2RY10
and GIMAP1 were both moderately expressed in HNSCC and
normal tissues (Figure 7).

Prognostic Signature and Immunity
Since the prognostic signature was developed based on TICI, we
subsequently explored the potential relationship between the
prognostic signature and immunity. Through correlation
analysis between the prognostic genes in the gene signature
and immune score, we observed that the 16 genes were all
positively associated with the immune score (Supplementary
Figure S7). The correlation analysis of the immune-infiltrating
cells and risk score indicated that the infiltration of activated
memory CD4+T cells, CD8+T cells, and follicular helper T cells
and B cells was negatively related with the risk score, while the
infiltration of M0 and M2 macrophages was positively related
with the risk score (Supplementary Figure S8). Indeed, activated
memory CD4+T cells, CD8+T cells, and follicular helper T cells
and B cells had higher infiltration in the low-risk group, and M0
and M2 macrophages had higher infiltration in the high-risk
group (Supplementary Figure S9A). Comparing the immune-
related scores between the low- and high-risk groups, we found
that the immune score and estimate score were higher in the low-
risk group (Supplementary Figures S9B–D). The TIMER
database was used to explore the relationship between the 16
prognostic genes and immune-infiltrating cells. As shown in
Supplementary Figure S10, all the 16 genes (P2RY8, FLT3LG,
GIMAP1, CD79A, SLAMF6, FGD3, IKZF3, FAM107A, MAP4K1,

TABLE 2 | Prognosis-related genes obtained from univariate Cox analysis.

Gene HR HR.95L HR.95H p-value

CCR7 0.757282 0.673764 0.851152 3.11E-06
ZAP70 0.720062 0.618221 0.83868 2.43E-05
FGD3 0.687978 0.574469 0.823914 4.80E-05
GZMM 0.756317 0.660316 0.866276 5.51E-05
CCL22 0.768989 0.676081 0.874663 6.38E-05
CD5 0.764502 0.669614 0.872837 7.14E-05
UBASH3A 0.682944 0.564518 0.826213 8.68E-05
NLRC3 0.660813 0.536951 0.813246 9.15E-05
CD6 0.75632 0.654665 0.87376 0.000149
FAM107A 0.699369 0.578115 0.846055 0.000233
TMC8 0.73798 0.627177 0.868358 0.000252
CD3E 0.803111 0.714091 0.903229 0.000254
PARP15 0.612672 0.468862 0.800591 0.000331
SPOCK2 0.821609 0.736946 0.915998 0.000398
MAP4K1 0.778105 0.677136 0.894128 0.000403
CD247 0.785414 0.686247 0.898911 0.000452
ABCB1 0.629333 0.485484 0.815804 0.00047
ITK 0.734542 0.61695 0.874548 0.000528
CD3D 0.836872 0.755412 0.927116 0.000654
IL2RG 0.817949 0.727 0.920275 0.000833
NAPSB 0.814394 0.721144 0.919702 0.000936
FCRL3 0.66462 0.521579 0.846888 0.000953
KLRB1 0.793575 0.691751 0.910386 0.000967
GRAP2 0.687556 0.550208 0.85919 0.000985
CD79A 0.882779 0.819572 0.95086 0.001004
PPP1R16B 0.784454 0.678319 0.907197 0.001064
MS4A1 0.799308 0.698678 0.914432 0.001103
CD19 0.809674 0.712222 0.92046 0.001252
BATF 0.79878 0.696769 0.915725 0.001269
CTSW 0.822953 0.730979 0.926499 0.001271
CCR4 0.777243 0.666568 0.906294 0.001303
TRAF3IP3 0.715535 0.583436 0.877544 0.001307
LGALS2 0.803134 0.70264 0.918001 0.001307
BLK 0.724381 0.592922 0.884988 0.001601
CLEC2D 0.730292 0.600642 0.887927 0.001622
CXCR3 0.825995 0.732821 0.931016 0.001745
LY9 0.674686 0.525527 0.866179 0.002022
CD27 0.851487 0.768029 0.944014 0.002253
SLAMF1 0.755151 0.629558 0.905799 0.002478
CD3G 0.800172 0.69193 0.925347 0.002645
WDFY4 0.767144 0.645377 0.911887 0.002648
CTLA4 0.796108 0.685818 0.924134 0.002727
SIRPG 0.808793 0.703203 0.930237 0.002948
GPR18 0.704885 0.559049 0.888766 0.003106
TIGIT 0.795028 0.682813 0.925686 0.00313
XCR1 0.711351 0.565779 0.894379 0.003551
RSF13B 0.703175 0.55466 0.891456 0.003624
FLT3LG 0.695071 0.543888 0.888277 0.003653
GIMAP7 0.825198 0.7249 0.939374 0.003662
ITGB7 0.784689 0.664842 0.92614 0.004139
P2RY10 0.802774 0.688598 0.935881 0.005007
SLAMF6 0.834623 0.734173 0.948818 0.005728
LYZ 0.901775 0.837561 0.970912 0.006085
IKZF3 0.836453 0.735118 0.951757 0.00672
CD28 0.770323 0.637652 0.930597 0.006814
IRF4 0.826852 0.720229 0.949259 0.00695
PDCD1 0.824498 0.716668 0.948551 0.006964
P2RY8 0.819641 0.706603 0.950762 0.008618
GIMAP1 0.774174 0.638544 0.938614 0.009198
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GZMM, CCR7, P2RY10, XCR1, NLRC3, UBASH3A, and ABCB1)
were significantly associated with B cells, CD4+T cells,
CD8+T cells, dendritic cells, neutrophils, and macrophages.

Notably, the prognostic signature could distinguish the
expression of immune inhibitor receptors (PD-1, CTLA-4,
LAG3, HAVCR2, and TIGIT) and HLA genes well. Compared

FIGURE 6 | Expression of the 16 genes in the prognostic signature in normal and HNSCC samples.
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with the high-risk group, the low-risk group had high expression
of PD-1, CTLA-4, LAG3, TIGIT, HAVCR2, and HLA genes
(Supplementary Figure S9E). Unfortunately, there was no
statistical difference in PD-L1 gene expression between the
high- and low-risk groups (Figures 8A–F).

Considering the patients in the low-risk group had higher
tumor immune cell infiltration and a higher expression of
immune-related biomarkers, they were supposed to have better
response to immunotherapy. As expected, the low-risk group had
a higher IPS (immunophenoscore) of CTLA4 and PD-1, which
reflected the percentages of the expression of certain immune
genes on tumor-associated immune cells such as lymphocytes
and macrophages and were biomarkers for good response to

immune checkpoint inhibitor treatment, suggesting that the low-
risk group might respond better to anti-PD-1 therapy, anti-
CTLA-4 therapy, and anti-PD-1 combined with anti-CTLA-4
therapy (Figures 8G–J).

Gene Set Enrichment Analysis
GSEA was used to explore the function and pathway enrichment of
the high- and low-risk groups. In general, the low-risk group was
associated with more immune-related GO terms and KEGG
pathways compared with the high-risk group. GO analysis
showed that the low-risk group was mainly related with
activation of immune response, antigen receptor-mediated
signaling pathway, cell–cell recognition, T-cell receptor signaling

FIGURE 7 | Protein expression levels of the genes of the prognostic signature in normal and HNSCC tissues in the HPA database.
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pathway, and impaired T-cell function. KEGG analysis indicated
that the low-risk group was active in immune-associated pathways
such as B-cell receptor signaling pathway, chemokine signaling
pathway, natural killer cell-mediated cytotoxicity signaling

pathway, primary immunodeficiency signaling pathway, and
T-cell receptor signaling pathway, while there was little immune-
related GO term and KEGG pathway enriched in the high-risk
group (Figures 8K–N).

FIGURE 8 | Expression of immune inhibitor receptors such as PD-L1 (A), PD-1 (B), CTLA-4 (C), LAG3 (D), HAVCR2 (E), and TIGIT (F) between the high- and low-
risk groups. (G–J)Response to immune checkpoint inhibitors of the high- and low-risk groups. (K–N)Gene set enrichment analysis. (K) Top five GO terms in the low-risk
group. (L) Top five GO terms in the high-risk group. (M) Top five KEGG pathways in the low-risk group. (N) Top three KEGG pathways in the high-risk group.
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Tumor Mutational Burden and Prognostic
Signature
Wedownloaded the somaticmutation data of HNSCCpatients from
TCGA database and utilized the “maftools” package to visualize the
mutation data. As illustrated in Figure 9, the top five mutated genes
of HNSCC were TP53 (66%), TTN (35%), FAT1 (21%), CDKN2A
(20%), and MUC16 (17%) (Figure 9A). Missense mutation, single-
nucleotide polymorphism (SNP), and C >Twere themost common
mutation types in HNSCC (Figure 9B).

Then, we calculated the TMB (the total number of mutation
events per million bases) of each HNSCC patient and explored the
potential relationship of TMB and the prognostic signature.
Interestingly, we found that the high-risk group had higher TMB,
and there was a weak positive correlation between the TMB and risk
score (Figures 9C,D). According to the optimal cutoff value (cutoff
value being 4.2), the patients were classified into a high- (n = 115) or
low-TMB (n = 291) group. The Kaplan–Meier analysis showed that
the high-TMB group was associated with poorer prognosis (p =
0.003) (Figure 9E). Accordingly, the patients with a high TMB and
high-risk score had the worst OS in our study (Figure 9F).

DISCUSSION

In the past few years, immune checkpoint inhibitors have reshaped
the landscape of the treatment of HNSCC. The combined positive

score (CPS) of PD-L1 was so far the most effective predictive
biomarker of response to immunotherapy in HNSCC, while the
other biomarkers including tumor mutation burden and
microsatellite instability have not been well established. Extensive
evidence indicates that tumor microenvironment including stromal
cells, fibroblasts, extra-endothelial cells, innate immune cells
(macrophages, neutrophils, dendritic cells, innate lymphocytes,
bone marrow–derived suppressor cells, and NK cells), and
adaptive immune cells (T cells and B cells) may be useful targets
for immunotherapy strategies and closely related to the host’s
antitumor ability (Ngiow et al., 2015; Srinivasan et al., 2018). Due
to the importance and complexity of tumor immune cell infiltration,
we aimed to explore the potential relationship between different
immune cell infiltration patterns, HNSCC patients’ prognosis, and
immune heterogeneity and to identify prognosis-related DEGs by
comparing the expression profiles of different infiltration patterns.
Finally, we developed a TICI-based 16-gene prognostic signature.

First, we preliminarily explored the relationship between tumor
immune-infiltrating cells and prognosis. It is well known that NK
cells and CD8+T cells are the most promising targets in immunity
therapy. NK cells directly induce tumor cell death by releasing
perforins and granzymes, and cytotoxic CD8+T cells induce
tumor cell death with the engaging of the major
histocompatibility complex (MHC) with or without the help of
Th cells (Cheng et al., 2013; Henning et al., 2018). Other important
cells such as macrophages accumulate significantly in tumor

FIGURE 9 | Landscape of the mutations in HNSCC. (A) Distribution of mutation types among the top 30 genes. (B) Variant classifications, variant types, and SNV
classes. (C) Levels of tumor mutation burden in high- and low-risk groups. (D) Correlation between the risk score and tumor mutation burden. (E) Survival analysis of
tumor burden mutation. (F) Survival analysis of tumor mutation burden combined with the risk score.
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microenvironment. M1 macrophages secrete pro-inflammatory
cytokines and have antitumor properties, while M2 macrophages
produce anti-inflammatory cytokines and exert pro-tumor
properties (Xiao et al., 2020). In our study, immune-infiltrating
T cells and B cells were associated with superior prognosis, while M0
macrophages, neutrophils, and mast cells were related with poor
prognosis. Using consensus clustering, we obtained two immune cell
infiltration patterns. The cluster with high infiltrating cells such as
T cells, B cells, NK cells, and M1 macrophages was named the high-
TICI group. On the other hand, the cluster with high infiltration of
immune resting cells or inflammatory cells such as resting memory
CD4+T, resting NK cells, M0 macrophages, neutrophils, and mast
cells was named the low-TICI group. The heterogeneity of tumor
immune cell infiltration was also a vital factor in determining the
patients’ prognosis. Zeng et al. (2019) found that high tumor-
infiltrating CD4+T cells, CD8+T cells, NK cells, and M1
macrophages were associated with favorable prognosis in gastric
cancer. Just as the previous study, the high-TICI group with high
infiltration of T cells, B cells, NK cells, and M1 macrophages was
related to improvedOS, and the low-TICI groupwith low infiltration
of these cells was related to poor OS.

Except for difference in immune cell infiltration, the high-TICI and
low-TICI groups had significant difference in immune score, estimate
score, HLA gene, and T-cell activation-related receptor (PD-L1, PD-1,
CD28, CD80, CD86) expression. In detail, the high-TICI group had
higher immune score, estimate score, and higher expression of HLA
genes and T-cell activation-related genes. Extensive studies showed
that the expression of the immunosuppressive receptors negatively
regulated T cells; however, contradictory to the aforementioned
mechanism was that high immune cell infiltration, especially high
T-cell infiltration, was accompanied by a high expression of immune
inhibitor receptors. One possible explanation could be that the
increased immune infiltrating cells triggered antitumor immunity
and escaped the antitumor immunity; the tumors upregulated the
expression of these immunosuppressive genes such as PD-L1
expression (Klümper et al., 2020; Liu et al., 2020). In turn, the
immune-infiltrating cells were downregulated by immune inhibitor
receptors (Juneja et al., 2017). Under these circumstances, treating
with immune checkpoint inhibitors would bring the patients’ best
response to immunotherapy. Thus, immune inhibitor genes and
tumor immune cell infiltration used together to evaluate the
response to immunotherapy could be more effective.

Usingweighted gene co-expression network analysis, we acquired
408 TICI-related co-expressed genes. Different patterns of immune
infiltration generated different gene expression characteristics. In our
study, mRNAs related to the functions of T-cell activation, leukocyte
proliferation, lymphocyte differentiation and proliferation, and
MHC class II receptor activity were highly expressed in the high-
TICI group, whereas they were low expressed in the low-TICI group.
Similarly, mRNAs correlated with the signaling pathways of
hematopoietic cell lineage, intestinal immune network for IgA
production, cell adhesion molecules, and Th1, Th2, and Th17 cell
differentiation were highly expressed in the high-TICI group and
low expressed in the low-TICI group.

With multivariate Cox analysis, we developed a 16-gene
prognostic signature. Almost all the 16 prognostic genes (P2RY8,
P2RY10, FLT3LG, GIMAP1, CD79A, SLAMF6, FGD3, IKZF3,

FAM107A, MAP4K1, GZMM, CCR7, XCR1, NLRC3, UBASH3A,
and ABCB1) were immune-related. GZMM (granzyme) was an
exogenous serine protease highly expressed in NK cells and
cytotoxic lymphocytes. GZMM could induce different cell deaths
by activating apoptosis-related enzyme systems. Wang et al. (2012)
showed that the human NK cell line KHYG-1 with high GZMM
expression showed great ability to kill tumor cells. CCR7 (C-CMotif
Chemokine Receptor 7) was a protein-coding gene and its encoded
protein was a member of the G protein–coupled receptor family.
Itakura et al. (2013) proved that CCR7 played a unique role in
regulating T-cell activation and controlling themigration ofmemory
T cells to inflamed tissues. CCR7 expression was associated with
better prognosis in lung cancers. P2RY8 (P2Y Receptor Family
Member 8) was a Gα13-coupled receptor, which regulated the
migration inhibition and growth of B cells. P2RY8 was frequently
mutated in diffuse large B-cell lymphoma and Burkitt lymphoma
(Lu et al., 2019; He et al., 2022). P2RY10 (P2Y Receptor Family
Member 10) was also a G-protein-coupled receptor. P2RY10 could
facilitate chemokine-induced CD4+T cell migration and was
potentially involved in the immune response (Gurusamy et al.,
2021). FLT3LG (Fms Related Receptor Tyrosine Kinase 3 Ligand)
combined with FLT3 on dendritic cells to stimulate their
differentiation and proliferation. In addition, FLT3LG was a
biomarker that reflected the clinical response of oxaliplatin (Pol
et al., 2020). GIMAP1 (GTPase, IMAP Family Member 1) was
involved in the differentiation of Th cells and was essential for the
development and survival of mature B and T lymphocytes (Saunders
et al., 2010). CD79A was a B cell receptor; Tagliabue et al. (2020)
found that high expression of CD79A was associated with
significantly better prognosis of laryngeal cancer. SLAMF6 was an
immune inhibitor receptor, and its overexpression led to the
exhaustion and decreased proliferation ability of CD8+T cells
(Yigit et al., 2019; Hajaj et al., 2020). FGD3 was a protein-coding
gene, and Susini et al. (2021) found that high expression of FGD3 in
breast cancer was associated with good disease-free survival and
overall survival. Moreover, it was also a prognosis-related gene of
head and neck squamous cell carcinoma, lung adenocarcinoma,
cervical squamous cell carcinoma, bladder urothelial carcinoma, and
sarcoma. IKZF3 was a specific transcription factor involved in
regulating lymphocyte proliferation and differentiation. Highly
expressed IKZF3 in T cells was related with improved OS in
symptomatic stage III multiple myeloma patients treated with
immunotherapy (Awwad et al., 2018). FAM107A (Family with
sequence similarity 107, member A) was a candidate tumor
suppressor gene. It was low expressed in laryngeal squamous cell
carcinoma and participated in the occurrence of lung cancer (Zhou
et al., 2020; Yan and Chen, 2021). MAP4K1 (Mitogen-Activated
Protein Kinase Kinase Kinase Kinase 1) was involved in promoting
T-cell failure in multiple cancers, while it was associated with
favorable prognosis of muscle-invasive bladder cancer (van der
Heijden et al., 2016). XCR1 was a chemokine receptor of the G
protein-coupled receptor superfamily. A study showed that cross-
presenting XCR1 dendritic cells had a specialized ability to initiate
effector CD8+T cells and mediate antitumor responses. Therefore,
XCR1 could be considered a target for cancer immunotherapy
(Audsley et al., 2020). NLRC3 (NLR Family CARD Domain
Containing 3) was negatively regulating the innate immune
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response. In addition, NLRC3 could attenuate PI3K-mTOR
signaling pathways and inhibit colorectal cancer cell proliferation
(Karki et al., 2016). UBASH3A (Ubiquitin-associated and SH3
containing A) was a negative regulator of T cells. Combined with
CBL-B, UBASH3A could inhibit CD28-mediated signal
transduction, thereby negatively regulating T-cell activation.
UBASH3A also played an important role in autoimmunity (Ge
et al., 2019). ABCB1 (ATP Binding Cassette Subfamily BMember 1)
was shown to involve in multiple chemotherapeutic drug resistance
(Zhou et al., 2019; Belisario et al., 2020; Luo et al., 2020).

Importantly, the prognostic signature constructed by the
aforementioned 16 genes could distinguish HNSCC patients with
favorable and poor prognosis, and it could even distinguish the
prognosis of HNSCC patients with different clinical characteristics
well. ROC curves and OS nomogram further confirmed the
sensitivity and accuracy of the prognostic signature. In addition,
two subgroups (TCGA-HNSCC cohort and GSE65858 cohort) and
an independent dataset (GSE41613 cohort) achieved a similar
prognostic significance.

In addition, tumor immune cell infiltration levels and immune
inhibitor receptor expression were also significantly different in
high- and low-risk groups. Specifically, the low-risk group had
higher infiltration of activated memory CD4+T cells, CD8+T cells,
and follicular helper T cells and B cells, and had higher expression of
PD-1, CTLA-4, LAG3, TIGIT, and HAVCR2. CTLA-4, LAG3,
TIGIT, and HAVCR2 had a synergistic effect with PD-L1 in
negatively regulating T cells, adaptive, or innate immunity.
Clinical studies have shown that dual blockade of PD-1 and
CTLA-4/LAG3/TIGIT/HAVCR2 enhanced the proliferation and
function of CD8+T cells and tumor-infiltrating lymphocytes as
compared with single blockade and could provide survival benefit
as compared with PD-L1 blockade alone for patients with PD-L1-
positive cancers (Chauvin et al., 2015; Andrews et al., 2017; Chauvin
and Zarour, 2020; Rodriguez-Abreu et al., 2020; Trüb et al., 2020).
Since the prognostic signature distinguished the expression of these
promising immunotherapeutic targets well, it might be able to reflect
the response to immune checkpoint inhibitor treatment. Consistent
with our guess, the low-risk group had a higher IPS of PD-L1,
CTLA-4, and PD-L1-CTLA-4, which indicated that the low-risk
group might respond better in anti-PD-L1 therapy, anti-CTLA-4
therapy, and anti-PD-L1 combined with anti-CTLA-4 therapy.

Accumulated studies have shown that high tumor mutational
burden (TMB) is associated with better response to immune
checkpoint inhibitor treatment. Subsequently, we further analyzed
the mutational landscape of HNSCC. TP53 mutation is the most
common, accounting for 66% of all mutation types in HNSCC and up
to 75% in non-HPV-related HNSCC (Zhou et al., 2016; Klinakis and
Rampias, 2020). TP53 is a tumor suppressor gene, which is mainly
involved in mediating the cellular stress response after DNA damage
and maintaining the stability of genetic material. Mutated TP53 is a
proto-oncogene and could promote cell malignant transformation.
Interestingly, the correlation between TP53 mutation,
immunotherapy response, and patients’ prognosis was cancer-type
dependent. Chen et al. (2019) found that non–small cell lung cancer
(NSCLC) patients with high TMB levels, mainly TP53 mutation,
benefited significantly from immune checkpoint inhibitor (Ozaki
et al., 2020), while the immunotherapy response of patients with

TP53 wild-type is better than that of TP53 mutation. Patients with
TP53 mutation had poor OS with immune checkpoint inhibitor
therapy in colon adenocarcinoma (COAD) and gastrointestinal
tumors (GI) (Li et al., 2020). In HNSCC, TP53 mutations have
been proven to be associated with decreased immune cell
infiltration, low PD-L1 expression, and poor prognosis (Klinakis and
Rampias, 2020; Li et al., 2020). Surprisingly, and perhaps reasonably, we
found that the high-risk group had higher TMB, and there was a weak
positive correlation between the TMB and risk score. In addition, high
TMB was associated with poorer prognosis of HNSCC patients.
Nevertheless, the exact mechanism of the TMB and HNSCC
patients’ prognosis as well as the mechanism of TMB and
immunotherapy response still needs to be further explored.

There are some advantages to our study. First of all, to our
knowledge, this is the first study to develop a TICI-related
prognostic signature composed of 16 genes for HNSCC. Second,
our prognostic model is closely relevant to immune-related scores
(IPS, immune score, and estimate score), the expression of immune
inhibitor receptors (PD-1, CTLA-4, LAG3, TIGIT, HAVCR2), and
immune-related pathways. These results, together with tumor
mutation burden, might provide some helpful information for the
development of new immunotherapeutic and prognostic biomarkers.
Moreover, by comparing the 16 mRNAs and their protein expression
levels of normal and tumor tissues from the public database, it might
directly or indirectly suggest the role of these genes and proteins in the
development of head and neck tumors. Finally, the 16-gene prognostic
signature was validated in TCGA-HNSCC,GSE65858, andGSE41613
cohorts. However, in vivo and in vitro experiments are needed to
further explore the mechanisms on how the 16 genes and prognostic
signature impact immunity and prognosis of HNSCC.

Immunotherapy is the new pillar of antitumor treatment of
HNSCC. It produces memory CD8+T cells, which have long-
lasting protection and effectively prevent metastasis and
recurrence. However, the biomarkers of immunotherapy are still
being explored. It is believed that in the near future there will be a
more complete immunotherapy system to better guide the
immunotherapy and improve the prognosis of cancer patients.

CONCLUSION

In conclusion, this study developed a TICI-based 16-gene
prognostic signature for HNSCC, and the 16 genes might be
potential immunotherapeutic and prognostic biomarkers.
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