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Abstract: ATM is among of the most critical initiators and coordinators of the DNA-damage response.
ATM canonical and non-canonical signaling pathways involve hundreds of downstream targets that
control many important cellular processes such as DNA damage repair, apoptosis, cell cycle arrest,
metabolism, proliferation, oxidative sensing, among others. Of note, ATM is often considered a major
tumor suppressor because of its ability to induce apoptosis and cell cycle arrest. However, in some
advanced stage tumor cells, ATM signaling is increased and confers remarkable advantages for cancer
cell survival, resistance to radiation and chemotherapy, biosynthesis, proliferation, and metastasis.
This review focuses on addressing major characteristics, signaling pathways and especially the
diverse roles of ATM in cellular homeostasis and cancer development.

Keywords: ATM; cancer; DNA damage repair; DNA damage response; oxidative sensing; autophagy;
hypoxia; pexophagy; mitophagy; cellular homeostasis

1. Introduction

During the past three decades, the study of ATM (ataxia telangiectasia mutated) has
played a central role in advancing our understanding of the mammalian DNA damage
response, cancer initiation and progression as well as redox signaling pathways. Numer-
ous recent publications additionally reported the varied roles and influences of ATM in
multiple cellular processes, for instance, growth, metabolism, energy production, oxidative
homeostasis, chromatin remodeling, and genomic integrity, which are all important pro-
cesses in tumor development and progression. Although ATM should be considered as a
tumor suppressor because its mutations often lead to cancer, there are mounting evidence
showing that ATM’s functions and signaling pathways may also contribute to cancer cells’
resistance to radiation, chemotherapy, and even assist tumor progression in some scenarios.
In this review, we will cover the major features, roles, and signaling pathways of ATM,
especially its diverse roles in tumor suppression and cancer progression.

2. The Structure and Domain Mapping of ATM

The ATM gene consists of 66 exons and is located on chromosome 11 (11q22-23) [1]. In
its active monomeric form, ATM has a large size of 370 kDa. ATM is an important member
of the PI3K-related protein kinase family (PIKK) [2]. Other members of this family include
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), ataxia-telangiectasia and
Rad3-related (ATR), mammalian target of rapamycin (mTOR), SMG-1, TRRAP, among
others [3–5]. Similar to these members, ATM possesses a kinase domain whose structure
shares significant homology to that of the phosphatidyl inositol 3 kinase (PI3K). Thanks
to this domain, ATM is an active serine/threonine kinase. Besides, ATM also has a FAT
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(FRAP (FK506-binding protein 12-rapamycin-associated protein (mTOR)), ATM, TRAPP
(Transformation/transcription domain-associated protein)) domain and a FATC domain
that is located on its C-terminal [6]. In 2006, Jiang et al. additionally showed that the FATC
domain was essential for ATM to interact with its partners for activation and control of its
kinase activity [7].

The N-terminus of ATM contains multiple α helical HEAT repeat motifs and a region
that appear to be critical for ATM interactions with other proteins and DNA by serving as
scaffolds. It has been shown that HEAT motifs are necessary for ATM to interact with and
recruit a number of proteins to the DNA lesion sites for DNA damage repair [8–11]. In fact,
ATMIN (ATM interacting protein), NBS1 (a component of the MRN complex), and NKX3.1
(a prostate tumor suppressor) have been found to bind to ATM’s HEAT motifs [12–15].
In 2004, Lavin et al., also reported the presence of other motifs, a proline-rich area for c-Abl
binding, and a leucine zipper on ATM [16,17] (Figure 1).
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Figure 1. Human ATM’s domain map. ATM is a large gene with 66 exons and consists of multiple domains that allow its
protein to directly interact with numerous regulators, partners, and downstream targets. In its N terminus, ATM contains
a Nuclear Localization Signal that enables its nuclear translocation. ATM also uses its N-terminus for interacting with
chromatin, substrates and partners, for instance, p53, LKB1, NBS1, among others. The putative leucine zipper motif on
ATM N-terminus is documented to be essential for its dimerization and interaction with other partners or substrates. On its
C-terminus, ATM has a FAT (FRAP, ATM and TRRAP proteins) domain which contains autophosphorylation sites and is
critical for substrate binding. As a kinase, ATM has a serine/threonine kinase domain that is highly homologous to that of
the PI3K. At the end of its C-terminus is the FATC domain that is essential for ATM full activation and interactions with
partners. Of note, ATM contains multiple important autophosphorylation sites that can substantially affect its functions.
For instance, Ser367, Ser1893, Ser1981, and Ser2996 are auto-phosphorylated after irradiation. Thr1885 is not induced by
irradiation. In human cells, autophosphorylation on three residues Ser367, Ser1893, Ser1981, and acetylation on Lys3016
have been shown to be important for ATM activation. Aurora B phosphorylates ATM at Ser1403 during mitosis. Importantly,
ATM also has 49 α helical HEAT motifs whose name is derived from huntingtin, elongation factor 3, the A subunit of protein
phosphatase 2A, and target of rapamycin 1 (TOR1). These motifs serve as scaffolds and are critical for ATM interactions
with proteins and DNA.
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3. ATM’s role in DNA Damage Response and Ataxia Telangiectasia

ATM is an important initiator of the DNA-damage response in mammalian cells via the
Mre11/Rad50/Nbs1 (MRN) complex at the DNA lesion sites [18–21]. ATM activation oc-
curs after its direct binding to the MRN complex, leading to its conformational change from
a resting homodimer or polymer state to an active monomer form [22]. Active ATM then
uses its kinase activity to phosphorylate a number of downstream targets that are essential
for DNA damage repair, apoptosis, cell cycle arrest, and cell-cycle checkpoints [21,23–25].
Therefore, ATM is often considered a major tumor suppressor (Figure 2).
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Figure 2. ATM canonical signaling pathway in DNA damage repair, cell cycle arrest and apoptosis. In normal situations,
ATM are often inert and form homodimers or polymers. However, when DNA damage occurs, ATM is quickly activated
and disassociates into highly active monomers. ATM initiates the DNA-damage response through co-signaling with the
MRN (Mre11/Rad50/NBS1) complex at the DNA lesion sites. In fact, direct interaction with the MRN complex induces
ATM to phosphorylate a number of downstream targets that are essential for DNA damage repair, cell cycle checkpoint,
cell cycle arrest, and apoptosis. During this process, ATM undergoes a series of autophosphorylation on Ser367, Ser1893,
Ser1981, and Ser2996 as well as acetylation on Lys3016. Activated ATM is recruited to the DNA damage sites for starting the
DNA-damage response. ATM activates BRCA1 and ATF2 to promote cascades of DNA damage repair signaling pathways
that involve hundreds of sensors, transducers, and effectors. In addition, ATM also turns on and stabilizes p53 via direct
phosphorylation. ATM additionally phosphorylates MDMX to induce its degradation, thereby further stabilizing p53. To
its turn, p53 translocates into the nucleus to transactivate a series of its downstream tumor suppressor target genes. For
instance, p53 enhances the expression of p21, a potent cyclin-dependent kinase inhibitor. p21 associates with cyclin E,
CDK2, CDK4/6 and induces G1/S and G2/M cell cycle arrest, which is critical to prevent unrepaired DNA mutations from
passing into daughter cells. p53 also directly transactivates Bid, Bax, PUMA to induce apoptosis when DNA damage is
too severe for effective repair. This programmed cell death is a major mechanism of tumor suppression. Moreover, ATM
activates RAD9A to further promote cell cycle checkpoints. CHK1 and CHK2 are additionally induced by ATM through
phosphorylation. CHK1 subsequently inhibits TLK1 while CHK2 turns on the cell cycle inhibitor CDC25A to block CDK2.
As a result, cell cycle progression is temporarily halted to enable DNA damage repair. Thus, thanks to its central role in
coordinating DNA damage repair, cell cycle arrest, cell cycle checkpoint, and apoptosis, ATM is frequently considered a
major tumor suppressor whose mutations often lead to significant increase in risk of cancer.

Mutations of the ATM gene leads to deficiencies in the DNA-damage response, which
results in the development of ataxia telangiectasia, a rare hereditary autosomal recessive
disorder with a 1 in 40,000 to 300,000 frequency in Caucasians [26]. This condition is charac-
terized by radiosensitivity, cancer predisposition, immunodeficiency (frequent infections),
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telangiectasias of the conjunctivae, chreoathetosis, and progressive neurodegeneration
(cerebellar ataxia, oculomotor apraxia) [27–32]. In 1988, Gatti et al. used genetic linkage
and found the location of the gene responsible for ataxia-telangiectasia on chromosome
11q [30]. In 1995, Savitsky et al. applied positional cloning and identified the gene ATM
(ataxia-telangiectasia mutated) [1]. Of note, most of ataxia-telangiectasia patients carry
hereditary heterozygote or homozygote ATM mutations from each parent. More than
300 ATM mutations have been identified and most of them involve insertions, deletions
and base substitutions that result in abnormal mRNA splicing or premature termination
codons. ATM mutations prevalence was estimated to vary from 0.5% to 1% in Caucasian
populations, according to Swift et al., 1986 and Renwick et al., 2006 [26,33].

4. ATM Signaling Pathways

ATM signaling pathways could be classified into the canonical pathway and a diverse
array of non-canonical pathways. In the canonical pathway, ATM collaborates with the
MRN complex (Mre11/Rad50/NBS1) to activate the cellular DNA-damage response. ATM
also uses a number of other non-canonical pathways to respond to other types of cellular
stresses [34].

Similar to other PI3K family members, ATM kinase activity is strictly autoinhibited
during its resting state (dimers or polymers) and only active when ATM binds to its partners.
In response to DNA double-strand breaks (DSBs), ATM canonical pathway is induced,
which involves the disassociation of ATM from dimers to monomers, activation and
recruitment of ATM monomers to the DNA damage sites. It has been well documented that
the MRN complex is required for ATM activation and recruitment to DSB locations. Indeed,
the NBS1 subunit of the MRN complex directly binds to ATM and NBS1 ubiquitination
promotes ATM recruitment to DSBs [18,20,22,35]. Subsequently, ATM phosphorylates a
number of downstream targets as CHK1, CHK2, p53, BRCA1, ATF2, among others to
stimulate DNA damage repair machinery [21,24].

In human, autophosphorylation at Ser1981 is often considered as a marker for ATM
activation, which often occurs quickly after ionizing radiation [22]. In the absence of the
MRN complex, ATM Ser1981 is not phosphorylated but ATM is still able to phosphorylate
the downstream histone protein H2AX after radiation [12]. It is postulated that while phos-
phorylation at Ser1981 is not required for ATM function, this phosphorylation is critical
to retain ATM at the DSBs [23,36]. Subsequent to H2AX phosphorylation, DNA repair
complexes containing effectors, polymerases, among others are recruited to the DSB site.
For instance, after being phosphorylated by ATM, MDC1 recruits RNF8, RNF168 [37–39],
which in turn monoubiquitinates histone H2AX and H2A on Lys13 and Lys15 to prepare
them for additional poly-ubiquitination reactions. These posttranslational protein modifica-
tions are necessary to recruit additional effector repair proteins [40]. It has been shown that
continuous ATM activation is critical to maintain the damage foci for sustaining effective
DNA damage repair [41]. It is important to point out that ATM-mediated signaling for
DNA damage repair is tightly regulated by several feedback mechanisms to ensure proper
and effective repair efficiency. For instance, it has been shown that due to the feedback of
p53, ATM activation occurs in a pulse manner [42].

Chromatin decompaction and relaxation at DSB sites are essential for effective repair
and ATM activation. In fact, ATM phosphorylates RNF20/RNF40 to facilitate histone H2B
ubiquitination. ATM-mediated phosphorylation of KAP1 also decreases KAP1′s binding to
CHD3, a chromodomain protein. These two events result in chromatin decompaction [43–45].
Of note, histone deacetylase inhibitors have been shown to activate ATM [22]. The histone
acetyltransferase complex TIP60 is necessary for ATM activation after irradiation [46].
Interestingly, by increasing H3K14 acetylation and loosening chromatin structure, HMGN1
significantly elevates the amount of chromatin-bound ATM at DSB sites [47]. In contrast,
to silence transcription at and near DNA damage sites, ATM promotes Histone H2A K119
mono-ubiquitination by BMI1 [48–50].



Genes 2021, 12, 845 5 of 11

In non-canonical signaling pathways, ATM can also be activated by chromatin changes
caused by chloroquine, hypotonic cellular stress, among others [22,51] (Figure 3). Interest-
ingly, the MRN complex, especially NBS1, is not required for ATM non-canonical activation
and signaling. Instead, ATMIN (ATM interacting protein) is required for ATM activation in
these scenarios. Interestingly, ATMIN binds to ATM using interacting domains that are
similar to those of NBS1 [52]. ATMIN is also partially required for ATM-mediated phospho-
rylation of downstream targets in non-canonical ATM pathways [53]. Furthermore, ATM
also cross-talks with ATR for activation in response to UV radiation [54]. Importantly, in
non-replicating cells, ATM can be activated by R-loops at transcription-blocking lesions. In
fact, in 2015, Tresini et al., discovered that RNA polymerase pausing at the DNA damaged
sites led to spliceosome displacement and the formation of R-loops, which subsequently
activated ATM. R-loop-mediated activation of ATM prevented further spliceosome organi-
zation and increased genome-wide ultraviolet-irradiation-induced alternative splicing [55].
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Figure 3. ATM non-canonical signaling pathways. Chromatin alterations induced by chloroquine or hypotonic stress
could trigger ATM activation without requiring the MRN complex. The active monomer of ATM interacts with ATMIN
(ATM interacting protein) to transduce downstream signaling to CHK2, p53, KAP1, and other substrates to promote
genomic integrity and survival. ATM also serves as an important redox sensor. After being activated by ROS or oxidation,
ATM homodimers establish disulfide bonds to maintain their dimer conformations. This activation process also does not
require the MRN complex. Similar to active ATM monomers, induced ATM dimers are phosphorylated at Ser1981 but this
posttranslational modification is not required for phosphorylation of downstream targets such as CHK2 at Thr68 or p53 at
Ser18. Oxidation-activated ATM dimers then phosphorylate LKB1 and AMPK to turn on TSC2 and block mTOR signaling,
thereby decreasing ROS levels. ATM can also be induced by severe hypoxia in a ROS-independent manner. In severe
hypoxia, the function of ribonucleotide reductase is inhibited, causing the depletion of deoxynucleoside triphosphates
(dNTPs) as well as replication stress. As a result, ATM and ATR are activated due to severe hypoxia. ATM and ATR then
phosphorylate and stabilize HIF1α to enable cell survival under hypoxic conditions.

ATM is also involved in sensing oxidative stress. In this case, ATM dimers are oxidized
and establish disulphide bonds between ATM monomers to create active ATM dimers and
phosphorylate downstream targets. Exposure to oxygen at atmospheric levels or reactive
oxygen species (ROS) activate ATM without requiring the MRN complex [56]. Active ATM
dimers also carry phosphorylated Ser1981 but this phosphorylation is dispensable for ATM
dimers’ function. Interestingly, after being induced by ROS, ATM dimers activate TSC2
by phosphorylating LKB1 and AMPK, thereby blocking mTOR signaling and reducing
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ROS production [57]. Importantly, ATM is activated by hypoxia and phosphorylates
the transcription factor HIF1α, which leads to HIF1α stabilization and REDD1-mediated
inhibition of mTOR [58]. Indeed, severe hypoxia impedes the activity of ribonucleotide
reductase, leading to the depletion of dNTPs and subsequent replication stress. As a
result, activation of ATM and ATR occurs. ATM and ATR then directly phosphorylate and
stabilize HIF1α to promote cell survival under severe hypoxic conditions [59–62]. In 2017,
Rezaeian et al. also showed that ATM indirectly induced HIF1α stability through H2AX
phosphorylation in the cross talk with TRAF6-mediated H2AX ubiquitination [63]. As
hypoxia and increased ROS stress frequently occur in solid tumors, ATM may promote
cancer cell survival in some scenarios by stabilizing HIF1α and reducing ROS levels.

Recent studies additionally revealed a connection between ATM and autophagy [64–66]
in response to nutrient deprivation, ROS, and DNA damage. Indeed, after being activated
by oxidative stress or genotoxic agents, ATM suppresses mTORC1 while inducing au-
tophagy [57,67,68]. ATM also increases the expression of ATG4C at the mRNA and protein
levels, promoting autophagy in breast cancer stem cells [69]. Furthermore, ATM par-
ticipates in regulating pexophagy in response to ROS [70,71]. Pexophagy is a catabolic
process to selectively degrade peroxisomes by autophagy where autophagosomes engulf
peroxisomes and fuse with lysosomes for subsequent degradation of peroxisomes. Pex-
ophagy is critical to maintain cellular homeostasis by removing damaged or unnecessary
peroxisomes. In the case of pexophagy, ATM is localized to peroxisomes through the PEX5
import receptor, which recognizes an SRL sequence on ATM’s C-terminus. As a result
of ROS-mediated activation, ATM phosphorylates TSC2 to inhibit mTORC1, and ULK1
to promote autophagy. Furthermore, ATM directly phosphorylates PEX5 at Ser141. This
phosphorylation subsequently leads to PEX5 ubiquitination at Lys209 and association with
SQSTM1/p62 (an autophagy receptor) to trigger pexophagy [70,71]. In addition to geno-
toxic and oxidative stresses, ATM can be also activated by starvation and reactive nitrogen
species [72]. Cytoplasmic ATM presence have been found in mitochondria peroxisomes,
and endosomes, where the kinase exerts its regulatory functions in sensing oxidative stress
and participate in the regulation of cellular metabolism and autophagy processes [73].
Some early evidence suggested that ATM helps maintain cellular homeostasis in response
to DNA damage and ROS via the autophagy-senescence signaling axis [74]. Moreover,
ATM has been documented to regulate mitophagy, a process to selectively remove mi-
tochondria at the autophagolysosomes for turning over the dysfunctional or damaged
mitochondria for adapting to physiological stress conditions, such as nutrient deprivation,
hypoxia, DNA damage, among others. Recent evidences showed that ATM modulated
Beclin-1 to control mitophagy [75,76] and mediated spermidine-induced mitophagy via
regulating PINK expression and Parkin localization to mitochondria [77]. Together, these
findings indicate an important role of ATM in sensing oxidative stress as well as regulating
autophagy, mitophagy, and pexophagy to maintain cellular homeostasis.

5. ATM Signaling in Cancer

ATM’s major tumor suppressing mechanisms are inducing apoptosis and cell cycle
arrest via activating p53, SIRT1, CHK1, CHK2, DBC1, RAIDD and other downstream tar-
gets [34]. Therefore, cancer cells can use different mechanisms to downregulate ATM. For
instance, in breast cancer cells, ATM expression can be reduced due to miRNA-18a [78,79].
ATM activity could also be suppressed by the phosphatase WIP1, which directly dephos-
phorylates ATM and p53 [80].

Interestingly, in some tumor cells, ATM signaling and function are upregulated. Per-
haps, those cancer cells have developed mechanisms to escape ATM-induced cell cycle
arrest and apoptosis. Indeed, prostate cancer cells promote ATM expression via recruit-
ment of the androgen receptor to the ATM gene enhancer region [81]. Pancreatic cancer
cells increase ATM expression by overexpressing the transcription factor CUX1 [82,83].
Melanoma cells increase ATM signaling by increasing MAGE-C2 levels, which associates
with KAP1 and promotes its Ser824 phosphorylation [84].
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Promoting ATM signaling and expression may facilitate cancer cells’ resistance to
chemotherapy and radiation, metastasis, and tumor cell survival [79] (Figure 4). As
radiation therapy and many chemotherapy agents attack cancer cells by causing DSBs,
elevated ATM’s function and signaling provide tumors with significant advantages to adapt
and survive these treatments. In fact, ATM-mediated activation of Akt can induce cancer
cell survival in certain scenarios [82]. NF-KB activation by ATM additionally increases
cancer cell survival, blocks apoptosis, and facilitates Epithelial-Mesenchymal Transition, as
well as cancer cell migration and metastasis [85]. ATM also triggers the pentose phosphate
pathway to reduce ROS levels. This metabolic pathway also provides cancer cells with
essential intermediates for biosynthesis and proliferation [86–88]. Of note, increased ATM
function has been found to be associated with elevated metastasis, invasion, and Epithelial-
Mesenchymal Transition of breast cancer cells that overexpress HOXB9 or under-express
PRSS11 [89–91]. Moreover, ATM is activated by hypoxia, and stabilizes the transcription
factor HIF1α by direct phosphorylation or via the TRAF6/H2AX/HIF1α signaling axis,
which could significantly increase cancer survival, invasion, and metastasis [58,63,79].

Genes 2021, 12, x FOR PEER REVIEW 7 of 11 
 

 

cell survival in certain scenarios [82]. NF-KB activation by ATM additionally increases 
cancer cell survival, blocks apoptosis, and facilitates Epithelial-Mesenchymal Transition, 
as well as cancer cell migration and metastasis [85]. ATM also triggers the pentose phos-
phate pathway to reduce ROS levels. This metabolic pathway also provides cancer cells 
with essential intermediates for biosynthesis and proliferation [86–88]. Of note, increased 
ATM function has been found to be associated with elevated metastasis, invasion, and 
Epithelial-Mesenchymal Transition of breast cancer cells that overexpress HOXB9 or un-
der-express PRSS11 [89–91]. Moreover, ATM is activated by hypoxia, and stabilizes the 
transcription factor HIF1α by direct phosphorylation or via the TRAF6/H2AX/HIF1α sig-
naling axis, which could significantly increase cancer survival, invasion, and metastasis 
[58,63,79]. 

 
Figure 4. The diverse roles of ATM in cancer cells. In some cancer cells that have developed mechanisms to evade apop-
tosis and cell cycle arrest, increase in ATM signaling may confers significant advantages for cancer cell survival, biosyn-
thesis, proliferation, metastasis, as well as resistance to radiation and chemotherapy. 

6. Conclusions 
Numerous studies during the past three decades show that ATM is a central coordi-

nator of the DNA-damage response and plays a vital role in maintaining genomic integ-
rity and suppressing cancer at early stages. Indeed, ATM suppresses tumors by inducing 
apoptosis and cell cycle arrest. However, in some cancer cells that have already escaped 
those tumor-suppressing mechanisms, ATM signaling may be beneficial for cancer sur-
vival, resistance to chemotherapy and radiation, promoting Epithelial-Mesenchymal 
Transition, proliferation, invasion, and metastasis. Therefore, ATM-based anti-cancer 
therapy should be carefully selected and tailored based on the characteristics of the tu-
mors to achieve significant and long-lasting therapeutic effects. Interestingly, beside its 
functions in DNA damage response and maintaining genomic integrity, ATM is also in-
volved in oxidative stress sensing, regulating autophagy, mitophagy, pexophagy, and 
maintaining cellular homeostasis in response to ROS, starvation, and hypoxia. Together, 
these findings suggest a multi-faceted role of ATM in various cellular processes, which 
significantly expands its functions beyond guarding genome stability. 

Author Contributions: L.M.P. and A.-H.R. conceptualized the outline of this review, wrote the man-
uscript, and drew figures. All authors have read and agreed to the published version of the manu-
script. 

Funding: This research received no external funding. 

Figure 4. The diverse roles of ATM in cancer cells. In some cancer cells that have developed mechanisms to evade apoptosis
and cell cycle arrest, increase in ATM signaling may confers significant advantages for cancer cell survival, biosynthesis,
proliferation, metastasis, as well as resistance to radiation and chemotherapy.

6. Conclusions

Numerous studies during the past three decades show that ATM is a central coordina-
tor of the DNA-damage response and plays a vital role in maintaining genomic integrity
and suppressing cancer at early stages. Indeed, ATM suppresses tumors by inducing
apoptosis and cell cycle arrest. However, in some cancer cells that have already escaped
those tumor-suppressing mechanisms, ATM signaling may be beneficial for cancer survival,
resistance to chemotherapy and radiation, promoting Epithelial-Mesenchymal Transition,
proliferation, invasion, and metastasis. Therefore, ATM-based anti-cancer therapy should
be carefully selected and tailored based on the characteristics of the tumors to achieve
significant and long-lasting therapeutic effects. Interestingly, beside its functions in DNA
damage response and maintaining genomic integrity, ATM is also involved in oxidative
stress sensing, regulating autophagy, mitophagy, pexophagy, and maintaining cellular
homeostasis in response to ROS, starvation, and hypoxia. Together, these findings suggest
a multi-faceted role of ATM in various cellular processes, which significantly expands its
functions beyond guarding genome stability.
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