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Abstract

With the rapid spread of COVID-19, there is an urgent need for a framework to accurately predict COVID-19 transmission. Recent epi-
demiological studies have found that a prominent feature of COVID-19 is its ability to be transmitted before symptoms occur, which
is generally not the case for seasonal influenza and severe acute respiratory syndrome. Several COVID-19 predictive epidemiological
models have been proposed; however, they share a common drawback – they are unable to capture the unique asymptomatic nature
of COVID-19 transmission. Here, we propose vector autoregression (VAR) as an epidemiological county-level prediction model that
captures this unique aspect of COVID-19 transmission by introducing newly infected cases in other counties as lagged explanatory
variables. Using the number of new COVID-19 cases in seven New York State counties, we predicted new COVID-19 cases in the
counties over the next 4 weeks. We then compared our prediction results with those of 11 other state-of-the-art prediction models
proposed by leading research institutes and academic groups. The results showed that VAR prediction is superior to other
epidemiological prediction models in terms of the root mean square error of prediction. Thus, we strongly recommend the simple
VAR model as a framework to accurately predict COVID-19 transmission.

Keywords: COVID-19 case forecast; vector autoregression; epidemiological model; root mean square error (RMSE); New York state
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
identified in 2019, has caused the coronavirus disease 2019
(COVID-19) pandemic. With the rapid spread of COVID-19, there
is an urgent need for a framework to accurately forecast COVID-
19 progression. To this end, a variety of COVID-19 epidemiologi-
cal forecasting models have been proposed by major research
institutes. Wang et al. [1] classified forecasting models into three
categories: (i) mechanistic models; (ii) time series models, and (iii)
models based on deep learning. Examples of mechanistic models
are the susceptible–infected–recovered (SIR) model and the modi-
fied susceptible–exposed–infected–recovered (SEIR) population
propagation model. The majority of deep learning models extend
mechanistic models with deep learning methods. In this study,
we compared the forecasting accuracy of our model to that of 11
state-of-the-art forecasting models proposed by major research
institutes and academic groups (These models are cited by CDC).

To predict the number of new COVID-19 cases by county,
Shang et al. [2] recently proposed a data-driven regression model
called the vector autoregression (VAR) epidemiological model
(They proposed the VAR model to predict the nationwide daily
number of newly COVID-19 cases in the USA. However, they

arbitrarily determine the maximum lag length of 3 (very short)
and apply AIC to each equation to select the optimal lag within
lags 1, 2, and 3. As a result, the individual equations of the VAR
model have different lag structures. On the other hand, maxi-
mum lags length of our VAR model is 14 (long) and optimal lags
are determined by VAR system information criteria (system AIC).
Therefore, lag structure of each equation is the same). However,
the VAR model of Shang et al. [2] does not obey the usual way of
VAR model forecasting procedures developed by Sims [3].
Furthermore, Wang et al. [4] proposed another VAR model
employing different variables than ours to predict the number of
new COVID-19 patients nationwide.

VAR is a time series model and contrasts with mechanistic and
deep learning models in two aspects: (i) VAR solely uses county-
level new COVID-19 cases as the forecasting data and (ii) VAR cap-
tures COVID-19 cross-county transmission by introducing other
counties’ COVID-19 case data as lagged explanatory variables. The
second point is important because to predict COVID-19 cases at the
county level, it is necessary to consider cross-county infection as a
transmission mechanism of SARS-CoV-2. This is different from that
of other viral infections such as seasonal influenza and SARS. To
characterize the transmission dynamics of COVID-19, two
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important epidemiological terms were introduced: the incubation
period (the time between infection and the onset of symptoms) and
the serial interval (the time between the onset of disease in the pri-
mary infected person and the onset of disease in the secondary
infected person). As estimated by Nishiura et al. [5], He et al. [6], and
Alene et al. [7], the estimated mean serial interval and the incuba-
tion period of COVID-19 are 5.2 and 6.5 days, respectively. Notably,
the estimated serial interval is shorter than the estimated incuba-
tion period (Note that the serial interval can be negative if a person
becomes infected before symptoms appear in the individual who
infected them, that is, if the infected person develops symptoms be-
fore the person that infected them does). For seasonal influenza
and SARS, the serial interval is longer than the incubation period.
This indicates the following important feature of COVID-19 – in con-
trast to seasonal influenza and SARS, a significant number of
COVID-19 cases are caused by asymptomatic or pre-symptomatic
infection. Owing to this feature of COVID-19, SARS-CoV-2 is not
only transmitted among residents of the same county but also to
residents of other counties through cross-county transmission,
even before symptom onset. Shang et al. [2] note that the epidemio-
logical models based on SIR or SEIR cannot capture this phenome-
non (Some forecasting models attempt to incorporate the mobility
behavior of individuals into the SRI-based model using a deep
learning-based approach). In contrast, the VAR epidemiological
model proposed herein does capture this feature by introducing
new COVID-19 cases in other counties as a lagged explanatory vari-
able.

As mentioned above, Shang et al. [2] proposed VAR as a promis-
ing COVID-19 forecasting model, but the authors did not demon-
strate that the predictions made by VAR outperform those of other
epidemiological models. Hence, it is not clear how good the VAR
model forecasts are. The purpose of this study is to show that the
county-level prediction of new COVID-19 cases by the simple VAR
model is superior to that of other epidemiological models.

Methodology
In macroeconomics, economic forecasting is important for plan-
ning and evaluating government economic policy. In the 1970s,
macroeconomists used large models consisting of hundreds of
equations to make economic forecasts. However, since Sims [3]
proposed VAR as a new macroeconomic forecasting method, no
macroeconomists use such large models anymore.

VAR is a multi-equation system in which each variable is a lin-
ear function of the past lags of itself and the other variables. The
popularity of VAR in economics is owing to its simple forecasting
framework (forecasting by VAR model is said to be forecasting
without theory. For a comprehensive introduction to VAR estima-
tion, Stock and Watson [8] is recommended) while outperforming
other forecasting frameworks. Here, we show that VAR performs
similarly for predicting COVID-19 cases.

VAR
The regular VAR model with p lags, denoted by VAR_Lag p, can be
written as follows:

yt ¼ A0 þAtyt�1 þ A2yt�2 þ � � � þApyt�p þ Cxt þ ut

where

yt : n� 1 column vector of endogenous variables
xt : m� 1 column vector of exogenous variables
A0 : n� 1 column vector of constant term

Ai : n� n matrix of lag coefficients to be estimated ði ¼ 1; 2;
. . . ; pÞ

C : n�m matrix of exogenous variable
coefficients to be estimated

ut : n� 1 column vector of disturbances:

In our model, the column vector is defined as follows:

yt ¼ yB;t; yK;t; yN;t; yQ;t; yR;t; yW;tð Þ0

where “ ’ ” denotes transposition of a vector, yi;t indicates the
number of newly confirmed COVID-19 cases in county i on day t,
and B, K, N, NYC, Q, R, and W stand for the New York State coun-
ties Bronx, Kings, Nassau, New York City, Queens, Rockland, and
Westchester, respectively.

Under the assumption that the time path yt is stationary (see,
in detail, Key Concept 14.5 in Stock and Watson [8]), ut satisfies
the following white noise disturbance process:

iÞ EðutÞ ¼ 0; iiÞ VðutÞ ¼ Eðutu0tÞ ¼ R; iiiÞEðutu0t�sÞ 0 for s > 0:

Assumptions i) through iii) imply that the vector of disturban-
ces is contemporaneously correlated with full rank matrix R, but
uncorrelated with the leads and lags of the disturbances and
uncorrelated with all of the right-hand side variables.
Furthermore, each equation is estimated by the ordinary least
squares method.

Again, VAR is a multi-equation system in which each variable
is a linear function of the past lags of itself and the other varia-
bles. Such a framework allows VAR to adequately capture the na-
ture of SARS-CoV-2 transmission at the county level and
asymptomatic transmission between counties, which more accu-
rately reflects the cross-county transmission that occurs through
the cross-county movement of people.

Data
We analyzed daily new COVID-19 cases in the seven New York
State counties assessed by Shang et al. [2] (Bronx, Kings, Nassau,
New York City, Queens, Rockland, and Westchester). Bronx,
Kings, and Queens are regarded as regions adjacent to New York
City, and these areas are classified as a “large central metro” by
the Centers for Disease Control and Prevention (CDC). In contrast,
Nassau, Westchester, and Rockland have fewer direct connec-
tions to New York City; these counties are classified as a “large
fringe metro” by the CDC. The data used in this study were down-
loaded from the following website: US COVID-19 cases and
deaths by state j USAFacts (The URL of downloaded data file:
https://usafacts.org/visualizations/coronavirus-covid-19-spread-
map/state/new-york. County-level data was confirmed by
referencing state and local agencies). The number of COVID-19
cases reflects the daily cumulative values for each county from 1
March 2020, through 8 August 2021. Based on the accumulated
daily counts by county, the daily number of newly infected indi-
viduals was calculated by taking the difference, thus sample size
of 519. We used newly infected individuals from the county-level
daily data for our estimations. There were some days when the
number of new cases was recorded as zero, such as February 6
and 26, and 12 March 2021. The reason why the number of new
cases was marked as zero is probably due to a delay in recording.
It is assumed that the actual number of new cases on these days
was added into the new cases of the next day. Therefore, the
number of new cases on days with zero new cases was assumed
to be half of the number of new cases on the following day. For
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all days with zero new cases, we took half of the next day’s value
as the number of new cases.

To investigate the stationarity of the data, the augmented
Dickey–Fuller (ADF) unit root test (see, in detail, Key Concept 14.8 in
Stock and Watson [8].) was employed to the new case data of each
county. We found that all of the level series had a unit root and
were integrated into order one, denoted by I(1) (If yit is nonstation-
ary and the first difference of yit, Dyit, is stationary, then yit is the in-
tegrated one process). Consequently, the pathfytgwas concluded to
be nonstationary as reported in Table 1.

Estimation
We used the popular econometric package EViews 12 from IHS
Markit (In addition to EViews, Estima’s RATS is a well-known
econometric package specialized for time series analysis). First,
we determined the lag order of the VAR model based on the VAR
system information criteria, which were the Akaike information
criterion (AIC), the Schwarz information criterion (SIC), and the
Hanna–Quinn (HQ) information criterion. The formulae for calcu-
lating the AIC, SIC, and HQ are defined as (1) through (3) below:

AIC pð Þ ¼ �2 l=Tð Þ þ 2ðnÞ2p
T

(1)

SIC pð Þ ¼ �2 l=Tð Þ þ 2ðnÞ2plogT
T

(2)

HQ pð Þ ¼ �2 l=Tð Þ þ 2ðnÞ2plogðlogTÞ
T

(3)

where n is the number of explanatory variables, p is the lag
length, T is the sample size, and l is the value of the log of the sys-
tem likelihood function with ðnÞ2p parameters estimated using T
observations. The information criteria were calculated with a
maximum lag length of 14. AIC is the most used criterion.
However, because the sample size (T) was large (greater than
500), the AIC defined by equation (1) did not properly select the
lag order. Thus, we applied the SIC or the HQ. The SIC recom-
mended a lag length of 3, while HQ recommended a lag length of
8. The test results are reported in Table 2.

According to Alene et al. [7], the estimated average serial interval
is 5.2 days (95% CI 4.9–5.5), which was estimated based on the data

of individual infector–infectee pairs. However, the number of new
COVID-19 cases was aggregated at the county level, and specific in-
fector–infectee pairs were not able to be identified. Because the
data were from online reports of confirmed cases, there was a con-
firmation lag between symptom onset and confirmation of a posi-
tive test result. Assuming that this average serial interval held at
the county level, and that we could add the average confirmation
lag of 3–4 days to the 95% CI of the above serial interval, we could
thus regard the duration of infection (the infectious period) as 7.9–
8.5 days. Based on this duration, a lag order of 8 was selected. Let
denote it by VAR_Lag 8, henceforce. We established VAR_Lag 8 as
the benchmark model for forecasting. The number of estimated
coefficients was quite large which are not reported here.

All of the data had to be stationary for the VAR estimator to
work. As we discussed in Data section, the new COVID-19 case data
were nonstationary. Therefore, the VAR estimator did not meet con-
sistency and would be biased. The standard way to solve this prob-
lem is to take the difference. However, Sims et al. [9] and Watson [10]
proved the following useful proposition for large samples: regardless
of whether the VAR contains an integrated component, the VAR has
consistent ordinary least squares estimators in large samples.
Because our sample size was large (greater than 500), the above
proposition was held for our estimation. In other words, the stan-
dard VAR model could be directly applied to estimate the number of
new COVID-19 cases by county. Therefore, there was no need to
transform the model to a stationary form by differencing.

Forecasting
VAR forecasting
As described in “Estimation” section, the VAR estimators are con-
sistent in the large sample. Therefore, we conducted VAR estima-
tion to predict the number of new COVID-19 cases in each
county. To make comparisons with the other forecasting models,
we performed 4-week-ahead forecasting for three scenarios. The
VAR_Lag 8 model was estimated based on a daily sample, and dy-
namic forecasting was performed for an out-of-sample period
starting on the first forecast day.

A. 6_28 forecast: Estimate VAR_Lag 8 from 1 March 2020,
through 27 June 2021, then conduct the 4-week-ahead fore-
cast for 28 June 2021, through 24 July 2021.

B. 7_05 forecast: Estimate VAR_Lag 8 from 1 March 2020,
through 4 July 2021, then conduct the 4-week-ahead fore-
cast for July 5 through July 31.

Table 1. Unit root test (ADF test)

County ADF test statistic Optimal lag P-value

Bronx �2.015 9 0.2803
Kings �1.865 9 0.3489
Nassau �2.977 11 0.0378
NYC �1.829 9 0.3663
Queens �2.550 10 0.1043
Rockland �3.435 9 0.0102
Westchester �1.935 12 0.3160

Note: The equation for ADF test is:

Dyt ¼ aþ cyt�1 þ
XL

k¼1

dkDyt�k þ et

where yt is a time-series variable. a is constant and c; dk k ¼ 1; . . . ; Lð Þ are the
coefficients on the lag order of the autoregressive process. The null hypothesis
for a unit root is c¼0. Optimal lags of ADF test equation are determined by
SIC. The maximum lag is 18. The P-values of ADF test results show that all
variables cannot reject the null hypothesis at the 1% significant level. In cases
of Nassau and Rockland the null hypothesis is rejected at the significant level
of 5%. These variables might be stationary. However, even if VAR model
contains both stationary variables and unit root variables,the Ordinary Least
Squares (OLS) estimators of VAR model are consistent (Hamilton [11], Ch.18).

Table 2. Lag-order test

Lag AIC SIC HQ

0 86.349 86.408 86.372
1 81.484 81.953 81.668
2 80.941 81.821 81.286
3 80.392 81.682a 80.898
4 80.06 81.761 80.727
5 79.802 81.913 80.63
6 79.52 82.042 80.51
7 79.169 82.101 80.319
8 78.965 82.308 80.277a

9 78.845 82.6 80.318
10 78.683 82.847 80.316
11 78.543 83.117 80.337
12 78.377 83.362 80.333
13 78.236 83.632 80.353
14 78.132a 83.938 80.409

a Optimal lag order selected by each criterion.
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C. 7_12 forecast: Estimate VAR_Lag 8 from 1 March 2020,
through 11 July 2021, then conduct the 4-week-ahead fore-
cast for July 12 through August 8.

Results
The root mean square error (RMSE) and the mean absolute per-
centage error (MAPE) for each of the above three scenarios are
reported in Panels (a) and (b) of Table 3.

The RMSE and the MAPE are defined as (4) and (5) below:

RMSE :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXTþh

t¼Tþ1
ðŷt � ytÞ2=h

r
(4)

MAPE : 100�
XTþh

t¼Tþ1

ŷt � yt

yt

�����
�����=h (5)

where ŷt is a predicted value and yt is the real value at time t.
Notably, the MAPE values for Rockland and Westchester were

larger than the MAPE values for the other counties (Bronx, Kings,
Nassau, NYC, and Queens) in all of the scenarios. The latter

counties are classified as large central metro communities in the
National Center for Health Statistics urban/rural CDC classifica-
tion, while Rockland and Westchester are classified as large fringe
metro communities. The number of new infections was lower in
the fringe metro counties of Rockland and Westchester than in the
central metro counties. Thus, a shock in the number of new infec-
tions is amplified in the fringe metro counties; because the VAR
model is linear, it failed to capture such nonlinear shocks. In fact,
regressions of the VAR using log-transformed data yielded better
predictions for Rockland and Westchester as well. However, per-
formance was poor for the central metro counties. Therefore,
regressions of the VAR were performed only on level series.

Comparisons
As an example, for the Scenario (A) 6_28 forecast, the point fore-
casts at 4 specific days, July 3, July 10, July 17, and July 24, were
compared with those of 11 other recently proposed forecast mod-
els listed in Table 4.

The point predictions of Scenarios (B) and (C) for these 4 days
were also compared with the same four-point predictions of the

Table 3. 4-week-ahead-forcast errors

Panel (a): 4-weeks-ahead-forecast RMSE Panel (b): 4-weeks-ahead-forecast MAPE

County Scenario A Scenario B Scenario C County Scenario A Scenario B Scenario C

Bronx 18 31 60 Bronx 26 23 29
Kings 42 92 159 Kings 31 29 34
Nassau 31 15 56 Nassau 34 13 29
NYC 43 72 117 NYC 38 34 39
Queens 34 34 74 Queens 24 17 22
Rockland 28 25 17 Rockland 230 145 69
Westchester 62 52 30 Westchester 200 102 35

Note: Scenario A: Estimate VAR (8) from 1 March 2020, through 27 June 2021, then conduct the 4-week-ahead forecast for 28 June 2021, through 24 July 2021.
Scenario B: Estimate VAR (8) from 1 March 2020, through 4 July 2021, then conduct the 4-week-ahead forecast for July through July 31.
Scenario C: Estimate VAR (8) from 1 March 2020, through 11 July 2021, then conduct the 4-week-ahead forecast for July 12 through August 8.

Table 4. Model descriptions

Model name Methods Classification

Var_Lag8 Model Kitaoka and Takahashi Vector Autoregression with eight lags Time_series
CMU Carnegie Mellon University Autoregressive time series model Time_series
Columbia Columbia University Meta-population SEIR model Mechanistic method
Ensemble University of Massachusetts, Amherst Combination of 4 to 20 models depending on the

availability of forecasts for each location
Mechanistic method

Facebook Facebook AI research A machine learning model with an autoregressive
model

Deep_learning based

FRBSF-Wilson Federal Reserve Bank of San Francisco/
Wilson

A SIR-derived econometric county panel data
model with transmission rate assumed to be
function of weather and mobility

Mechanistic method

JHU-APL Johns Hopkins University, Applied Physics
Lab

Meta-population SEIR model Mechanistic method

JHU-UNC-Google Johns Hopkins University, University of
North Carolina, and Google

An ensemble of two different models: A
multiplicative growth model and a curve-fitting
model

Deep_learning based

LANL Los Alamos National Laboratory Statistical dynamical growth model accounting
for population susceptibility

Mechanistic method

PandemicCentral Pandemic Central Random forest machine learning model Deep_learning based
UGA-CEID University of Georgia, Center for the

Ecology of Infectious Disease
Statistical random walk model Time_series

UVA University of Virginia An ensemble of three different models: An
auto-regressive model, a machine learning
(long short- memory) model, and a SEIR model

Deep_learning based

Note: The above models are cited by CDC. The details of model descriptions are: https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID- 19_Forecast_
Model_Descriptions.md.
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other models. We used these four reported point estimates to make
comparisons among models. The forecast for July 3 represents a 1-
week-ahead forecast based on the data obtained up to June 28.
Similarly, the forecast for July 10 represents a 2-week-ahead fore-
cast based on data obtained up to June 28. The same interpretation
applies to July 17 (a 3-week-ahead forecast) and July 24 (a 4-week-
ahead forecast). The county-level forecasts for the 11 models were
extracted from the following CDC files: 2021-06-28-all-forecasted-
cases-model-data.cvs, 2021-07-05-all-forecasted-cases-model-data.
cvs, and 2021-07-12-all-forecasted-cases-model-data.cvs(Down-
loadable from: Previous COVID-19 Forecasts: Cases j CDC). To
compare the forecast accuracy between models, the RMSEs of the
four-point forecasts are reported in Panel (a) through Panel (g) in

Figure 1 (There are several measures for forecast accuracy such as
RMSE, Mean Absolute Errors, MAPEs and Thile Inequality Coefficient.
These evaluation measures are basically same type of measures. In
fact, none of them changes our prediction results. Therefore, we
used RMSE as a representative of predictive evaluation measures).

The results indicated that, compared with the other models, the
VAR_Lag 8 model exhibited a much better forecasting performance
for the 6_28, 7_05, and 7_12 forecasts for Bronx, Kings, Nassau, New
York City, and Queens, but not for Rockland and Westchester. For
the latter two counties, the forecasting results were still comparable
with those of the other models. Although not reported here, the
mean absolute error and the MAPE, which are other forecast error
measures, also indicated similar results.

Figure 1. Forecast errors for seven New York counties. The horizontal axis is forecasting models and the vertical axis is RMSE. The forecast method of
VAR_LAG 8 daily is dynamic forecast. The forecast values of other forecast models are extracted from “Previous COVID-19 Forcasts:Cases-2021 CDC”:
https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/forecasting-us-cases-previous-2021.html.
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Concluding remarks
As we have discussed, the VAR prediction outperformed the pre-
dictions of other state-of-the-art models. The reason for this is
that the VAR prediction adequately captures the pre-symptomatic
and asymptomatic transmissibility of COVID-19 by introducing
data from other counties as lagged explanatory variables.

In addition, we would like to point out three important simpli-
fications of the VAR model.

1) PCR test bias, that is variation in the number of tests in
days of week, was not considered here.

2) The number of cases infected with different COVID-19 var-
iants was not taken into account. The number of infected
cases was the sum of the mixed number of cases infected
with different COVID-19 variants.

3) The handling of missing data was very simple, not the
treatment based on any theories.

Despite these simplifications, the VAR model still provided good
predictions. Based on the above, we strongly recommend the sim-
ple VAR model as a framework to accurately predict the regional
transmission of COVID-19.

Supplementary data
Supplementary data is available at Biology Methods and Protocols
online.

Data availability
The data that support the findings of this research are available
in the Excel format in the supplementary files for this article.
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