vision MBPY

Review

Salience Models: A Computational Cognitive
Neuroscience Review

Sofia Krasovskaya >*(0 and W. Joseph MacInnes 1-%*

1 Vision Modelling Laboratory, Faculty of Social Science, National Research University Higher School of

Economics, 101000 Moscow, Russia
School of Psychology, National Research University Higher School of Economics, 101000 Moscow, Russia
*  Correspondence: svkrasovskaya@hse.ru (5.K.); jmacinnes@hse.ru (W.J.M.);

Tel.: +7-495-771-32-32 (S.K.); +7-495-771-32-32 (W.J.M.)

check for
Received: 18 March 2019; Accepted: 22 October 2019; Published: 25 October 2019 updates

Abstract: The seminal model by Laurent Itti and Cristoph Koch demonstrated that we can compute
the entire flow of visual processing from input to resulting fixations. Despite many replications
and follow-ups, few have matched the impact of the original model-—so what made this model so
groundbreaking? We have selected five key contributions that distinguish the original salience model
by Itti and Koch; namely, its contribution to our theoretical, neural, and computational understanding
of visual processing, as well as the spatial and temporal predictions for fixation distributions. During
the last 20 years, advances in the field have brought up various techniques and approaches to salience
modelling, many of which tried to improve or add to the initial Itti and Koch model. One of the
most recent trends has been to adopt the computational power of deep learning neural networks;
however, this has also shifted their primary focus to spatial classification. We present a review of
recent approaches to modelling salience, starting from direct variations of the Itti and Koch salience
model to sophisticated deep-learning architectures, and discuss the models from the point of view of
their contribution to computational cognitive neuroscience.
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1. Introduction

Roughly two decades ago, Laurent Itti and Cristoph Koch presented their model of bottom-up
visual attention [1] based on the cognitive theoretical foundations of human visual attention. The model
subsequently became a seminal work in the field, inspiring a multitude of researchers from various
domains to propose their own models of visual attention. The Itti and Koch model was so influential
because it combined several different aspects to reach one goal: to understand human visual processing
by simulating the processing stages from scene level input to fixation selection. The model had a strong
basis in cognitive theory and tried to replicate some neuronal mechanisms involved in visual attention
by using many of the best approaches from computational vision available at the time. The result
was a model that was to account for many of the spatial and the temporal aspects of human shifts of
visual attention.

Subsequent models were numerous and improved the initial approach from the point of view of
cognitive mechanisms, the biological accuracy, or simply augmented the bottom-up approach with
additional semantic, object, or top-down information. Others were interested in using the general
structure for application purposes such as computer vision and robotics. These critiques, improvements
and augmentations of the original model have certainly added to what is now a rich literature in
models of salience, and we do not intend to belittle their contribution. The fact that Itti and Koch are
still being discussed, critiqued, and augmented 20 years after the original article is, in our opinion,
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a true sign of its importance in defining this field. We provide a review of the different approaches
in modelling visual attention based on their contribution to computational cognitive neuroscience.
We limit our review to models that were directly influenced by the Itti and Koch algorithm, and cover
examples that model object attention, top-down influence, information theory, dual stream models,
and conclude with recent advances in deep learning salience classifiers. We also include other methods
of achieving the main goal: modelling image salience and the way it results in shifts of attention.
The main questions this review tries to address are what contribution did these models make in our
goal to explain human visual attention using computer simulations, and what directions are available
for the next generation of models?

In this review, we approach the salience problem from a computational cognitive neuroscience
perspective, which implies a combination of theoretical and methodological concepts from several
domains. Such a perspective suggests that the perfect salience model should be based on a strong
theoretical foundation, model the neurobiological processes underlying visual saliency, use explicit
computational tools as a means of modelling these processes, and be generative by taking both spatial
and temporal predictions of visual salience into account.

Studies of human visual salience have led to the creation of hundreds of computationally valid
models, however, most of these models do not focus on all of the abovementioned components of
salience simultaneously. We understand that with so many parameters to account for, like combining a
broad cognitive theoretical scope and a focused precise neural approach, it is almost impossible to
avoid trade-offs. Nevertheless, we will cover models that attempt to address at least several of the
abovementioned aspects of visual salience simultaneously.

2. The Itti and Koch Model: Why Is It Seminal

One of the most significant works in the field of visual attention was the study of bottom-up
attention by Christof Koch and Shimon Ullman [2] that attempted to explain the underlying biological
mechanisms of visual attention. The result served as a foundation for the renowned salience model,
the first implementation of which was realized in 1996 [3]. The model was later refined to the version
now deemed classic [1,4,5]. A schematic of these general steps for salience computation is demonstrated
in Figure 1.

According to the model, the basic features of a visual scene were organized into feature maps of
colour, orientation and intensity based on eight scales of linear filtering. The feature maps were then
normalized within each feature based on centre-surround differences [6] with the eight scales allowing
for different receptive field sizes. Specifically, scales with greater downsampling (surround) could be
contrasted with scales of lesser downsampling (centre). The result was 42 maps (six intensity, 12 colour,
24 orientation) containing local spatial contrasts. Neurons within each feature map competed for the
most salient locations based on a mechanism of lateral inhibition. The term ‘neuron’ in the model is
simply a mathematical function that is activated upon reaching a certain threshold. Neurons with
higher activations are more likely to win against its surrounding competitors. Unlike neurons in a
deep learning neural network (for details, see Section 5), the neurons in the Itti and Koch model were
not organised hierarchically but were activation function representations distributed throughout the
map with the sole purpose of burst activation from salient feature input signals. The feature maps
were then combined into a conspicuity map for each of the three features and normalized according to
that map’s global maximum to prevent strong but common features in one modality from overriding
weaker singletons in another feature modality. The conspicuity maps were finally united into a single
2D topographical map of general conspicuity or salience.
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Figure 1. This figure is a demonstration of the salience computation algorithm present in many existing
models meant to provide a general idea of the main steps required for bottom-up salience computation.
In the current example, basic features like edges, colour, orientation and intensity are included, though
the initial Itti and Koch model focused on three main channels: intensity, orientation and colour.
Many implementations of the model take into account other features like edges, motion, junctions,
shades, etc. Some implementations also include an additional temporal stage that computes fixation
locations with a mechanism like inhibition of return (IOR) to prevent fixations at previously attended
locations. The main steps present in the figure are as follows: (1) A model receives an input image;
(2) features of the image are extracted and organized in a hierarchical manner, with separate feature
channels consisting of several levels based on the scale of processing (usually features are downscaled).
The features are extracted to individual feature maps using parallel processing, which means that
separate feature channels are analysed simultaneously in parallel; (3) the feature maps extracted at
every level are merged into one general feature map organized per feature, with the most conspicuous
locations reflected on the maps; and (4) the resulting feature maps are combined into a single map of
conspicuity, which is the output of the model in the form of a so-called salience map.

The merged salience map was then implemented as a two-dimensional array of Leaky
Integrate-and-Fire (LIF) neurons (see reference [7] for a review of the LIF model) that represented
the spatial topography of the input scene. A temporal winner-take-all algorithm was applied to the
map in order to select a location of maximal salience as the first attended location [1,8]. This was an
iterative process with subsequent fixations determined by a similar process. Previously attended high
salient locations were discouraged from repeated fixations by an implementation of inhibition of return
(IOR) [9-11]. Similar to the way biological centre-surround receptive fields work when distinguishing
basic features of an object [6,12], the model distinguished salient object features from the background
based on colour, orientation, and intensity in order to select a location for attention direction. The final
layers combining LIF, winner-take-all (WTA), and IOR allowed the model to make predictions about
temporal order and latency of fixations in addition to their spatial salience.

There are many reasons why this model has maintained relevance. It modelled the entire flow of
visual information from visual input to fixation selection, it was easy to test against a variety of human
experimental data, it has also garnered interest from applied vision researchers who wish to test more
biologically plausible solutions for machine vision and robotics [13,14], and it had a strong theoretical
basis that strived to implement our strongest theories of vision and attention. For example, the earliest
processing stages were an implementation of the feature integration theory [15] with features processed
pre-attentively and in parallel. Likewise, IOR was used as a search facilitator [10,16] to reduce the
likelihood of repeated re-fixations of salient locations.

The model was based on biological mechanisms: centre-surround receptive fields sensitive to a
specific set of features—pyramidal cells, projecting through the primary (V1), second (V2), dorsolateral
(DL), and inferior temporal (IT) visual areas and serving as output pathways for the visual cortex [1],
and leaky integrate-and-fire (LIF) neurons, which have strong global inhibition, where the entire
population of neurons is inhibited in response to an activation of any single neuron in the population.
Action potentials caused by such activation shift the focus of attention to the location where the signal
is active. Finally, the model was generative and as such could simulate likely shifts of attention given
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any sample input. These shifts made spatial predictions that can be compared to real fixation locations
during scene viewing but also temporal predictions in the order and latency of those attentional shifts.
It is certainly possible for a model to contribute to our understanding of visual processing without
addressing all of these areas, but models are particularly adept in overcoming the reductionism of
controlled experiments and should continue to be evaluated in terms of how well they explicitly
compute in terms of theory and biology in both the spatial and temporal domains.

3. What Is the Salience Problem?

It is impossible to process everything in our visual field simultaneously, so the notion of visual
salience is used to describe how specific aspects of the visual field are selected for further processing.
We define a salience map as a 2D accumulation of visuo-spatial information that includes, but is
not limited to, bottom-up information from input image features. Since this definition includes the
possibility of top-down influence, it could also be accurately referred to as a priority map [17], but we
keep the term salience for consistancy with the original model. Like the many salience models suggest,
this map provides a source for effective shifts of attention over time.

One candidate brain region responsible for mapping salience is the superior colliculus (SC), which
is a layered structure in the dorsal part of the mammalian midbrain that directs behavioural responses
toward specific locations in egocentric space. Activity in superficial layers of SC has been used to predict
fixation locations in free scene viewing and visual search paradigms [18]. A salience map is represented
as a two-dimensional array in the SC, where the field size increases with depth [19]. Another proposal
for a neural map (for non-human primates) is LIP [20,21] (also reference [17], though they define their
priority map as more strongly influenced by top-down attentional factors). This simple priority map
may then work with FEF to tag previous locations [22] and SC as the result of the WTA [17].

To be effective, a salience map should be constructed from a combination of bottom-up and
top-down information (the nature of this interaction is still a source of debate and beyond the scope of
this review). The first area responsible for bottom-up visual attention after information is received on
the retina is the lateral geniculate nucleus (LGN). Visual information from the LGN is sent toward V1,
where it is then passed on to higher structures via two major pathways—the dorsal pathway, also known
as the ‘'where’ pathway responsible for identifying spatial locations and detecting movements, and the
ventral pathway, known as the ‘'what” pathway, which deals with the identification of features and
objects [23-25]. The dorsal pathway includes areas V1, V2, V3, MT, MST, and the posterior parietal
cortex (PPC), from where projections reach the dorsolateral prefrontal cortex (dIPFC). The lateral
intraparietal (LIP) area is also believed to be a part of this stream [26]. Areas comprising the ventral
pathway include V1, V2, V4, the inferior temporal cortex (IT), and the ventrolateral prefrontal cortex
(VIPFC) [27].

A top-down contribution includes information that is task-relevant and does not depend on simple
visual salience of objects and locations [28]. Alfred Yarbus [29] demonstrated that fixation locations
depended on the tasks that the participants carried out based on the directions given when studying
natural scenes and the results of this study have been used to create a number of classifiers [20] and
models [21,30] that predict the task carried out by observers based solely on their eye movement
patterns. The evidence for task-based attention has served as basis for models of visual attention that
take this factor into account [31,32]. Top-down attention is associated with a higher neuronal activation
for behaviour-relevant stimuli and with neuronal inhibition for behaviour irrelevant stimuli [33]. As in
bottom-up attention, such activations take place in areas of the dorsal and ventral visual streams,
but if bottom-up processes mostly rely on feedforward connections and start in the lower areas,
top-down attention is manifested through reciprocal feedback pathways that originate in the PPC and
especially in PFC [34,35]. Several studies have also demonstrated that the fronto-parietal regions of
the brain play a crucial role in attentional control [36-38]. Liu and colleagues [39] have highlighted
the role of the intraparietal and precentral sulci in the choice of a fixation location, and there is
evidence that the fronto-parietal network is active during visual search tasks [33,40—42]. Extensive
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research involving microstimulation [43], chemical inhibition [44], visual search tasks [45], and working
memory and behavioral tasks [46] indicate a high level of involvement of the frontal eye fields (FEF) in
top-down attention.

Such a strict division of processes into top-down or bottom-up is, of course, oversimplified [47,48],
and both factors work together in order to produce a salience map that implements both top-down
and bottom-up factors [1,49-52]. Wolfe and Horowitz [53] further highlighted five factors to support
the idea that visual attention depends more than on just bottom-up and top-down approaches. The Itti
and Koch model is primarily based on bottom-up feature processing, though it does contain a very
limited option for top-down “priority’. The model is able to assign weights to the different bottom-up
features of the image, thus changing the degree of priority of these features (such as colour intensity or
orientation, for instance) in the final conspicuity map. The model does not, however, model any other
top-down components such as semantics, world knowledge, volitional control, or task-dependent
behaviour, a limitation which is explicitly stated by the authors themselves [5].

In the Itti and Koch model, selection of attentional shifts are handled by the LIF and WTA layers.
In humans and primates, the final control of attentional shifts is regulated by several brain regions that
include structures in the occipital, parietal, temporal, and frontal cortices, such as the cerebral cortex,
basal ganglia, thalamus, superior colliculus, brainstem reticular formation and cerebellum [54-57].
Deeper layers of the SC are responsible for the coding of eye movements [55]. In the Itti and Koch
model, the LIF spiking layer is considered a valid implementation of the two-dimensional array of the
SC [54], which consists of so-called peaks of excitation that react to projections from the frontal eye
fields (FEF) and supplementary eye fields (SEF) [58]. The peaks of the array follow a ‘winner-takes-all’
(WTA) strategy, competing with each other in order to reach a certain threshold that would serve as a
saccade initiator. This strategy is supported by lateral inhibition, which is responsible for the control of
spatial attention by the process of inhibition of all neighbouring signals except for a single peak of
neurons that would reach the threshold [1,15,59].

Consequently, the creation of an artificial model of human salience is a challenging goal, especially
given the rich literature on the biological mechanisms of visual attention. An effective model of salience
and visual processing, however, does not need to explicitly model the functional areas involved in
bottom-up or top-down processing. In fact, a full simulation is likely beyond our current ability.
However, the closer a model stays to biological realism, the closer we get to understanding the conection
between neural function and resulting behaviour.

4. Computational Salience Models

The idea to model selective attention grew alongside the cognitive revolution in psychology [60],
and grew with the sophistication of the inspiring theories and with the computational power to
implement them. Many models emerged alongside and after Itti and Koch, and they provided
extensions and alternate implementations of the process. Although the division of models into
separate classes may not be categorical, we group them based on their most vivid characteristics. Thus,
we highlight the following groups of models: models directly inspired by the Itti and Koch architecture,
biologically driven models, top-down models, models based on the dorsal and ventral pathways,
object models, and computationally driven models.

4.1. Direct Variations of the Itti and Koch Model

The initial Itti and Koch model served as a foundation for many subsequent models that may
share the basic structure of the original, but deviate or expand from it in some important aspects.
In this subsection, we focus on such models and list their similarities and discrepancies as compared to
the Itti and Koch model.

One of the first variations was called Attentional Selection for Object Recognition [61], and like
the name implies, it was based on the classical Itti and Koch model but with a hierarchical component
for object recognition (HMAX) [62]. While the original model was able to focus on salient regions
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in space, HMAX added an explicit implementation of regions as objects. The HMAX module was
hierarchically organised with initial layers matching the Itti and Koch model but then used feature
combination and pooling functions to combine information as it moved up through the layers.

Keeping with the focus on neural plausibility, the mid layer of the HMAX module represented
composite feature cells and functionally corresponded to area V4 in the visual cortex. The activity
of units in this layer were subject to an attention modulation process responsible for approximating
spatial location information and representing salient objects in the visual scene. The final layer was able
to recognise specific objects with tolerance to changes in scale and position. This model also used IOR
to prevent refixations, but instead of being based on spatial locations like in the Itti and Koch model,
inhibition was object-based [63]. Although it shared many features with other salience models, HMAX
was focused on the task of object recognition rather than spatial and temporal fixation simulation.

Since many early models focused on pixel level input, they were unable to compare salience
between 2D transformations such as reflection, rotation and translation. The Selective Attention as a
Front End (SAFE) model [64] accounted for these transformations by working horizontally across all
feature channels for each feature scale, instead of vertically within each feature channel. For a better
understanding, feature channels and scale levels may be regarded as a matrix, where feature channels
are columns and scale levels are rows. In the vertical approach, features are analysed by separate
columns, while the horizontal approach implies feature analysis by rows that include different features
located on one row of the matrix. The model used transformed variants of the same image to calculate
the error of fixations for the base image to fixations for the transformed image. Processing in the model
was based on pyramids of intensity, colour opponency, and edges, and used difference of Gaussians to
assess salience. Fixations were represented as a location and scale value inside the salience pyramid.
Theoretically, the model supported Eriksen and James’ [65] metaphor of visual attention as a zoom-lens
by taking the scale of the image into account as opposed to the strict spotlight theory [66]. This resulted
in an improved model for appearance-based object recognition systems that attended to the same
features across different scales and geometric transformations.

As theories of attention and salience improved, so did the models that chose to implement them.
Where feature integration theory allowed for preattentive processing based on basic features, Guided
Search [67] proposed that attention could be guided by that preattentive information. Navalpakkam and
Itti [68] created a model that used guided search to implement task-relevance, attention bias for low-level
target features, target recognition based on basic features, and the creation of a task-relevant map of
locations in the visual scene in addition to biased salience maps. The model had a working memory
component responsible for memorizing task-relevant items and a long-term memory component
used for hierarchical matching of items based on the given task. As a result, the model produced a
topographic task-relevant map of locations and item relevance with regards to the task. The structure of
the model used bottom-up salience [1,5] with separate feature maps in parallel fashion, but these maps
underwent a process of top-down guidance via weight adjustment in order to separate task-relevant
from task-irrelevant features.

The model did not incorporate a sufficient level of top-down control in order to make attentional
shifts directed toward specific objects (a man’s hand) or locations (bottom-right object) as this would
require a spatial relation component. Moreover, it used fixed object signatures and was not able to
adapt to distances and rotations of objects in the visual scene. However, it was a good example of the
interaction between attention and working memory. There is enough evidence supporting the overlap
between the two constructs during task-driven actions, which facilitates the choice of information
relevant to the goal [69,70]. Moreover, there is evidence of visual working memory acting as an
attentional guiding mechanism in visuospatial tasks [71] and of FEF neurons responding differently to
stimuli that have already been attended to [22].

In addition to cognitive theories, some models chose to borrow aspects of mathematical theories.
Graph-Based Visual Saliency (GBVS) [72] was a bottom-up model that was based on graph theory to
create activation maps from a raw image. The idea is that, if maps are implemented as Markov chain
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graphs, then the equilibrium (stable) distribution of the chain can be interpreted as activation and
salience values over the locations of the map. The model contained two major parts—activation and
normalization. Activation maps were based on feature channels that represented a set of meaningful
locations according to a specific criterion, like information from human fixations. The graph-based
Markovian approach found regions of dissimilarity that were computed in parallel to calculate mass at a
region and distribute it among neighbouring regions. Such parallel processing at different regions leads
to a single equilibrium distribution of mass. The normalisation stage integrated mass concentration
over all activation maps in order to identify a set of salient locations. The same Markovian approach
took place, and regions with the highest activation attracted mass. The model was made as a part of
the GVBS Toolbox (refer to Appendix A for information on toolbox implementations) and provided a
good example of a computationally driven implementation of the initial model.

Overall, these direct variations of the original model demonstrate that theoretical and practical
augmentations can be made to the classic salience model while maintaining key components
of its essential structure. These models all share preattentive feature processing, location-based
feature extraction, and a focus on bottom-up attention, yet make their own contribution to new
functionality. For most of these models, feature and location selection coincide, but we know that
feature-based attention can exist independent of spatial locations during visual search [73]. To be
accurate, identification of location should happen at a later stage and with fewer locations based on
the processed relevant features.

4.2. Biologically Driven Models

Most computational models will claim some degree of biological plausibility, and the differences
are often in the level of granularity they choose for their model. Some advances in salience
modelling, however, have made a point to focus on the neural underpinnings of some portion
of the processing stream. In this subsection, we look at four biologically-inspired models that share a
similar architecture with the original model and focus on attaining a high level of biological validity of
visual salience processes.

Li [74] introduced a theory of salience based on the independent sensitivity of V1 cells to specific
features, and this was implemented in a bottom-up salience model by Koene and Li [75]. The main
idea was that the features were not summed across channels to identify the most salient location as in
the Itti and Koch model, but salience was identified at the location to which a specific V1 cell activated
the most to as compared to other V1 cells. Moreover, the model implemented conjunctive cells in
V1 that were sensitive to combinations of motion and orientation (MO) and colour and orientation
(CO) [76,77]. This involved V1 neurons with receptive fields sensitive to orientation (O), motion
(M), colour (C), colour and orientation (CO), and motion and orientation (MO). These neurons were
connected horizontally, and a mutual inhibition mechanism was applied to neurons that activated
to uniform features. Receptive fields with the highest activation thus represented a salient location.
The model resulted in lower reaction times to targets with combined features as compared to targets
with independent features processed in a parallel manner. Overall, the model had a strong theoretical
and neural foundation and matched the simpler feature processing in striate structures [78,79].

Salience models frequently use multiple maps for features and scales (a total of 42 in the original
Salience model), but this adds much redundant information. Park and colleagues [80] focused on
reducing redundancy of retinal cells by adding a new pre-processing stage simulating LGN [81]. Input
from natural coloured scenes created four feature maps for edges, symmetry, and red-green (RG) and
blue-yellow (BY) colour opponency. Redundancy was reduced by applying an independent component
analysis on the feature maps. An unsupervised learning approach was then used to assess the optimal
weights in each feature map in order to combine them into an optimal salience map. The proposed
model provided an alternative approach with a strong neural basis to the classic bottom-up salience
model, though it did not take into account important characteristics of vision, like IOR.
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The flat, two-dimensional maps of most salience models are a useful simplification of retinal
input, but they do not account for biological features such as retinal sampling and magnification in
the visual cortex nor consider the covert visual angle included in visual processing. The model by
Aboudib and colleagues [82] differed from the Itti and Koch model in replacing Gaussian subsampling
and across-scale reductions of the input image with kernel-based Gabor filtering and receptive field
emulations that mimicked biological cortical magnification. This filtering approach produced a total of
9 feature maps per image instead of the initial 42 in the Itti and Koch model and lead to a generation of
250 most salient locations chosen based on a WTA/IOR process. The model computed input layers
such as cone receptor or retinal ganglion cell layers, going upward to areas LGN, V1, etc. The model
also allowed feature layers to be stacked onto each other before WTA/IOR took place, thus providing a
way to mimic the feed-forward stream in the visual system.

As processing progresses along the ventral pathway, neuron receptive fields get larger and more
specific to complex patterns. Hamker [83] proposed that FEF, based on Duncan’s theory on adaptive
neural coding [84] might project complex templates backwards as a source of top-down attention.
Specifically, the model implemented task-oriented feature-based attention in V4/TEO. It included
top-down parameters into a bottom-up architecture in its feature processing stage, and contained
‘match detection units’ responsible for object detection in natural scenes. Processing used a population
coding approach [85] to generate expectations based on prior knowledge, and thus, refresh the salience
information of each feature based on top-down influences. The structure included several components:
the early visual component for feature and conspicuity maps based on channels of colour opponency
(two maps: RG, BY), intensities, orientations. and spatial resolutions; the V4 component, which coded
the approximate salient stimuli locations; the TE component, which received pooled input from V4 in
the form of feature conspicuity and location and resulted in several V4 features combining into one at
TE; the FEF perceptual map, which integrated V4 and TE data across all five channels; and the FEF
decision map, where several most salient locations competed for the highest saliency. A final IOR
mechanism made sure that the model searched for objects in novel locations.

4.3. Top-Down Contributions

As mentioned earlier in Section 3, the Itti and Koch model did allow for basic top-down control
through weighting of the different bottom-up features. Parameters could be set or learned that gave
priority to colour or edges, for example, and these features would be weighted more strongly in
the merged conspicuity map. The primary purpose of the model, however, was a demonstration of
bottom-up salience, and it was left to future models to incorporate realistic aspects of top-down attention.
To speak of a top-down contribution, however, we have to consider the attentional state of viewer and
understand the intentions as defined by the viewing task [86]. Although task instructions are not the
only manner of top-down influence, it is an established method of manipulating it experimentally.
Although there have been many such contributions, we have chosen three models as exemplary.

Salience models are not restricted to visual search, but this specific task holds a prominent place
in the literature. Jeremy Wolfe focused specifically on search instead of viewing without a specified
task, and in doing so extended feature integration theory [15]. His Guided Search [87] model allowed
searching for a target among a set of distractors and considered the bottleneck between visual input
and object recognition. The model suggested that top-down information may be used to facilitate
the search process by emphasizing bottom-up features of a target. The proposed architecture was
divided into a preattentive stage, where a feature map distinguished targets from distractors using
parallel processing, and a serial process stage, where each potential target was processed one by one
using information from the first stage until the true target was found. Wolfe’s model was based on
several theories of visual attention [15,88,89]. There have been several revisions of the model [50,67,90],
with Guided search 4.0 perhaps undergoing the largest changes, as it represented visual guidance as an
independent control mechanism, whereas in earlier versions, the preattentive stage played the role of a
guidance mechanism. The mechanism proposed was a guidance activation map, which contained a
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weighted sum of bottom-up and top-down activations. Wolfe and Horowitz [59] further addressed the
issue of identifying attributes that guide attention and provide convincing arguments for the existence
of a guiding representation. Attentional guidance is also affected by previous experience and may
manifest in inhibiting mechanisms, such as IOR [9-11], or in facilitation of the search for relevant
stimuli [91,92].

The Feature Gate model [93] was created in an attempt to understand specific mechanisms of
visual attention like parallel and serial search, inhibition of distractors, bottom-up feature selection,
split attention, and feature contrast variations. The model used a hierarchical architecture consisting of
a network of spatial maps containing attentional gates that controlled the signals sent to higher levels
of processing. The decision to pass a signal was based on the usual bottom-up features but also on
top-down characteristics that separated relevant features from non-relevant ones. Activations for each
location were calculated separately for bottom-up and top-down information and then summed to
form a general activation map of locations. Gates with the highest location activation values were
allowed to pass the signal to the next level. The structure of the Feature Gate model was similar to the
structural organization of the visual cortex, with the lowest map corresponding to area V1, containing
small receptive fields sensitive to specific features, and the highest map similar to higher layers of
the cortex, with large receptive fields sensitive to complex features. The model also implemented an
inhibiting mechanism that prevented distractions, which helped differentiate relevant and non-relevant
signals, which is similar to the biological mechanism of lateral inhibition [94].

Generative models, often based on Bayesian probability, have the added benefit of being able
to simulate response distributions to new unseen exemplars. Rao and colleagues [95], for example,
introduced two such probabilistic models of visual attention that included top-down influence on
salience. The first model was based on reproducing of overt shifts of attention in visual search using
salience maps of natural scenes. The most salient target location was defined using a probabilistic
Boltzmann distribution algorithm [96,97] as a weighted average value of all scene locations with
regards to the weight of the most salient location. Salience maps were generated through bottom-up
and top-down parameters with reference to both spatial and target representations. The second model
was based on predictive coding. It was a generative model of image representation used to study
response properties in the visual cortex [98] and mimicked feedforward and feedback mechanisms of
the ventral and dorsal pathways. This model demonstrated how visual attention is globally organised
throughout various brain structures by predicting probable consequences of damage to different areas
of the system. Both models shared a common probabilistic approach, but the second model added an
extra focus on shifts of covert attention.

Maps that combine top-down and bottom-up information may more correctly be referred to
as a priority map [17]. Though these models do not address all of the aspects of visual attention,
each of them has made its own contribution to the field, with the Guided Search model focusing on
strong cognitive hypotheses, the Feature Gate model imitating the overall structure of the visual cortex,
and the generative nature of Rao’s probabilistic models. Hence, these models may be used as a basis
for future models to further investigate biological visual attention processes.

4.4. The ‘What’ and “Where” Models

In 1983, Mishkin, Ungerleider, and Macko [99] proposed a theory of two separate cortical pathways
existing for object processing and spatial location processing and this was later elaborated by Milner and
Goodale [23] as the “Two Streams hypothesis’. According to the theory, visual areas are hierarchically
organized into two separate processing streams running ventrally and dorsally and are responsible for
object (the ‘what’ stream) and spatial location (the ‘where” stream) processing, respectively [24]. Here,
we discuss two models of visual salience that take the separate processing streams theory into account.

Models of object recognition need to consider properties of perception such as object invariance.
Rybak and colleagues [100] proposed just such a model that was invariant to scale changes and
geometric transformations, such as rotations and translations. It modelled visual processing through
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three subsystems: a low level subsystem mimicking V1 neurons and responsible for edge detection;
an intermediate level that used frames of reference to translate basic features into second order features
insensitive to transformations; and a high level module that was based on the cooperation of the dorsal
and ventral streams for sensory and motor memory accordingly. This final layer was further capable
of operating in three task-modes: memorization, search and recognition. The model was tested and
performed well on both complex scene and facial recognition tasks.

Likewise, the Neurodynamical Model [101] implemented both object-based and space-based
streams [23,102] of visual attention with natural scenes as input. It was able to model increased
receptive field sizes in higher layers in the visual cortex and also the top-down modulation (reduction)
of receptive field size in complex scenes as compared to plain backgrounds [103]. The model comprised
five modules, structured in a way that resembled the dorsal and ventral pathways and connected by
feedforward and feedback projections. A short-term memory block was used to integrate top-down
bias via pathways simulating the prefrontal cortex. The model was able to simulate fMRI signals using
pooling of neurons in a specific area of the cortex with regards to spatial and temporal parameters and
demonstrated dynamic interactions between the dorsal and ventral pathways.

While the independence of the dual streams may be over exaggerated [104], the underlying
premise of the pathways remains [105]. The idea of parallel pathways for different aspects of visual
processing should also have an appeal for modelling, where partitioning of functionality offers both
ease of development and greater explanatory value. These models show the way forward for providing
a benefit for including the neuronal mechanisms underlying the separate avenues for visual attention.

4.5. Object Models

An interesting approach to the modelling of visual attention is one based on object rather than
feature salience. Object detection models in natural vision have their own rich literature [106-108] but
we focus on two such models that combine objects with the Itti and Koch bottom-up architecture as
one of the steps in the overall structure.

The ‘fingers of instantiation” (FINST) theory by Pylyshyn [109,110] suggests that the visual system
is capable of tracking a limited number of salient locations over time and across multiple fixations.
The NAVIS system [111] comprised a bottom-up salience component, a top-down attentional control
component, and a behavioral component divided into two stages. The first stage was similar to the Itti
and Koch model, though it produced several salient locations based on the idea of FINST. The second
stage analysed the locations chosen during the first stage and chose one focus for overt attention.
The aim of the double-stage selection in the model was to combine theories of early and late selection
into one system.

The model implemented feature maps for edges, oriented areas, and colours feeding into
conspicuity maps of symmetry, eccentricity, and colour contrast, respectively. The derived maps
were then combined into one bottom-up salience map, which was updated by top-down mechanisms
marking locations for increased relevance. Dynamic neural fields [112] were implemented as an
inhibiting mechanism, and this was based on two approaches for separate local and global inhibition.
Inhibition of return in this model was applied globally to objects rather than salient points in space,
which is consistent with Tipper’s [113] hypothesis of inhibiting mechanisms in humans.

Sun and Fisher [114] implemented a model based on object-based visual attention but incorporated
components of multiple cognitive theories and studies of vision, such as the Integrated Competition
Theory [115], the salience model of bottom-up attention [1,5], theories of top-down and bottom-up
attention interaction, object and feature based salience, and others. The model suggested that
competition for visual attention takes place both within an object and between objects and consisted
of two main components. The first component was responsible for object salience and grouping and
followed a similar strategy to other pre-attentive salience maps. The second component represented
a hierarchical approach to attentional shifts. The first stage followed a similar strategy to other
pre-attentive salience maps, and the second stage included hierarchical selection from the winners of
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the first stage from coarse to fine scales. This approach provided an integration of attentional selection
from spatial locations, features, and feature conjunctions. The process took place between and within
groupings across scales, and groupings at the final level marked a salient location.

Object recognition is a key component in vision processing. For example, the space between
objects may be a key factor in spatial attention, search and reading [116]. Top-down factors, such as
visual context and relevant task, are also important for object recognition, as they further facilitate
the process of finding objects in certain contexts [117]. Object-based models might also provide some
understanding of the interaction between feedforward and feedback mechanisms in the visual system,
since such an interaction is considered important for the identification of the location of an object (for
an example of such a model, see reference [118]). The feedback network could identify the location of
objects, whereas the feedforward mechanism is responsible for the detection of shapes present in the
visual field. The initial Itti and Koch model focused mainly on the spatial location of salient features,
with object identification being a consequence of salient location detection, whereas object-based models
deliberately concentrated on object salience by combining bottom-up and top-down approaches.

4.6. Computationally-Driven Models

Salience models have been a popular approach in psychology and neuroscience but also in applied
fields like engineering and computer science where machine vision has shared many approaches
with vision science. Linear combinations, normalisation algorithms, and Gaussian functions were
instruments that helped the original model imitate bottom-up processes that take place in the visual
cortex. Since then, many models that used computationally valid tools to predict visual salience have
been proposed, and this subsection is dedicated to examples that have contributed to both applied and
fundamental research.

The Selective Tuning model [119] shared a number of features with the Itti and Koch approach
and was based on a hierarchical pyramid that initialised weights from a feedforward pass based on
image input, followed by multiple feedback passes to tune selection. The selective tuning mechanism
involved inhibition that behaved differently for spatial selection and feature selection. Spatial selection
pruned irrelevant pyramid connections while feature selection inhibited components responsible for
the computation of irrelevant features. After the inhibitory processes, a WTA mechanism was activated
at the top layer of the hierarchy to determine a globally salient element. The model was one of the
early implementations of feedback mechanisms as the signal was then sent back to the lower layers
through direct connections, allowing the globally salient unit to influence lower level units, recursively
identifying locally salient units at every level of the hierarchy.

Information theory in computer science and mathematics tries to quantify the value of any
information by its ability to resolve uncertainty. Applying this idea to vision, we can think of
fixation allocation as an extension of the question of how best choose locations that will maximize
information gain. One example of this approach was AIM [120] that derived a self-information
criterion from a natural image. An independent component analysis (ICA) was applied to patches of
7 x 7 pixels that were randomly selected from each image during the independent feature extraction
stage. The likelihood per patch was then estimated and joined into a general likelihood for the
entire image. The joint likelihood underwent Shannon’s self-information measure [121], after which
a salience map was created for the input image. In general, the model represented an information
maximization approach to a set of images. Although it performed better than the Itti and Koch
model based on the area under the ROC curve score, it lacked both the cognitive foundations, like the
feature integration theory, and the biological mechanisms like WTA and IOR. The model did provide a
strong computational background, was based on the idea of sparse coding [122], and was an effective
functional implementation directed at computer and robotic vision.

Information gain is also suitable for coding top-down information, as, for example, the Schill [123]
model based on the Dempster-Shafer belief theory [124]. The model contained three basic levels—a
neural network preprocessing stage that analysed information extracted from the scene, a top-down
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component based on the Dempster-Shafer belief theory for uncertain reasoning that applied to
information from the preprocessing stage, and a control component that predicted fixations that would
maximize information gain. This architecture would constantly update retrieved information from a
scene to predict the most promising fixation locations. Systems based on information gain and entropy
have an interesting theoretical implication in that IOR is no longer needed to prevent repeat fixations
since the information gain at these locations is automatically reduced.

A creative approach to visual attention modelling was based on Bayes” Theory. Torralba and
colleagues [125] suggested using a Bayesian architecture, where attention was driven by global scene
context. The authors proposed a contextual guidance model of attention based on two parallel
pathways: one pathway for local feature salience, another for global feature processing that took scene
characteristics into account. The salience pathway encoded each location independently, resulting
in a bottom-up salience map. The global pathway extracted global features from the entire image
filtered through six orientations and four scales. The result of the filtering was represented by a vector
of 64 principal components. A ‘scene prior’ mechanism was then added based on the given task,
and contextual modulation was applied to the bottom-up salience map, which resulted in a final
context-sensitive, task-driven salience map. The global pathway made sure that most probable target
locations were activated and that task-irrelevant salient locations were eliminated. The proposed
model made accurate predictions of human visual behaviours based on a given task. It combined
several theoretical approaches to visual attention, such as bottom-up salience and the effect of context
on visual search.

Bayesian approaches are well suited for implementing context and task as the probability weights
can shift based on evidence or prior knowledge. The SUN model [32], for example, regarded salience as
differing based on the task being performed. In free-viewing, salience was based solely on bottom-up
features, but with a specific task like target search, salience was based on the available knowledge
about the visual features of the target class. The computation of the target probability was calculated
per pixel and included bottom-up parameters, as well as visual appearance and location of a stimulus.
Prior knowledge for the model was obtained using a set of images from the LabelMe dataset [126]
which include prelabelled information on object location and identity. Testing of the model showed that
it was able to predict human-like fixations, and even made mistakes similar to those made by people.

A simple but novel approach to salience modelling that addresses the role of foreground
and background segmentation in visual attention [127] was proposed by Zhang and Sclaroff [128].
They used the Boolean map theory of visual attention [129] as a basis for their Boolean Map-based
Salience model (BMS). Given an input image, BMS produced a set of Boolean maps based on binary
figure-ground segregation according to randomly selected feature channels. The Boolean maps were
then used to compute attention maps using Gestalt, figure-ground segregation principles to discover
connected regions of the image. Normalised attention maps were then linearly combined into a single
full-resolution salience map ready for object detection tasks or for the prediction of fixation locations.
Despite its simple organisation, the BMS model maintained high levels of performance on several
benchmark eyetracking datasets (see Appendix B).

The line between a strictly computational model and a cognitively plausible model is very much
open to interpretation. One particular standout that has left a mark on approaches was a model
proposed by Judd and colleagues [130]. It used a support vector machine (SVM) classifier method to
learn how to estimate salience directly from human data. In the model, salient points on an image
were defined by three layers of low-level features, which were then used to train the model. They also
included ‘mid-level” features such as automatic horizon line detectors and high-level features like
face, people, and car detectors. The result was a model that was attracted to the same locations that
attracted human fixations.

As seen from just several examples of computationally based models, there exist multiple
approaches to mimicking visual salience with the help of computational tools. While computer vision
and computational models of vision may have different goals, they have shared many algorithmic
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approaches over the years. Even computational approaches that are less biologically plausible, like ideal
Bayesian observers [131], can be used to highlight the potential efficiencies of human search. Applied
machine vision approaches do have an understandable focus on salience prediction through bottom-up
salience since much top-down information would require some degree of common-sense knowledge.

5. Deep Learning Classifiers

In recent years, there has been a movement toward complex deep hierarchical structures for
predicting salience in natural images [132,133]. This is because deep learning algorithms have been
shown to be extremely accurate tools for modelling high levels of abstraction [134], such as vision
and speech processes. They can also model human visual attention by drastically narrowing the gap
in accuracy between model and human spatial predictions [135]. A neural network represents a set
of elements called neurons, which are most commonly structured in the form of layers. Artificial
neurons in neural networks are computationally similar to biological neurons, and early attempts
to create neural networks were inspired by the human brain [136]. A biological network contains
a collection of neurons that are electrically or chemically excited nerve cells and stores, processes,
and passes signals to other neurons using electrical and chemical impulses. Artificial neurons may
be described as a mathematical model of biological neurons, and these represent the basic element
in an artificial neural network. Each neuron may receive several inputs, which are summed up and
weighted to provide an output upon reaching a certain threshold. The input neurons are activated
by a sensory signal that triggers evidence accumulation and pass weights to the next neural layers.
The main advantage of a neural network is that it is possible to engage many neurons in parallel in
order to solve different problems.

Deep learning is a type of machine learning algorithm that uses a non-linear function for parallel
information processing [137]. It uses multi-layered (hence ‘deep’) neural networks and management
of the neural weights to solve complex tasks or to replicate natural phenomena. Each layer of a deep
network represents different levels of abstraction and is used to extract certain features of the data,
such as images or audio. Deep learning architectures have proven to be useful in different spheres,
such as biology, chemistry, finances, business, physics, neuroscience, and many others [138]. In vision
research and spatial salience prediction, deep neural networks have become the leaders among other
approaches as seen in the MIT saliency benchmark [139].

The class of deep learning networks most frequently used in visual processing is convolutional
neural networks (CNN). CNNs have a multi-layered structure, but instead of learning all the weights
between the nodes of neighbouring layers, they learn only the values of convolutional kernels, or filters,
which are applied to the entire layer during the convolution operation. CNNs also have pooling layers
and activation layers in the form of a rectified linear unit (ReLU) in addition to convolutional layers.
Convolutional layers are responsible for the detection of local feature conjunctions, whereas pooling
layers combine similar features into global features. The activation unit (ReLU) may be compared
to a biological action potential that determines whether a neuron will fire or not. After a series of
multiple sets of convolution, pooling and activation take place, the output progresses to a final, fully
connected layer. The overall hierarchical organization of a CNN is said to be similar to the hierarchical
organization of the visual cortex [140].

The applications of CNNSs in salience detection are extensive. Some of the examples of these
applications are Deep Gaze 2 [141], which presents two models for fixation predictions and object
recognition; EML-NET [142] for salience feature detection using a modular approach; and DeepFix [143],
which is sensitive to semantic information at different scales while using large receptive fields for
global context analysis. The scope of existing models in the field is so broad that it is impossible to
cover all of them in this review, but their accuracy in predicting areas of spatial salience is without
question [144-149].
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A recent trend in deep learning is the use of Generative Adversarial Networks (GANSs), originally
proposed by Ian Goodfellow and colleagues [150]. Unlike CNNs, GANs are generative, meaning that
they are able to learn distributions of complex data and generate sets of new data that resembles the
learned set. The term adversarial refers to the competitive process that takes place inside GANS—these
networks contain two components, a generative and an adverse model, that are responsible for the
generation and discrimination of data, respectively. SalGAN [151] used this technique to produce
salience maps of an input image. GANs can also use conditional switches to generate maps for different
images (SalGan) or different tasks [152] as an effective but simplistic mechanism for top-down attention.
Although these networks are generative, to date, they have only been used to generate spatial saliency
predictions and not temporal distributions of individual fixations like the more cognitive algorithms.

Recurrent neural networks (RNNs) have mostly been used for the processing of sequential data,
like speech, but they have also been adapted for salience. RNNs contain units that are sensitive to
temporal changes [153], namely looped connections that allow the information to be stored some
period of time by being copied and passed to the next node. Their dynamic nature has allowed RNNs
to serve as the basis for salience detection architectures in videos, such as the spatiotemporal grounding
of evidence based on top-down factors [154] or the flow-guided approach to object detection [155].

Static scene salience detection have also used RNNs. For example, the DSRCNN model [156] uses
recurrent network to enhance contextual information learning. Moreover, RNNs combined with CNNs
have shown improved performance at salience detection based on different scales [157], as simple
CNN's have a fixed receptive field size. The behaviour of RNNs has also been linked to biological
lateral inhibition, as shown by the deep spatial contextual long-term recurrent convolutional network
(DSCLRCN) [158] for fixation prediction in natural scenes.

RNNSs can hold information for a short period of time, but result in the ‘vanishing gradient’
problem, which means that memory of a feature or input decays relatively quickly. This has led to the
development of another artificial structure called long short-term memory (LSTM) networks, which
were intended as explicit memory for recurrent architectures [159]. LSTM networks are a popular
approach to solving long-term dependency problems, such as large-scale speech recognition [160,161]
or object and salience detection in video sequences [162]. LSTMs have also proven to be useful in
combination with other architectures in fixation prediction [158,163,164] and represent another possible
implementation to include interactions between salience and working memory.

The leaps in accuracy for predicting areas of spatial salience have largely come from the deep
learning approach of treating the image to salience map pipeline as a classification problem, which is a
traditional strength of neural networks. However, to what degree can these classifiers be considered
models in the computational cognitive neuroscience sense? The hierarchical organization of the visual
cortex has certainly served as inspiration for deep learning models of visual attention, such as a deep
belief network model for areas V1 and V2 [165]. Parallel processing is also an innate feature of deep
learning neural networks, which allow them to process input in a way similar to the visual system.
Another approach compares activation of artificial and biological networks at later layers of visual
processing, such as area IT, to see how well deep learning architectures are able to match. For example,
models as recent as Densenet-169 [166], created in 2016, have shown a trend for increased matching of
human IT features in one of its layers [167]. Recently, further optimizations in classification accuracy
for the ImageNet project [168] have produced models that have scored worse on brain benchmarks
(Figure 2). Take, for example, popular models such as Inception [169] and PNASNet [170]. Despite
their high performance on image recognition tasks, their predictivity of neural activity and human
behavior falls short of anatomically simpler models such as CORnet [171].
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Figure 2. The performance of popular Deep Learning models based on their ability to match human V4
and inferior temporal (IT) regions, as well as human behavior performance. Adapted from “Brain-Score:
which artificial neural network for object recognition is most brain-like?” by Schrimpf et al., 2018 [167],
BioRxiv, 407007. Copyright 2018 by author. Reprinted with permission.

6. Metrics and Evaluation

Despite the variety of approaches to salience modelling, there is still a lack of a standardized
evaluation. Different metrics have been suggested to assess model performance, and the most frequently
used sources is the MIT Saliency Benchmark [139]. It provides an open and free source for model
assessment and benchmark data based on eight different evaluation metrics. The benchmark website
includes most recent attempts at salience performance but also interesting performance baselines like
the original Itti and Koch [1,5], central bias alone, and ‘infinite humans’ as a gold standard.

Most methods of assessment use location-based algorithms that measure the error between
predicted and human fixations. For example, a simple correlation coefficient, or Pearson’s linear
coefficient, measures the linear correlation or dependence between two salience maps. If the two maps
are not correlated, the coefficient would be 0. One characteristic instrument of these metrics is the
area under the Receiver Operating Characteristic curve (AUC ROC), which estimates the trade-off
between true positive and false positive values at different discrimination thresholds by verifying that
true positives are labelled before negative values [132,172]. One of the better AUC metrics and most
commonly used for the evaluation task is the AUC-Judd [133,173]. The AUC-Judd interprets fixations
as a classification task, where a pixel of the map may be either salient or not by applying a threshold
over the intensity value of the saliency map [174]. Each salient pixel matching human fixations on the
map is considered a true positive value, whereas salient pixels over non-fixation areas are classified as
false positive values. The final AUC score is then calculated and plotted as a trade-off between true and
false positive values. The highest possible score may be 1, whereas a 0.5 score is considered random.
Another AUC approach is the AUC-Borji [175] metric that treats the salience map as a binary classifier.
Positive and negative samples are differentiated through various thresholds. True positive values are
then considered as values that exceed threshold at fixation locations, while false positive values are the
values that exceed threshold at random locations. This approach differs from the AUC-Judd approach
in that the threshold is set based on a fixed step size, and the false positive rate is calculated based
on approximation of the Judd calculation. The shuffled AUC approach is also based on Ali Borji’s
approach [175] but is additionally sensitive to centre bias. This metric shows whether a model has
used centre bias for its predictions and imposes a penalty for this.

The Kullback-Leibler (KL) divergence [176] is a measure based on distribution. It evaluates the
difference between the distribution of two different saliency maps, and measures information lost
during the estimation of a fixation map with regards to the salience map. The lower the KL divergence
value, the better is the approximation to ground truth in a salience map. However, the KL measure is
extremely sensitive to zero values, which leads to a large penalty on the overall score if the predictions
are deemed insufficient and sporadic.
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Other options have been suggested such as the Earth Mover Distance (EMD) and the Normalized
scanpath Salience (NSS), but these evaluation metrics have been adapted mostly for computer vision
and based solely on spatial performance, whereas shifts of visual attention happen over time. Many of
the classic salience models based off of Itti and Koch do use temporal layers to make predictions of
fixation latencies, but even these show poor performance against human latency distributions [177].
Additionally, the existing metrics focus on the level of similarity between ground truth based on
human data and the model data, but they do not take into account the cognitive basis underlying
visual salience.

Although most models focus on the accuracy of classification, we can learn much about the
differences between biological and artificial networks by finding examples where the predictions
differ. Nguyen and colleagues [178] demonstrate this by generating images that DLNNs are unable to
recognize but that a person would easily be able to. This demonstrates that an important factor in
making human-like models is in the types of mistakes that humans and DLNNs tend to make. One of
such models has already been mentioned in the current review [32], and it predicts human fixations at
a decent level, while making similar mistakes to humans.

7. Conclusions

Roughly 20 years of salience model research has produced many excellent approaches that have
improved our understanding of the visual processing stream. Various models have been created
after the seminal Itti and Koch architecture, each bringing their own contributions, such as prediction
accuracy, modelling additional tasks, the addition of object features and the inclusion of additional
theoretical frameworks. Not every model had the same focus on all aspects of the five contributions we
highlighted, i.e., either on the theoretical, neural, spatial, temporal, or computational aspects, but the
overall progress in the field has been to push the boundaries in all of these directions.

One trend we would like to highlight, however, has been a recent shift away from visual attention
modelling and toward fixation classification. The trending deep learning approaches are a very
powerful computational tool; however, their current focus is not to explain visual processes but to
reach state-of-the-art performance on spatial predictions. Due to this, important characteristics of
visual attention, such as its temporal component and error production, have been widely ignored.
The spectrum of existing powerful neural architectures, such as convolutional and recurrent neural
networks, should provide a means of considering the temporal factors inherent to visual processes.
We propose that an area of opportunity in the field is the exploration evaluation metrics that would
account for all the above-mentioned aspects. Most current metrics are aimed at purely classification
accuracy and focus on their ability to predict spatial locations, matching, and even surpassing human
performance. While this trend has shown a great deal of success, the field of computational cognitive
neuroscience should continue its goal of making biologically accurate and computationally powerful
improvements to the Itti and Koch model for a deeper understanding of human visual attention
processes. While we recognize the importance of purely computational approaches to visual attention
directed at robotic vision, we suppose that the cognitive neuroscience community should shift its
focus to a biologically and theoretically plausible approach at modelling visual attention. Instead
of testing the limits of deep learning architectures, deep learning should be adopted as a means of
testing cognitive theories and incorporating neural foundations of visual attention into the models.
In particular, we suggest that testing our models against temporal distributions of attentional shifts,
typical errors that humans make in visual processing and matching neural signatures of specific tasks
will only improve the field going forward.
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Appendix A

The GVBS Toolbox [179] is available for open download at http://www.vision.caltech.edu/~{}harel/
share/gbvs.php

There have also been computer toolboxes created based on the Itti and Koch architecture.
The practical implementations of the initial model of bottom-up visual salience may be found in the
Neuromorphic Visual Toolbox (NVT) [180] available at http://ilab.usc.edu/toolkit/ and the Saliency
Toolbox [181] avalable at http://www.saliencytoolbox.net/.

Appendix B

The benchmark datasets mentioned in the current article are the MIT Dataset [130], the Toronto
Dataset [182], the Kootstra Dataset [183], the Cerf Dataset (FIFA dataset) [184], the ImgSal Dataset [185],
and the CAT2000 dataset [186]
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