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across retinotopic locations enhances
the generalization of perceptual learning

Taly Kondat,1 Maya Aderka,1 and Nitzan Censor1,2,3,*

SUMMARY

Human visual perception can be improved through perceptual learning. However, such learning is often
specific to stimulus and learning conditions. Here, we explored how temporal dynamics of performance
across conditions impact learning generalization. Participants performed a visual task, with the target
at retinotopic location A. Then, the target was presented at location B either immediately after location
A (same-session performance) or following a 48h consolidation period (different-session performance).
Long-term generalization was measured the following week. Following initial training, both groups
demonstrated generalization, consistent with previous accounts of fast learning. However, long-term
generalization was enhanced in the same-session performance group. Consistently, improvements at lo-
cations A and B were correlated only following same-session performance, implying an integrated
learning process across locations. The results support a new account of perceptual learning and general-
ization dynamics, suggesting that the temporal proximity of learning and consolidation of different con-
ditions may integrate correlated learning processes, facilitating generalized learning.

INTRODUCTION

Acquiring a new skill often results in long-term learning, which can be highly beneficial when learning is generalized to untrained conditions.

While the generalization of learning is often observed across tasks, perceptual learning has commonly been documented as an interesting

exception. Visual perceptual learning leads to an increase in visual sensitivity following practice.1–3 Moreover, studies have shown that the

learned visual skill persists formonths and years.4,5 However, a remarkable restriction often observed in perceptual learning, is its strong spec-

ificity to the trained stimuli properties and learning conditions (e.g., orientation, trained eye, and retinal location).3,5–10

Although specificity has been identified with perceptual learning, during recent years transfer of perceptual learning has been shown un-

der certain conditions,11–17 implying that specificity is not necessarily predetermined.

Perceptual learning, such as other procedural skills, relies distinctively on offline consolidation, the process in which fragile memory traces

are stabilized.18 During consolidation neurobiological changes, which are induced with training, are balanced, ultimately transforming the

newly acquiredmemory into a steady long-term form.19–25 These changes require a post-acquisition temporal interval of rest to take place26,27

and are commonly associated with specific stages of sleep.23,28–32

These memory stabilization processes have been found to induce positive influences on perceptual learning. Improved behavioral out-

comes such as offline performance gains4,5,33–35 and resistance to within-session deterioration36 have been observed when a time period

including overnight sleep is allowed between learning sessions. Studies have shown that neural activity during post-acquisition sleep is corre-

lated with offline gains34,37 and that interference with the consolidation process by repetitive transcranial magnetic stimulation (rTMS) to the

trained visual cortex led to impaired performance on the following day.38,39

Nevertheless, for certain learning outcomes, such as the ability to generalize learning to untrained conditions, where flexibility is

necessary, it is possible that the stabilization of the acquired memory might have counteractive effects. We hypothesized that same-

session performance across learning conditions, potentially inducing integrated memory stabilization processes for both conditions,

will enhance the generalization of learning. To test this hypothesis, participants performed the texture discrimination task (TDT; Figure

1A) with the target stimulus appearing in retinotopic location A. Then, the task was performed with the target stimulus in retinotopic

location B either immediately after the performance at location A (same-session performance) or following a 48h consolidation period

(different-session performance; Figure 1B). To evaluate long-term learning and generalization, performance in both locations was simi-

larly tested the following week.
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RESULTS

Initial improvements

In the first stage of the experiment, significant improvement was observed between retinotopic locations A and B across experimental groups

(mean improvement 16.04 G 5.01 ms SE; F1;55 = 20.97, p < 0.001, partial h2 = 0.276), with no between-group interaction (location 3 group

F1;55 = 0.39, p = 0.53, partial h2 = 0.007; same-session mean improvement 13.10 G 7.28 ms; different-session mean improvement 18.98 G

6.96 ms; Figure 2A). These results indicate learning generalization at an early stage of the learning processes.

Long-term improvements

We then continued to test long-term learning, from the first to the second stage of the experiment (Figure 2A). The results showed long-term

improvement across groups (mean location B improvement 7.17% G 2.47%, t57 = 2.90, p = 0.005, Cohen’s d = 0.380, note that quantifying

learning within the same location enables using percent change, a more sensitive measure accounting for between-subject variability). Of

note, this moderate learning magnitude may result from two consecutive sessions separated more than a week apart, similar to previous

studies,40 and in contrast to multiple sessions separated by shorter time intervals.1,41–43 Consistently, ten participants from each group did

not exhibit offline gains at this interval of the experiment, and although the distribution varied, no prominent difference in learningmagnitude

was observed between the groups (same-session group 6.43% G 3.09%, different-session group 7.90% G 3.92%; F3;54 = 2.62, p = 0.06,

partial h2 = 0.127).

Interestingly, generalization at the second, long-term stage of the experiment was enhanced following same-session performance (mean

improvement 13.05G 5.74 ms) compared to different-session performance (mean improvement�2.92G 6.11 ms), with a significant location

3 group interaction (F1;55 = 5.37, p = 0.024, partial h2 = 0.089; Figure 2B). This was further confirmed by testing overall learning at location A,

which was significantly greater (F3;54 = 4.16, p = 0.010, partial h2 = 0.188) in the same-session performance group (mean improvement

28.37%G 2.90%) compared to the different-session performance group (mean improvement 18.54%G 3.62%). These results reveal enhanced

learning generalization following same-session performance, suggesting that modulating temporal dynamics across learning conditions fa-

cilitates learning generalization.

Figure 1. Texture discrimination task (TDT) and experimental procedure

(A) TDT example trial. Observers were required to discriminate between a horizontal or vertical orientation of a peripheral target consisting of three diagonal bars

appearing for 10ms. Fixation was enforced by a forced-choice letter discrimination task (rotated T or L) at the center of the display and was followed by auditory

feedback for incorrect discrimination. The target-to-mask asynchrony (SOA, measured from the onset of the target to the onset of the mask) varied within the

session to obtain a psychometric curve, from which the SOA discrimination threshold was derived.

(B) Experimental procedure. In the first stage of the experiment, participants completed 252 trials with the target stimulus presented in retinotopic location A (UL

or LR, condition A), followed by 252 trials in a different retinotopic location B (LR or UL, respectively, condition B). The conditions were conducted either within the

same session (same-session performance), or with an interval of 48h between them (different-session performance). In the second stage of the experiment,

following 10 days, long-term effects were measured in both retinotopic locations. Here also, location A was measured immediately after location B in the

same-session performance group, or following 48h in the different-session performance group.
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Correlation between improvements in retinotopic locations A and B

Finally, there was a linear correlation between the learning magnitude at location A and location B in the same-session performance group

(r = 0.33, p = 0.039; Figure 3A). No such correlation was observed in the different-session performance group (r =�0.05, p = 0.41; Figure 3B).

Thus, consistent with the above generalization results, the findings showing that improvements at locations A and Bwere correlated following

same-session performance may imply an integrated learning process across both locations.

DISCUSSION

Theaimof this studywas toexaminewhethermodulating the temporaldynamicsof performanceacross learningconditions impacts thegener-

alization of learning. The results show that performing the task with two target retinotopic locations immediately one after the other (same-

session performance), enhances long-term generalization. This was in contrast to when the two target retinotopic locations were performed

in different sessions (different-session performance), separated by a 48h consolidation period. Consistently, long-term improvements in the

two retinotopic locations were correlated following same-session, but not different-session performance, potentially implying an integrated

learning process across both locations. Short-term generalization and subsequent learning remained comparable across groups.

Generalization of learning is often a highly desirable outcome of the learning process, promoting learning efficiency beyond the specific

trained features. However, perceptual learning is known for its strong specificity, with learning gains commonly showing minimal transfer to

untrained conditions.3,5–10 This remarkable limitation has led to a substantial challenge aimed to unlock this specificity and enhance learning

generalization.44

The results of the current study show that performing the task with two target retinotopic locations one after the other (same-session group)

enhances long-term performance at location A. This was evident in (1) enhanced improvement between location B and location A at the second

stage of the experiment and (2) an additional analysis showing enhancedoverall learning at locationA. Therefore, final performance at locationA

in the same-sessiongroupmayhavebenefited fromboth the initial learningat locationA,aswell as additional practiceat locationB.Togetherwith

the results showing that long-term improvements in both retinotopic locations are correlated, this may point to an integrated learning process

across both locations. In contrast, when the task is performed with each target retinotopic location on separate days, it is conceivable that one

conditionundergoesconsolidationfirst, andthat such stabilization limits long-termgeneralization.Thesefindingsmaybeconsistentwithprevious

studies showing improved generalization following reduced training duration,36,45–47 avoiding over-exposure to specific task conditions,48 and

increasing training variability.49,50 Commonly these mechanisms are thought to prevent sensory adaptation which may lead to overfitting.44,51

Figure 2. Learning curves and long-term generalization

(A) Mean discrimination thresholds for both same-session and different-session performance groups. Thresholds weremeasured from locations A (first and fourth

points) and B (second and third points) at the first and second stages of the experiment.

(B) Long-term generalization (improvement at the second stage of the experiment between the two locations).

(C) Single-subject threshold at location B versus location A of the same-session (green) and different-session (yellow) performance groups at the second stage of

the experiment, presented in a scatterplot along a unit slope line (y = x). Each point represents a participant. Data accumulating below the unit line reflect

participants who expressed long-term generalization gains. *p < 0.05. Error bars represent SE.
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Consistently, same-session performance of different retinotopic target locationsmay reduce the effects of such overfitting by preventing the sta-

bilization of learning in one location before learning the other, and thus enhance generalization as shown here.

Studies have described changes in the communication between early visual and higher-order attention and decision areas following

perceptual learning.52,53 One suchmechanism suggests changes in readout weights between early visual representation and higher-ordered

regions, resulting in a reduction of noise.54,55 Accordingly, it is possible that when same-session performances across different locations can

consolidate simultaneously, the reweighted readout of both locations to the higher-order regions may function as a unified network. If true,

then when one connection is active again, the weights of the inactive readout are enhanced as well. This idea is also consistent with the find-

ings indicating a correlation between the two conditions’ long-term improvements.

The results of the current studymay also have implications regarding the link between pre-tests and subsequent generalization.15,42,56,57 In

addition, when following pretest at location A, location B is repeatedly trained overmultiple consecutive days,15 generalization of location A is

diminished by extensive practice at location B. This may be consistent with overfitting frameworks discussed above.36,44,46–50

Noteworthy, in accordance with previous findings demonstrating ‘‘fast learning’’ mechanisms during initial training,4,58 the present results

showed early generalization in both groups, irrespective of the performance temporal proximity. These mechanisms suggest that general

aspects of the task are learned at an early stage of the learning process and can be generalized to untrained conditions, possibly by engaging

higher-order brain regions.53 Here, in addition to these previously documented early generalization effects, the results show unique long-

term generalization. This long-term generalization is dissociated from early-stage generalization, as evident in the different-session group

which showed fast but not long-term generalization. This dissociation between early and late stage mechanisms may be consistent with

the two-stage model previously proposed in perceptual learning.53,59

In sum, the results show thatmodulating temporal dynamics of integrated learning conditions considerably enhances the generalization of

perceptual learning. As such, the results may support a new account of perceptual learning and generalization dynamics, providing important

insights for future applications geared to modulate the specificity-generalization balance and optimize learning outcomes.

Limitations of the study

While previous studies have documented generalization to untested locations,48,50 the current study examined generalization to a previously

tested location. Testing a new location C within our framework may not result in complete generalization, since the main mechanism here

relates to the integrated learning of previously tested locations A and B. This mechanism possibly differs from inserting variability into the

learning sessions which may reduce the induction of adaptation, an additional important mechanism enhancing generalization.48,50

Of note, the results showing no long-term generalization gains from location B to location A in the different-session groupmay be related

to interference effects.60–63 As such, an additional consolidation cycle may have stabilized location B performance, interfering with subse-

quent location A performance. Nevertheless, previous interference studies have commonly documented interference when tasks are per-

formed on the same day, with no consolidation interval between them and in the same retinotopic location.64,65 Thus, future studies could

be designed to further test interference effects on different session performances.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sixty-two healthy adults aged 18-40 years (12males, average age 24.6 years SD= 3.5), participated in the study, whichwas conducted in accor-

dance with a protocol approved by Tel Aviv University’s Ethics Committees. All Participants provided written informed consent to participate

in the study, had normal or corrected-to-normal vision, were not video gamers,66 did not participate in other visual experiments during the

study, and reported at least 6 h of sleep the night before each experimental session (performed during daytime).

One participant from the same-session performance group and two from the different-session performance group were not able to main-

tain stable performance at the fixation task due to fixation or dual-tasking instability and were excluded from the study. One participant from

the same-session performance group was not included in the analysis due to an extreme long-term improvement score at location B

(z-score < -4).

METHOD DETAILS

Stimuli and task

The standard texture discrimination task (TDT1), with a 10ms target screen, followed by a 100msmask was used (Figure 1A). Observers had to

discriminate whether a target array consisting of three diagonal bars (appearing 5.46º from the center of the visual field, either in the lower

right (LR) or the upper left (UL) quadrant) was horizontal or vertical, and responded by pressing one of the two mouse buttons. The target

stimulus was embedded in a background consisting of horizontal bars (19x19 bars, 0.57ºx0.04º spaced 0.86º apart, 0.04º jitter). Fixation

was enforced by a forced-choice letter discrimination task, in which observers had to discriminate whether a rotated letter, presented in

the center of the screen, was a T or an L, with auditory feedback for incorrect discrimination. Participants who demonstrated a lower percent-

age of correct choices in the fixation task compared to the peripheral task across all trials at a specific location were excluded from further

participation in the study. Of note, this may indicate instability in either fixation itself or the ability to perform a dual task. Display size was

15.4 � 3 15.1 �, viewed from 108 cm on a 20-in (50.8-cm) CRT HP p1230 monitor, refresh rate 100 Hz, mean texture luminance 84 cd/m2.

The time interval between the target stimulus and themask (stimulus-to-mask onset asynchrony, SOA, measured from the onset of the target

to the onset of themask) ranged from 40ms to 340ms (40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 300, and 340ms) and was pseudo-

randomized across trials. Each block consisted of 2 trials per SOA (for a total of 252 trials over nine blocks). To familiarize the participants with

the task, pre-training blocks consisting of 10 trials were conducted prior to the first performance in each retinotopic location. These blocks

were conducted initially with an SOAof 500ms and then repeatedwith an SOAof 340ms until subjects achieved 90% accuracy. Amaximumof

10 blocks overall was provided, after which subjects who did not reach this criterion did not continue the experiment. Pre-training was fol-

lowed by a short familiarization block of 1 trial per each SOA. To ensure reliable baseline measurements in both locations, participants

were required to reach above 80% correct responses on the 3 highest SOAs and above 0.8 finger errors. All sessions were performed in a

dark, quiet room.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/

SPSS Statistics 26 IBM https://www.ibm.com/analytics/us/en/

technology/spss
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Experimental design

In the first stage of the experiment, participants completed nine TDT (Figure 1A) blocks with the target stimulus presented in retinotopic loca-

tion A (either UL or LR, conditionA), followedby nine blocks performed in a different retinotopic location B (LR or UL, respectively, condition B;

Figure 1B). The conditions were conducted either within the same session (same-session performance, n=29), or with an interval of �48h be-

tween them (different-session performance, n=29). In the second stage of the experiment, long-term learning and generalization were

measured in both same-session and different-session performance groups. Long-term learning was measured at location B following

�10 days (mean intervals and SE of 9.45G1.48 days for the same-session group, and 9.52G0.92 days for the different-session group), and

long-term generalization effects were measured at location A immediately after location B in the same-session performance group and

following �48h in the different-session performance group.

QUANTIFICATION AND STATISTICAL ANALYSIS

The individual visual thresholds were calculated for each location performance using the standard Weibull fit for the psychometric curve with

slope b and finger-error parameter 1-p yielding the function:67

PðtÞ = p

(
1 � 1

2
exp

"
�
�
t

T

�b
#)

+
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2
=

1

2

(
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"
1 � exp

"
�
�
t

T

�b
##)

Where t is the SOA, P is the success ratio (in the closed interval [0,1]) of target discrimination for a given SOA, and T is the threshold for each

curve, defined as the SOA for which 81.6% of responses were correct when p=1.

Learning between locations A and B in the first stage of the experiment (and locations B and A in the second stage) was evaluated using

repeated-measures analysis of variance (ANOVA), comparing the discrimination thresholds between locations. The experimental group was

included as a between-subjects factor to assess the difference in learning magnitude between groups, and the identity of the retinotopic

locations (LR_UL or UL_LR) was included as a covariate.

Long-term improvement within the same location was calculated for each participant as percent improvement from the first to the second

stage of the experiment (((threshold1st stage � threshold2nd stage)/ threshold1st stage)*100). The magnitude of the long-term improvement was

evaluated using one-sample t-tests across all participants. Then, to compare the difference in learning amplitude between groups, one-way

ANOVAwith the experimental group as a fixed factor was conducted. The initial thresholds and the identity of the retinotopic locations (UL or

LR) were included as covariates.

To evaluate the relation between learning amplitude at locations A and B within each group, one-tailed Pearson’s r coefficients were

calculated.
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