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Abstract

Background: Epidemiological studies indicate that some children experience many more episodes of clinical
malaria than their age mates in a given location. Whether this is as a result of the micro-heterogeneity of malaria
transmission with some children effectively getting more exposure to infectious mosquitoes than others, or
reflects a failure in the acquisition of immunity needs to be elucidated. Here, we investigated the determinants of
increased susceptibility to clinical malaria by comparing the intensity of exposure to Plasmodium falciparum and
the acquisition of immunity in children at the extreme ends of the over-dispersed distribution of the incidence of
clinical malaria.

Methods: The study was nested within a larger cohort in an area where the intensity of malaria transmission was
low. We identified children who over a five-year period experienced 5 to 16 clinical malaria episodes (children at
the tail-end of the over-dispersed distribution, n=35), remained malaria-free (n=12) or had a single episode
(n = 26). We quantified antibodies against seven Plasmodium falciparum merozoite antigens in plasma obtained at six
cross-sectional surveys spanning these five years. We analyzed the antibody responses to identify temporal dynamics
that associate with disease susceptibility.

Results: Children experiencing multiple episodes of malaria were more likely to be parasite positive by microscopy
at cross-sectional surveys (X° test for trend 14.72 P=0.001) and had a significantly higher malaria exposure index,
than those in the malaria-free or single episode groups (Kruskal-Wallis test P=0.009). In contrast, the five-year
temporal dynamics of anti-merozoite antibodies were similar in the three groups. Importantly in all groups,
antibody levels were below the threshold concentrations previously observed to be correlated with protective
immunity.

Conclusions: We conclude that in the context of a low malaria transmission setting, susceptibility to clinical
malaria is not accounted for by anti-merozoite antibodies but appears to be a consequence of increased parasite
exposure. We hypothesize that intensive exposure is a prerequisite for protective antibody concentrations, while
little to modest exposure may manifest as multiple clinical infections with low levels of antibodies. These findings
have implications for interventions that effectively lower malaria transmission intensity.
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Background

Heterogeneity in the risk of Plasmodium falciparum
malaria in malaria-endemic areas has long been recog-
nized as a common feature of the epidemiology of mal-
aria [1]. Recently, this phenomenon has been described
by studies in Senegal [2], Uganda [3] and Kenya [4,5] as
well as in large datasets drawn from 90 populations in
Africa [6]. In Senegal a subset of children experienced
up to twenty malaria episodes in their first two years of
life while their age- and location-mates experienced only
one episode over the same period [2]. Analysis of the
distribution of malaria in a longitudinally monitored
population in Kenya revealed that the incidence of mal-
aria was heterogeneous and followed a negative binomial
distribution, a phenomenon that was described as over-
dispersion [5]. Heterogeneity in infection burden is also
evident in other infectious diseases where a small pro-
portion (approximately 20%) of the population is in-
tensely infected and responsible for about 80% of the
infectious agent’s transmission, an observation referred
to as the 20/80’ rule [7].

The factors underlying the heterogeneous epidemi-
ology of malaria are not fully understood. The hetero-
geneity has been partly attributed to differences in:
human genetic [3] and behavioral [8] factors, distance to
mosquito breeding grounds [3,9,10], household-related
factors [9] and human-mosquito interactions [11]. How-
ever, whether children at the tail end of the over-
dispersed distribution of malaria differ from children
experiencing fewer malaria attacks in their ability to
acquire immunity to malaria, as assessed by antibody
responses to P. falciparum antigens is unknown.

Here, we describe the temporal dynamics of anti-
merozoite antibodies in children who were part of the
Kenyan cohort described above [5] and differing in their
incidence of malaria to determine whether failure to ac-
quire antibodies against these antigens may explain the
differences in susceptibility to malaria. We identified,
within this cohort and during a five-year follow up
period, children who: experienced 5 to 16 episodes of
clinical malaria (children at the tail end of the over-
dispersed distribution and hereafter referred to as the
‘multiple-episodes’ group), did not experience clinical
malaria (‘malaria-free’ group) or had only one episode of
clinical malaria (‘single-episode’ group). We then mea-
sured antibodies to seven merozoite antigens in these
children at six cross-sectional surveys spanning the five-
year period and compared the temporal dynamics of
anti-merozoite antibodies.

Methods

Study population

The study was conducted within a longitudinally moni-
tored population in Ngerenya, located within Kilifi District
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at the Kenyan coast [5,12]. This population has been
monitored from 1998 to date. During this time parasite
prevalence declined dramatically such that by 2009
parasite prevalence was zero and has remained so since
(Additional file 1: Figure S1). The present report fo-
cuses on a subset of children (Figure 1) who were 0.5-
to 3-years old in September 1998 (and 5.5- to 8-years
old in October 2003) so as to capture the period during
which considerable buildup of naturally-acquired anti-
merozoite antibodies has been observed in this cohort
[13]. During this period there was active weekly surveil-
lance of the cohort and malaria episodes were recorded
by active and passive case detection [12]. At the weekly
visits children were tested for malaria parasites only if
they were symptomatic and treated if parasitemic. In
the present analysis, a case of clinical malaria was de-
fined as fever (axillary temperature >37.5°C) and any
level of parasitemia for children <1-year old and fever
accompanied by parasitemia of >2,500 parasites/pl of
blood for children >1-year old [12]. During the same
period, six cross-sectional surveys (in September 1998,
October 2000, May 2002, October 2002, May 2002 and
October 2003) were conducted before the high malaria
transmission seasons at which venous blood was col-
lected, and plasma and packed cells stored. At each
survey, thick and thin blood smears were prepared and
axillary temperature recorded for all participants. Chil-
dren who were parasitemic at the surveys were not
treated for malaria unless they were also symptomatic.
Ethical approval for this study was obtained from the
KEMRI National Ethics Committee and written in-
formed consent was obtained from the guardians of all
children. We compared antibody levels in this cohort
(the October 2000 sample) to those in other cohorts
we have previously studied [14,15]. Ethical approval for
this latter analysis was not required.

Determination of the malaria exposure index

The malaria exposure index estimates a distance-
weighted local prevalence of malaria infection within
a kilometer radius around an index child [16]. In es-
sence, an individual’s level of exposure is inferred not
from their own history, but from that of the children
surrounding them. Children with a high exposure
index are more likely to be surrounded by malaria
infected children, while those with a low exposure
index are not. The malaria exposure index had previ-
ously been calculated for the children included in
this study [16].

Detection of P. falciparum by microscopy

The detection of P. falciparum in whole blood samples
collected at the cross-sectional surveys has been de-
scribed previously [12]. Briefly, thick and thin blood
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1245 individuals recruited into Ngerenya cohort
September 1998 - May 2013

Individuals recruited after September
1998 (n=711)

A

Individuals recruited in September 1998 (n=534)

Individuals aged <6 months or >3
years (n=388)

v

Children aged 0.5 - 3 years (n=146) followed
with regards to episodes between September
1998 and October 2003

Children who experienced 2-4 malaria
episodes (n=59)

A 4

Children who remained free
of malaria (malaria-free
group) (n=26)

Children who experienced 1
malaria episode (single-
episode group) (n=26)

Children who experienced
>5 malaria episodes
(multiple-episodes group)

Children without any
—  documented P. falciparum
infection (n=14)

Children with at least one
documented P. falciparum
infection (n=12)

children included in the three groups investigated in this study.

Figure 1 Inclusion of children into the malaria-free, single-episode and multiple-episodes groups. The gray-shaded boxes indicate the number of

(n=35)

slides were examined by microscopy and parasite
densities determined as the number of parasites per
8,000 white blood cells/uL of blood.

Genotyping of P. falciparum infections

Genomic DNA was extracted from packed erythrocytes
using QiaAmp Blood Mini kit (Qiagen, Crawley, UK).
Genotyping of P. falciparum msp2 gene was performed
as previously described [17]. Briefly, the PCR included
an initial amplification of the outer msp2 domain,
followed by nested reactions with fluorescently labeled
primers targeting the FC27 and IC-1/3D7allelic types of
msp2. Fragment sizes were determined by capillary elec-
trophoresis and analyzed using GeneMapper software
(Applied Biosystems).

Recombinant P. falciparum merozoite antigens

Five recombinant antigens representing four vaccine
candidate antigens were expressed in Escherichia coli.
The 19-kilodalton fragment of merozoite surface protein
(MSP) one-1 (MSP-119) [18], P. falciparum reticulocyte-
binding homologue 2 (PRh2) [19], and two allelic forms
of MSP-2: MSP-2_Dd2 (corresponding to the FC27
msp2 allelic family) and MSP-2_CH150/9 (correspond-
ing to the IC-1 msp2 allelic family) [20] were expressed
as glutathione-S-transferase-fusion proteins. Recombin-
ant MSP-3_3D7 antigen was expressed as a maltose-
binding protein-fusion protein [21]. Apical merozoite
antigen 1 (AMA-1) from the 3D7 and FVO strains was
expressed in Pichia pastoris as 6xHis-fusion proteins
[22] and generously provided by Dr. Edmond Remarque.
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Apart from PfRh2 and MSP-1;9, all antigens were
expressed as full-length proteins.

Multiplex bead-based antibody assay

Plasma immunoglobulin G (IgG) to the recombinant
antigens was measured using a previously described
multiplex bead-based assay [15]. Serially-diluted malaria-
immune globulin (MIG) [23] was included in each plate
as a standard positive control, allowing for the conver-
sion of mean fluorescent intensities to relative antibody
concentrations in arbitrary units (AUs) and correction of
inter-plate variation. Negative controls, consisting of
pooled plasma from adult P. falciparum unexposed
donors residing in the United Kingdom, were included
in each plate to allow for the determination of seroposi-
tivity cut-offs. The seropositivity cut-off was determined
as the mean fluorescent intensity (MFI) of the negative
control plus two standard deviations.

Data analysis

Data analysis was performed using STATA 11.2. Anti-
body titers measured in this study were compared to
threshold antibody concentrations. These are antibody
concentrations against individual antigens measured that
appeared to be associated with protection against clinical
episodes of malaria in two independent cohort studies
[14,15], and were calculated using a standard reference
reagent. The threshold antibody concentrations for anti-
body responses to MSP-1;9 MSP-2, MSP-3_3D7 and
AMA-1 antigens were 59, 19, 16 and 55 AUs, respect-
ively [14,15]. Antibody titers in children included in this
study were also compared to age-matched children in
two independent cohorts: the Chonyi cohort in Kenya
with PfPR, 1o of 44% [14] and a cohort in Rufiji District,
Tanzania with PfPR,_;4 of 49% [15,24]. The PfPR, i, is a
measure of malaria transmission intensity at a popula-
tion level [25-28].

Differences in rates of change in antibody titers over
the study period were tested using a multilevel mixed-
effects linear regression model that accounts for inher-
ent correlations between repeated measurements done
on the same subject [29]. In this model, differences in
the rates of change of antibody titers in the single-
episode and multiple-episodes groups were estimated
relative to the malaria-free group and reported as coeffi-
cients. The model also took into account the presence
or absence of asymptomatic parasitemia at each cross-
sectional survey and the number of times an individ-
ual was parasitemic during the five year longitudinal
follow up.

Results
In total 1,245 individuals were recruited into the Ngerenya
cohort between September 1998 and May 2013. The
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present study was restricted to the follow up time be-
tween September 1998 and October 2003 because this
was a five-year period when, compared to other years,
P. falciparum transmission was highest (Additional file 1:
Figure S1). In September 1998 the cohort included 534
individuals (1-month to 82-years old) of which 146 were
children 0.5- to 3-years old (Figure 1). Out of the 146
children, 26 had no record of clinical malaria between
September 1998 and October 2003; of these 12 had at
least one documented asymptomatic P. falciparum infec-
tion as determined by microscopy (either at cross-
sectional surveys or weekly follow up visits) and were
classified into the malaria-free group (Figure 1). The
remaining 14 were not studied further as exposure to
P. falciparum parasites could not be definitively ascer-
tained. Twenty six children experienced one episode of
malaria in the five-year follow up period and were classi-
fied into the single-episode group (Figure 1) while 35
children experienced five to sixteen malaria episodes
(Figure 2) and were classified into the multiple-episodes
group (Figure 1). The average incidence of malaria was
0.2 and 1.59 (range: 1 to 3.2) episodes/person/year in the
single-episode and multiple-episodes groups, respect-
ively. Children who experienced two to four episodes of
malaria in the five years of follow up (n=59) were ex-
cluded from the present analysis so as to allow for a com-
parison of antibody responses in children at the extreme
ends of the over-dispersed clinical malaria incidence dis-
tribution (Figure 1). The age profiles of the study groups
were comparable (Table 1).

Distribution of exposure to Plasmodium falciparum
parasites in the three study groups

The proportion of surveys at which children were
parasitemic by microscopy was larger in the multiple-
episodes group compared to the single-episode and
malaria-free groups of children (X* test for trend 14.72
P =0.001, Table 1). Children in the multiple-episodes group
had higher malaria exposure, as measured by the malaria
exposure index (a distance-weighted local prevalence of
malaria) [16], compared to children in the single-episode
and malaria-free groups (Kruskal-Wallis test P =0.009,
Table 1). The overall P/PR, ;o in the Ngerenya cohort
decreased over the study period with the decrease being
more evident in the malaria-free and single-episode groups
of children compared to the multiple-episodes group
(Figure 3). P. falciparum parasites were detected by PCR in
26.7%, 19.5% and 24.4% of the children at the September
1998, October 2000 and May 2002 cross-sectional surveys,
respectively. The number of msp2 genotypes, that is, clones
in PCR positive samples at the cross-sectional surveys,
ranged from one to four, and was higher in the multiple-
episodes group than in the single-episode and malaria-free
groups (Additional file 1: Figure S2).
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Figure 2 Distribution of clinical malaria episodes per child among children in the multiple-episodes group. The histogram shows the number of children
(y axis) within the multiple-episodes group with a given number of clinical malaria episodes (x axis) between September 1998 and October 2003.
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Antibody profiles of individual children over time

Diverse longitudinal antibody profiles were observed in
individual children across the three groups (Figure 4).
Some children maintained relatively low antibody titers
to all the antigens and only had relatively high titers at
those cross-sectional surveys at which they were parasi-
temic (Figure 4A, E, G, H and I). In children with these
profiles, there was an indication of allele-specific boost-
ing of anti-MSP-2 antibody responses; infections with
clones of IC-1 or FC msp2 types were associated with
high antibody titers to the corresponding MSP-2 type
antigen (Figure 4A, F and H). For instance, the IC-1 infec-
tion in May 2002 in child N0102 (Figure 4I) coincides with
high titers to MSP-2_Ch150/9 but not to MSP-2_Dd2.
Some children, however, had profiles characterized by rela-
tively high antibody titers to some antigens at surveys at
which they were aparasitemic (Figure 4B). Remarkably,
some children maintained low antibody titers despite hav-
ing a high intensity of asymptomatic infections and epi-
sodes of malaria (Figure 4F and H).

Table 1 Baseline characteristics

Comparison of antibody titers at individual cross-sectional
surveys in the three study groups

Comparisons of antibody titers to each of the seven anti-
gens in the three study groups are shown in Figure 5A-5G.
Generally, the multiple-episodes group had lower titers to
MSP-1,9 (Figure 5A) but higher titers to MSP-2_Dd2
(Figure 5B), MSP-3_3D7 (Figure 5D), and both AMA-1 al-
leles (Figure 5E and F) compared to the single-episode and
malaria-free groups. To better understand the antibody
data, we compared antibody titers to MSP-1,9, MSP-2 and
AMA-1 in the three study groups to titers in age-matched
children in the Chonyi [14] and Tanzania [15] cohorts.
Antibody titers in children included in this study were gen-
erally lower than in age-matched children in the Chonyi
and Tanzania cohorts (Additional file 1: Figure S3) and
were also below threshold concentrations that appear to be
necessary for protection against clinical episodes of malaria
[14,15]. Moreover, antibody titers obtained with a pool of
hyperimmune sera (PHIS) were well above these threshold
concentrations for all the antigens tested (Figure 5).

Characteristic

Group of children

Malaria-free Single-episode Multiple-episodes

Number

Age, median age in years (IQR)

12 26 35
1.67 (136 to 2.12) 1.52 (1.21 t0 2.21) 1.78 (1.38 to 2.41)

Sex, number female (%) 4/12 (33.33) 8/26 (30.77) 15/35 (42.86)
Hemoglobin AS, number (9%6)*° 3(27.27) 4 (17.39) 1(3.13)
Proportion of cross-sectional surveys at which children were parasite positive by 75 8 24.26

microscopy, proportion (%)

Malaria exposure index, median (IQR)"

0.39 (0.31 to 0.50) 0.54 (047 to0 0.73) 0.65 (0.52 to 0.76)

2Data available for 11, 23 and 32 children in the malaria-free, single-episode and multiple-episodes groups respectively. ®There was a non-significant trend towards
a larger proportion of children in the malaria-free group compared to single-episode and multiple-episodes groups having the sickle cell trait (Fisher's exact test
P =0.054). “Data available for 10, 21 and 24 children in the malaria-free single-episode and multiple-episodes groups respectively. Age is at the first sampling point

in September 1998. IQR, interquartile range.
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Ngerenya cohort at the six cross-sectional surveys.

Cross-sectional surveys

Figure 3 Temporal change in age and parasite prevalence during the study period. The plot shows the median age in years (left y axis) of the
children included in this study, the parasite prevalence rates in malaria-free (blue circles), single-episode (green triangles) and multiple-episodes
(red squares) groups of children as well as the overall parasite prevalence (black circles) in children 2- to 10-years old (PfPR ,_;0) in the entire

Comparisons of the temporal changes in antibody
response in the three study groups

At the start of this study (September 1998), antibody
titers to all antigens were comparable among the three
study groups. Univariate analysis showed evidence for a
significantly higher rate of increase in antibody titers to
AMA-1_FVO and AMA_3D7 over the five-year period
in the multiple-episodes compared to the single-episode
group of children (Table 2). After adjusting for both
sickle cell trait and asymptomatic parasitemia, the differ-
ence in the rate of increase in antibody titers was only
evident for AMA-1_FVO (coefficient —-6.32, 95% confi-
dence interval (CI) -12.64 to —0.01, Table 2). There were
no significant differences in rates of change of antibody
titers to other merozoite antigens among the three study
groups (Table 2).

Discussion

This is, to our knowledge, the first attempt to investigate
the underlying immunological determinants of the over-
dispersion of clinical episodes of malaria in a low trans-
mission intensity setting. Our study showed that over a
five-year period, children who were susceptible to mul-
tiple clinical attacks of malaria had higher indices of
exposure to infectious mosquitoes than those with single
or no episodes. In contrast, the temporal dynamics of
antibody responses to Plasmodium falciparum merozo-
ite antigens were generally similar in all groups of chil-
dren. Of note, antibody levels in all groups of children
were lower than those previously shown to correlate
with protection against clinical malaria. These data sug-
gest that the differences in susceptibility to clinical

malaria among children in this context are attributable
to differences in exposure to infectious mosquitoes ra-
ther than to a failure to acquire immunity, as reflected
by anti-merozoite antibodies.

The malaria exposure index [16] estimates a distance-
weighted local prevalence of malaria infection within a
kilometer radius around an index child. By this measure,
children in the multiple-episodes group had more expos-
ure to the parasite compared to children in the malaria-
free and single-episode groups. Coupled with the fact
that the children in the multiple episode group were also
more likely to be parasite positive (asymptomatically
parasitemic) and with more clones (parasites of different
msp2 genotypes) at the cross-sectional surveys is a
strong indication that children in the multiple episodes
groups are indeed more exposed to the parasite. In the
absence of clear differences in the acquisition of immun-
ity (as estimated by anti-merozoite antibodies), our data
suggest that the differences in disease susceptibility were
driven by the observed differences in the intensity of
exposure to the parasite.

Malaria transmission intensity was low in the study
area. P. falciparum exposure (as estimated by PfPR) in
the three groups of children studied here did not exceed
30% at any of the cross-sectional surveys over five years.
This is relatively low compared to the 40% cutoff above
which a population is considered to be under high mal-
aria transmission [25], and is supported by our finding
that antibody titers in these children were lower than
those of age-matched children in separate cohorts under
higher malaria transmission intensity. Furthermore, the
incidence rate of malaria in the multiple-episodes group
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Figure 4 Antibody and P. falciparum infection profiles of individual children. The plots show the levels of IgG antibodies (y axis) to a panel of
merozoite antigens at each of the six cross-sectional surveys (x axis) conducted between 1998 and 2003. The black solid arrows indicate the time
during follow up when an individual child was parasitemic by microscopy. Asterisks indicate the time during follow up when a child had an
episode of clinical malaria. The open triangles along the x axis indicate either the cross-sectional surveys when a child was aparasitemic or the
weekly follow up visits when a child was symptomatic but found to be aparasitemic by microscopy. Red and blue arrows along the x-axis indicate
the cross-sectional surveys at which a child was infected with P. falciparum clones of the IC-1 or FC msp2 types, respectively. Panel A-B, C-E and
F-1 show the profiles of children belonging to the malaria-free, single-episode and multiple-episodes groups, respectively. Ages are reported as at
baseline, that is, in September 1998. IgG, immunoglobulin G.

(1.59 episodes/person/year) is less than a third of what
has been reported from high malaria transmission areas
(5.3 episodes/person/year) [30]. The low intensity of
malaria transmission probably accounts for the fact that
although children in the multiple-episodes group had
higher indices of parasite exposure, their antibody levels
were still lower than those known to correlate with pro-
tection against clinical episodes of malaria [14,15]. It
may also explain why no significant differences in anti-
body levels were observed between the multiple episodes
group and the malaria-free or single-episode groups.
Overall, with the exception of AMA-1-FVO, the rate
of change of antibody titers over time did not differ sig-
nificantly between the three groups. The absence of any
significant differences in the temporal change in anti-
body titers between the groups could be attributable to

the young age of the study subjects, small sample size or
the antigens studied. It is possible that the young age of
the study subjects precludes any potential differences in
rates of buildup of antibodies among the study groups.
This is plausible considering that, given uniform parasite
exposure, the buildup of antibody titers is slower in chil-
dren than in adults [31], implying that young age is in-
herently associated with slow acquisition of antibody
responses. The present study was limited to a panel of
merozoite antigens to which antibody titers have been
shown to correlate with protective immunity [32]. The
selection of these antigens allowed for the use of anti-
body titers as proxies of naturally acquired immunity.
Generally, we observed allele-specific boosting of anti-
MSP-2 antibodies, which has also been reported in rela-
tion to MSP-2 [33] and AMA-1 [34] and suggests that
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Figure 5 Distribution of antibody titers to individual merozoite antigens among the three groups of children. The panels show the distribution of
antibody titers (median and interquartile range) in the malaria-free (blue circles), single-episode (green triangles) and multiple-episodes (red squares)
groups of children at six cross-sectional surveys for the respective antigens: A) MSP-1,5, B) MSP-2_Dd2, C) MSP-2_CH150/9, D) MSP-3_3D7,
E) AMA-1_FVO, F) AMA-1_3D7 and G) PRh2. ‘NC' refers to antibody titers in sera from P. falciparum-naive adults (used here as negative controls). ‘PHIS'
refers to antibody titers in a pool of hyperimmune sera (used here as a positive control). The black bold dotted line shows the ‘threshold” antibody
concentrations to respective antigens that were calculated as described in the Results section. The thin dotted blue line shows the ‘seropositivity cut
off based on the mean plus two standard deviations of the antibody titer obtained with the negative control sera.
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the transient peaks in antibody titers are generated by
the differentiation of naive B-cells into short-lived
plasma cells (SLPCs) driven by concurrent infection ra-
ther than by long-lived plasma cells (LLPCs) generated
from previous infections. Indeed, acute malaria infec-
tions in children lead to expansion of anti-merozoite
antibodies and memory B-cell (MBC) pools which de-
cline in the absence of parasites [35]. The dependence of
antibody production in children on SLPCs may explain
why antibody titers in the multiple episodes group were
not higher than what we observed given the higher fre-
quency of P. falciparum infections. Considering that dif-
ferentiation of MBCs into SLPCs peaks six to eight days

after re-exposure to antigen [36], antibody generation
following acute infection in children may not be fast
enough to prevent the rapid increase in parasitemia and
thus clinical malaria which occurs approximately three
days after blood-stage infection [37]. The incidence of
malaria in children may thus be a reflection of the intensity
of parasite exposure in individuals whose LLPCs are insuf-
ficiently developed to sustain antibodies at high enough
concentrations to confer protection against malaria. How-
ever, given that the relative contributions of each msp2
genotype to the infection could not be determined using
capillary sequencing as employed here, interpretation on
disease causation and/or immunity should be cautious.
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Table 2 Temporal change in antibody titers among the three groups of children
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Antigen Group of children Coefficient (95% Cl)
Unadjusted Adjusted® Adjusted® Adjusted®

MSP-114 Malaria-free Reference group - - -
Single-episode -2.00 (-11.27 -7.27) —2.68 (1203 - 6.74) -1.93 (-10.32 - 6.46) —2.58 (-11.10 - 5.93)
Multiple-episodes —254 (-11.37 - 6.28) —254 (-1291 - 559) —3.82 (-11.85 - 4.20) —493 (-13.34 - 349)
Single-episode versus  0.54 (—=5.88 — 6.96) 0.99 (-5.52 - 7.50) 1.89 (—4.02 - 7.80) 235 (-4.02 - 7.80)
Multiple-episodes

MSP-2_Dd2 Malaria-free Reference group - - -

MSP-2_CH150/9

MSP-3_3D7

AMA-1_FVO

AMA-1_3D7

PfRh2

Single-episode
Multiple-episodes

Single-episode versus
Multiple-episodes

Malaria-free
Single-episode
Multiple-episodes

Single-episode versus
Multiple-episodes

Malaria-free
Single-episode
Multiple-episodes

Single-episode versus
Multiple-episodes

Malaria-free
Single-episode
Multiple-episodes

Single-episode versus
Multiple-episodes

Malaria-free
Single-episode
Multiple-episodes

Single-episode versus
Multiple-episodes

Malaria-free
Single-episode
Multiple-episodes

Single-episode versus
Multiple-episodes

043 (=5.01 - 5.86)
1.90 (-3.01 - 7.35)
—1.74 (=5.53- 2.06)

Reference group
0.24 (-9.37 - 9.86)
6.75 (=2.39 - 15.89)
—6.51 (=13.00- 0.02)

Reference group

242 (=717 -231)
—0.50 (-5.02 - 4.02)
—1.93 (=524 - 1.398)

Reference group

—3.71 (=1255-5.14)
3.87 (=5.54 - 12.30)
-7.59 (-13.71 - -1.47)*

Reference group
—2.83(-1037 - 4.71)
3.17 (-4.02 - 10.35)
-5.99 (-11.22 - 0.77)*

Reference group

—5.50 (=13.21 - 2.27)
—1.72 (-9.09 - 5.64)
—3.74 (-9.03 - 1.54)

0.29 (=5.27 - 5.864)
1.90 (-3.55 - 7.36)
—1.62 (=550~ 2.26)

0.35 (=10.21 - 9.50)
5.83 (-3.87- 1553)
—6.18 (=12.79- 043)

—2.23 (=7.10- 2.63)
—0.20 (-4.98 - 4.57)
—203 (=543 - 137)

—4.32 (-13.32 - 4.68)
287 (=597 - 11.71)
—-7.19 (-13.40 - -0.98)*

—343 (=11.09 - 4.23)
217 (=5.36 - 9.70)
—5.60 (-10.90 - -0.31)*

=579 (<1371 - 2.12)
—2.25 (=10.03 - 5.54)
—3.55 (=892 - 1.83)

0.24 (-4.28 - 5.66)
1.33 (-3.69 - 6.36)
—093 (—4.65- 2.79)

041 (=8.77 - 9.59)
3.87 (-4.91- 12.66)
—346 (-12.79- 043)

—2.37 (—=7.04- 2.30)
—1.20 (-=5.67 - 3.26)
=1.17 (=448 - 2.15)

—3.64 (-1248 - 5.20)
3.10 (=5.35 - 11.56)
—6.75 (-12.97 - -0.52)*

—2.79 (-10.30 - 4.72)
2.83 (-4.34 - 10.01)
-5.63 (-10.92 - -0.33)*

—542 (=13.22 - 238)
—1.99 (=944 - 5.48)
—344 (=886 - 1.99)

0.19 (=5.17 - 5.55)
0.94 (—4.34 - 6.23)
—0.75 (=4.55- 3.05)

0.34 (=9.72 - 9.05)
2.68 (-6.62- 11.99)
—3.02 (-947-342)

—2.37 (=7.03- 2.55)
—0.99 (=5.72 - 3.72)
—1.24 (=464 - 2.17)

—3.76 (-1324 - 472)
3.10 (-6.82- 10.94)
—-6.32 (-12.64 - -0.01)*

—3.37 (-10.99 - 4.25)
1.85 (=5.68 — 9.38)
—5.22 (=10.60 - 1.52)

=577 (<1374 - 2.19)
—2.57 (-1046 - 5.32)
-321 (=873 - 232)

2Adjusted for sickle cell trait (hemoglobin AS). PAdjusted for whether a child was parasitemic or aparasitemic by microscopy at each of the six cross-sectional surveys.
“Adjusted for sickle cell trait and whether a child was parasitemic or aparasitemic by microscopy at each of the six cross-sectional surveys. The coefficients indicate
differences in the rates of change of antibody titers comparing the single- and multiple-episodes groups to the malaria-free group. Antibodies to AMA1_FVO
increased significantly over five years when comparing the multiple- to the single-episode group. For all other antigens, the rates of change in antibody titers were
not significant during this period. Cl, confidence interval. *P < 0.05.

The observed difference in the rates of change of anti-
body titers to AMA-1-FVO, but not to the other anti-
gens in the three study groups, may be a reflection of
antigen-specific differences in human immune responses
to different antigens. Antibody longevity [38] and affinity
[39] are known to vary between individual merozoite an-
tigens. Nonetheless, the observed difference in the rates

of change of antibody titers to AMA-1-FVO raises the
question as to whether antibodies to AMA-1 are a good
correlate of exposure [40] or of protective immunity [32].
We observed that children in the multiple-episodes
group had more genetically-diverse infections compared
to children in the single-episode and malaria-free groups.
This finding is consistent with previous observations that
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genetically-diverse infections in children are associated
with an increased risk of malaria [15,41,42]. We have
previously shown that genetically-diverse infections are
more often present in young children who develop severe
non-cerebral malaria compared to age- and location-
matched children [43]. Taken together with the antibody
data presented here, these findings suggest that the genetic
diversity of asymptomatic infections in young children is a
marker of the intensity of exposure to the parasite at a time
when anti-merozoite antibodies have not attained concen-
trations required for protection against malaria.

In our study, other than at cross-sectional surveys,
children were only tested for malaria parasites when they
were symptomatic. Thus, it is possible that some asymp-
tomatic infections were undetected, but that would apply
equally to all groups and thus is unlikely to introduce bias.
Another limitation of the study was the availability of anti-
body measurements only at the cross-sectional surveys
and not when children were symptomatic. Thus, we could
not compare antibody levels at the point of symptomatic
infections in the multiple- and single-episode groups. We
were also unable to account for the possible effects of
HIV, malnutrition and prenatal P. falciparum exposure on
antibody titers in the children studied here [44].

Conclusions

In summary, our data shows that in the context of a low
malaria transmission setting, multiple episodes of clinical
malaria are more likely the consequence of increased ex-
posure rather than failure to acquire immunity. We
hypothesize that intensive exposure induces antibodies
at protective concentrations, while little to modest ex-
posure may manifest as multiple clinical infections with
low levels of antibodies. Future studies on the determi-
nants of increased susceptibility to clinical malaria in
areas with high malaria transmission intensity will com-
plement the data presented here and help to define the
tipping point in malaria transmission intensity where
exposure translates into protective immunity as opposed
to increased susceptibility to disease. Our data have
implications for interventions including vaccines that
effectively lower but do not completely abolish malaria
transmission intensity. These interventions may reduce
malaria transmission intensity below the threshold ne-
cessary to induce protective immunity and thus drive
increased susceptibility to clinical malaria.

Additional file

Additional file 1: Supplementary figures. Demonstrate 1) the temporal
variation in cohort size and parasite prevalence, 2) the distribution of the
number of P. falciparum msp2 genotypes in the three groups of children and
3) the distribution of antibody titres in age-matched children in the Ngerenya,
Chonyi and Tanzania cohorts.
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