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Abstract: Zika is a rapidly emerging public health threat. Although clinical infection is frequently
mild, significant neurological manifestations have been demonstrated in infants born to Zika virus
(ZIKV) infected mothers. Due to the substantial ramifications of intrauterine infection, effective
counter-measures are urgently needed. In order to develop effective anti-ZIKV vaccines and
therapeutics, improved animal models and a better understanding of immunological correlates
of protection against ZIKV are required. This review will summarize what is currently known about
ZIKV, the clinical manifestations and epidemiology of Zika as well as, the development of animal
models to study ZIKV infection, host immune responses against ZIKV, and the current state of
development of vaccines and therapeutics against ZIKV.
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1. Introduction

As of March 2017, 84 countries and territories have reported evidence of mosquito-borne Zika
virus (ZIKV) transmission, including the United States of America [1]. Furthermore, many of
these countries have reported microcephaly and other central nervous system (CNS) malformations
potentially associated with ZIKV infection, or suggestive of congenital infection as well as increased
incidence of Guillain–Barré syndrome (GBS) and/or laboratory confirmation of ZIKV infection among
GBS cases [1]. The temporal association of ZIKV transmission with clusters of microcephaly and
GBS was declared a Public Health Emergency of International Concern (PHEIC) by the World Health
Organization (WHO) on 1 February 2016, a designation which was subsequently ended at the fifth
meeting of the Emergency Committee on ZIKV, microcephaly and other neurological disorders on
18 November 2016 [2,3]. According to the WHO, the decision was made to escalate the coordination
and response to ZIKV to a more sustained program to address the long-term nature of the disease
and its consequences [2]. As ZIKV continues to spread, many “unknowns” remain and considerable
research is needed to advance our understanding of this important pathogen. The current literature
pertaining to the clinical manifestations and epidemiology of ZIKV as well as, the development of
animal models to study ZIKV infection, host immune responses against ZIKV, and the current state of
development of vaccines and therapeutics against ZIKV will be discussed.

2. Isolation and Characterization

ZIKV was first isolated from a sentinel rhesus monkey in Uganda, near the Zika forest, in 1947 [4];
however, there was limited documentation of human infection prior to the 2007 outbreak on Yap Island
in the Federated States of Micronesia [5]. ZIKV belongs to the family Flaviviridae, genus Flavivirus and
is a mosquito-borne virus in the Spondweni group [6]. Flaviviruses are among the most medically
significant arboviruses and include, in addition to ZIKV, pathogens such as yellow fever virus (YFV),
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Japanese encephalitis virus (JEV), West Nile Virus (WNV), tick-borne encephalitis virus (TBEV), and
the four dengue viruses (DENV1–4).

Flaviviruses are enveloped RNA viruses that contain the viral genome complexed with multiple
copies of the capsid protein (C) and surrounded by an icosahedral shell composed of 180 copies
of the envelope (E) glycoprotein and the membrane (M) or precursor membrane (prM) proteins.
The E and M/prM proteins are anchored in a lipid membrane [7]. The full-length genome of ZIKV
is 10,794 nucleotides and encodes 3419 amino acids, which, in addition to the structural proteins
(C, prM, and E), constitute seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and
NS5) [6,7]. The non-structural proteins are involved in replication and assembly of the virus as well as
antagonizing the host innate immune response [7]. Specifically, NS3 and NS5 are large, multifunctional
proteins which contain several enzymatic activities involved in polyprotein processing (NS3) and
RNA replication (NS3 and NS5) [8]. Additionally, NS5 has been demonstrated to antagonize the
interferon (IFN) response [9].The crystal structure of ZIKV has been solved and demonstrates that the
mature ZIKV structure is similar to mature WNV and DENV structures [7]. However, there are notable
differences in the E protein structure which may be responsible for cellular tropism and contribute to
disease outcomes [7].

Phylogenetic analyses of ZIKV strains isolated from 1947 to 2016 identified two distinct clades
(lineages), African and Asian [10]. The causative agent of the current ZIKV epidemic belongs to the
Asian lineage, which, while not closely related to the African lineage, shares a common ancestor [10].
Comparisons of the E protein sequences from the two lineages found that the Asian lineage contains
insertions in the E protein glycosylation motif which are not present in the African lineage [10].
When the amino acid sequences of the E protein of ZIKV isolates from human (2015/2016 epidemic),
monkey (pre-epidemic), and mosquito (pre-epidemic) were compared, a total of sixteen amino acid
substitutions were identified, resulting in subtle structural changes [10]. These changes, although
subtle, may impact ZIKV virulence and host tropism [10].

3. Epidemiology

Despite relatively limited reports of human cases of ZIKV infection from 1947 until the 2007
outbreak on Yap Island, ZIKV has now spread dramatically to include over 80 countries and territories
with vector-borne transmission [1]. Following the introduction of ZIKV to Yap Island, sporadic cases
of ZIKV infection continued to be reported in Southeast Asia during the mid-2010s [11]. A major
epidemic of ZIKV infection ensued in French Polynesia in 2013–2014 and some severe cases were
associated with neurological complications such as GBS [12,13]. ZIKV was first reported in Brazil in
2015 with large numbers of suspected cases and the initial observation that the number of newborn
infants with microcephaly was increased in ZIKV-affected areas later that year [11]. ZIKV has since
spread to include much of Central and South America and the Caribbean. Furthermore, vector-borne
transmission of ZIKV has been documented in the US in both Texas and Florida [14].

The primary mode of ZIKV transmission is through the bite of infected mosquitoes, with
Aedes aegypti and Aedes albopictus being the predominant vectors [6,15]. While Ae. aegypti mosquitoes
are confined to tropical and sub-tropical regions, Ae. albopictus, are distributed throughout tropical,
sub-tropical, and temperate regions [16]. Since 2015, ZIKV has spread rapidly through the range
occupied by Aedes mosquitos in the Americas [15]. In addition to vector-borne transmission, sexual
transmission is a contributor to ZIKV spread [17–20]. Additional modes of transmission have also
been reported, including transmission from mother to child, blood transfusion-related transmission,
laboratory transmission, and transmission by physical contact [16].

It is likely that ZIKV will continue to spread; however, it is unclear at this time whether ZIKV
transmission will remain epidemic, eventually becoming episodic with intervening periods of relative
inactivity, or if it will become endemic with seasonal transmission patterns [21]. Characterization
of the epidemiology of ZIKV is complicated by inadequate diagnostic assays (discussed below) and
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co-circulation with viruses demonstrating similar clinical presentations (i.e., Chikungunya virus
(CHIKV) and DENV) [22].

4. Clinical Manifestations

Most individuals, ~80%, infected with ZIKV are asymptomatic [23]. When symptoms are present,
they are generally mild and may include pruritic maculopapular rash, fever (typically low-grade),
arthritis, arthralgia, non-purulent conjunctivitis, and edema of the extremities [5,23–25]. Additional
symptoms of headache, myalgia, retro-orbital pain, low-back pain, lymphadenopathy, and vomiting
have also been reported [5,24]. While disease is frequently mild, fatal cases have been reported,
particularly in individuals with underlying medical conditions [26–31].

4.1. Neurological Manifestations of ZIKV Infection

A major concern during the current ZIKV epidemic has been the association of ZIKV with
neurological complications. GBS is the most frequent neurological sequela reported [12,13,25,32].
Although GBS is commonly thought to have a good prognosis, up to 20% of GBS patients may
remain severely disabled and even with treatment, approximately 5% of GBS cases are fatal [33].
GBS is characterized by progressive bilateral and relatively symmetric weakness of the limbs
frequently with hyporeflexia or areflexia. There is considerable evidence suggesting GBS has an
autoimmune etiology [33]. GBS has previously been associated with preceding infections such
as Campylobacter jejuni, cytomegalovirus (CMV), Epstein–Barr virus (EBV), varicella zoster virus
(VZV) and Mycoplasma pneumoniae. Additionally, there has been a link to influenza vaccination [34].
The mechanism by which ZIKV infection is associated with GBS remains unknown. It is therefore of
critical importance to monitor for GBS in large scale vaccine trials as well as natural infection.

Other neurological complications associated with ZIKV infection including encephalitis,
meningoencephalitis, and acute myelitis have also been reported [30,35,36].

4.2. Congenital Zika Syndrome

The Brazil Ministry of Health reported an unusual increase in cases of microcephaly in October and
November 2015, the Pan American Health Organization (PAHO) and WHO requested Member States
to monitor for similar events [37]. The identification of an increased number of cases of microcephaly
potentially associated with ZIKV prompted the declaration of a PHEIC in February 2016 [3].
Subsequently, multiple reports of microcephaly and other birth defects following ZIKV infection
during pregnancy have been made [38–43]. Following recognition of increases in the number
of infants with microcephaly in Brazil [44] and French Polynesia [40] which were spatially and
temporally associated with outbreaks of ZIKV infection, a causal link was suspected [45]. Subsequently,
Rassmussen et al. applied Shepard’s criteria for causality and suggested that sufficient evidence had
been accumulated to infer a causal relationship between ZIKV infection and microcephaly as well
as other brain anomalies [46]. Evidence to support the role of ZIKV infection during pregnancy
in causing microcephaly and other neurological malformations includes: (a) temporal association
(with a six-month delay) of increases in microcephaly with increased ZIKV transmission [44]; (b) data
modeling indicating the first trimester is the primary risk period of pregnancy [40]; (c) identification
of ZIKV in the brains of fetuses and infants (who died) with microcephaly [47,48]; (d) attenuation of
human neural progenitor cell growth following in vitro ZIKV infection [49]; (e) in vitro infection of
placental macrophages and cytotrophoblasts [50]; and (f) evidence of microcephaly associated with
ZIKV infection in mouse and non-human primate models [51–54].

5. Animal Models

Animal models play an important role in understanding viral pathogenesis, identifying promising
vaccine candidates, and testing therapeutics. The scientific community has exerted considerable effort
in developing animal models which recapitulate various aspects of human ZIKV infection and disease.
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For a comprehensive review of animal models for ZIKV infection and Zika disease, see Morrison and
Diamond [55].

5.1. Rodent Models

Initial attempts to infect wild-type (wt) mice with ZIKV resulted in infection only by the
intra-cerebral (ic) route [4]; however, passage through mouse brain resulted in adaptation to the mouse
model [56]. Similarly, guinea pigs and rabbits did not show signs of disease following inoculation
with ZIKV [56]. Although adult immunocompetent mice do not typically develop overt signs of
clinical disease, wt mice have been used to demonstrate intrauterine infection [52,57]. Additionally,
treatment of wt mice with antibodies blocking aspects of the interferon (IFN) response have been used
as described below [54,58,59]. More recently immunocompromised mouse models, mostly lacking IFN
responses, have been utilized to study systemic infection with ZIKV [54,59–62]. A variety of mouse
models which lack various components of the IFN response have been employed, including A129
(lack IFN α/β receptor and are, therefore, incapable of responding to Type I IFN) [61,62], AG129 (lack
Type I and II IFN responsiveness) [60,62], Irf3−/− Irf5−/− Irf7−/− (triple knockouts which produce
very little IFN α/β) [59], Ifnar1−/− (lack IFN-α/β receptor) [54,59]. Interestingly, while Lazear et al.,
reported severe neurological disease in Irf3−/− Irf5−/− Irf7−/− triple knock-out (TKO) and Ifnar1−/−

mice following subcutaneous inoculation with either a contemporary human isolate from French
Polynesia (H/PF/2013) or the original Ugandan ZIKV strain (MR766), they found no overt disease in
Irf3−/−, Irf −/−, and Mavs−/− single knock-out mice [59]. Despite the fact that both H/PF/2013 and
MR766 elicited neurological disease in these models, H/PF/2013 demonstrated greater pathogenicity
than the original Ugandan strain, MR766. Following intravenous inoculation, Irf3−/− Irf5−/− Irf7−/−

TKO were more susceptible to ZIKV infection than Ifnar1−/− mice indicating a potential role for
IRF-3-dependent, IFN-α/β-independent restriction mechanisms [59]. Furthermore, wt mice treated
with MAR1-5A3 (a monoclonal antibody (mAb) that blocks the IFN-α/β receptor (IFNAR)) were
susceptible to ZIKV infection but did not demonstrate a same neurological phenotype as Ifnar1−/−

mice [59]. Additionally, mice immunosuppressed by treatment with dexamethasone developed ZIKV
infection when inoculated with a clinical ZIKV isolate from Puerto Rico (PRVABC59) and treatment
with type I IFN resulted in improved clinical outcome [63]. Taken together, these studies indicate an
important role for the IFN response in protection against ZIKV infection.

Perhaps even more important than models of systemic ZIKV infection, are models of ZIKV
infection during pregnancy. Multiple mouse models for ZIKV infection during pregnancy have been
proposed. The Ifnar1−/− and MAR1-5A3 blocking models were used by Miner et al. to investigate
ZIKV replication and trans-placental transmission in pregnant dams following infection with a clinical
isolate from French Polynesia (H/PF/2013) [54]. Infection of Ifnar1−/− dams mated with wt males
resulted in fetal demise, while when pregnant wt dams were given anti-IFNAR mAb prior to and
during infection, there was mild intrauterine growth restriction (IUGR) and viral infection within
the fetal head during a key period of neurodevelopment [54]. Another study using wt mice (SJL
and C57BL/6 strains) found that infection of pregnant SJL mice with a Brazilian strain of ZIKV
intravenously (iv) resulted in IUGR and ZIKV RNA was identified in multiple fetal tissues, particularly
the brain [52]. Furthermore, surviving fetuses demonstrated cortical malformations with reduced
cell number and cortical layer thickness (both signs associated with microcephaly in humans) as well
as ocular abnormalities [52]. Adult C57 mice inoculated intra-peritoneally (ip) with a contemporary
clinical ZIKV isolate were also able to transmit virus to their unborn fetuses and resulted in infection
of primary neural progenitor cells responsible for cortex development as well as reduction of these
cortex founder cells in the fetuses [57]. Intravaginal exposure to a Cambodian ZIKV strain, FSS13025,
in both wt and Ifnar1−/− mice demonstrated replication of the virus in the vaginal mucosa (higher
levels were identified in Ifnar1−/− mice) which resulted in IUGR and fetal brain infection (wt mice)
and severe IUGR and fetal death (Ifnar1−/− mice) [64]. Direct infection of embryonic brains has also
been demonstrated, and an Asian ZIKV strain, SZ01, was found to infect neural progenitor cells and
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cause cell death resulting in microcephaly [53]. Additionally, transcriptomic analyses following ZIKV
infection demonstrated enrichment of up-regulated immune-response-related and apoptosis pathways
providing further evidence that cytokines may play a role in ZIKV pathogenesis [53]. In sum, studies
in mice have demonstrated that the interferon response is likely to play a critical role in protection
from or susceptibility to ZIKV infection. While these studies support a causal role for ZIKV infection
during pregnancy and microcephaly/neurological malformations, it is important to note that there are
considerable differences in the morphological, spatial, and temporal placentation between mice and
humans as well as differences in in utero brain development [65,66]. Further efforts to develop novel
and enhance existing animal models to better recapitulate human disease are needed.

5.2. Non-Human Primate (NHP)Models

While mice represent a relatively easy to study small animal model for ZIKV, the previously
mentioned differences between humans and mice necessitate additional models of disease.
Immunocompetent macaque monkeys have similar gestation and fetal development to humans
providing an animal model that more faithfully recapitulates human disease [51,67–69]. In non-
pregnant rhesus macaques, the duration of detectable viral RNA in plasma is similar to that in humans,
6–7 days post infection, and the decline in plasma levels of viral RNA is coincident with increases
in anti-ZIKV neutralizing antibody titers [69]. Dudley et al., have recently demonstrated prolonged
viremia following infection with an Asian lineage ZIKV in pregnant rhesus macaques compared
to non-pregnant animals [67]. Furthermore, they identified ZIKV-specific proliferation of natural
killer (NK) cells and adaptive immune responses, including proliferation of CD4+ and CD8+ T cells,
circulating plasmablasts, and ZIKV-specific IFN-γ production (by Elispot) [67]. ZIKV RNA has also
been detected in placenta, fetal brain and liver as well as maternal tissues following infection of
a pigtail macaque with an Asian lineage ZIKV [51]. Additionally, Magnetic Resonance Imaging
(MRI) abnormalities in the fetal brain were identified 10 days after inoculation suggesting that fetal
brain injury begins shortly after infection [51]. In a recent study by Osuna et al., both rhesus and
cynomolgus macaques were shown to be highly susceptible to ZIKV infection following subcutaneous
(sc) inoculation with isolates of Thai and Puerto Rican origin [68]. Activation of T and B cells was
reported and multiple animals developed T cells specific for ZIKV peptides as evidenced by cytokine
production following in vitro stimulation [68]. Studies utilizing non-human primate models to test
anti-ZIKV vaccine candidates will be discussed below.

6. Immunology

6.1. Innate Immunity

Early responses by the innate immune system are the first line of host defense for the suppression
of viral infections. IFN production is a major component of the innate response and the transcriptional
regulation of numerous IFN-regulated genes leads to an antiviral environment [70]. As previously
discussed, mice deficient in various components of the IFN response have increased susceptibility to
ZIKV infection compared to wt mice [54,59–62,64]. It has been shown that human primary trophoblast
cells, isolated from full-term placentas, constitutively release antiviral type III IFNλ1 which acts in both
autocrine and paracrine fashion to protect cells from ZIKV infection [71]. These in vitro data suggest
that ZIKV may not access the fetal compartment by direct replication in placental syncytiotrophoblasts
during later stages of pregnancy [71]. However, it remains to be determined whether first-trimester
trophoblasts are more permissive to ZIKV infection than late pregnancy villous trophoblasts and/or the
antiviral effects of IFNλs [71]. Importantly, there are significant differences in the type III IFN pathway
between mice and humans potentially complicating the interpretation of mouse models of ZIKV
during pregnancy [71]. Flaviviruses have previously been shown to antagonize IFN signaling through
multiple mechanisms [72]. In vitro studies have demonstrated that ZIKV NS5 binds to and targets the
human IFN-regulated transcriptional activator STAT2 for proteasomal degradation; in contrast, mouse
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STAT2 is refractory to ZIKV NS5 [73]. NS5-mediated degradation of STAT2 has also been demonstrated
for DENV, but the mechanisms of degradation differ between DENV and ZIKV [73]. Interestingly,
although Type I and Type III IFN use different cell-surface receptors they both signal through the Janus
kinases-signal transducers and activators of transcription (Jak-STAT) pathway, including STAT2 [73,74].
For this reason, it is possible that while, Type III IFN are produced by villous trophoblasts [71], ZIKV
may be able to evade Type III IFN signaling by degrading STAT2 mediated by NS5 [73]. In a mouse
model of intravaginal ZIKV infection, it was demonstrated that antiviral Type I and III IFN and other
inflammatory mediators were poorly induced and that there was robust viral replication in the vaginal
mucosa [75]. Viral replication has also been shown in the vaginal mucosa of wt pregnant mice with
even higher levels of viral replication demonstrated in Ifnar1−/− mice [64]. Furthermore, Khan et al.
found that if the dampened innate immune response was augmented (either by systemic infection
with an unrelated pathogen or vaginal administration of acitretin) ZIKV replication was inhibited [75].
Taken together with studies using various strains of IFN-deficient mice, these data indicate a critical
role for IFN in resistance to ZIKV infection.

6.2. Humoral Immunity

Neutralizing antibodies are thought to be a major factor in the protection against ZIKV
infection [76–78]. In fact, broadly neutralizing human monoclonal antibodies directed against the
E protein were protective against ZIKV-infection in type I/II interferon receptor-knockout mice [78].
However, these mAb were initially derived from DENV-infected individuals, not ZIKV-infected
individuals. In another study, Sapparapu et al. isolated a panel of human mAb from individuals
infected with ZIKV and identified a potent neutralizing antibody recognizing a quaternary epitope of
the E protein dimer-dimer interface [76]. This mAb was also found to protect anti-IFNAR1 treated
C57BL/6 mice from challenge with a mouse-adapted strain of ZIKV [76]. Furthermore, passive transfer
of anti-ZIKV antibodies elicited by immunization has been shown to be protective in mice [79,80].

Antibodies against flaviviruses tend to be highly cross-reactive [81] and ZIKV is no exception. In
fact, serological diagnosis has been complicated by a lack of ZIKV-specific antibody based assays. Both
ELISA and Plaque Reduction Neutralization Tests (PRNT) demonstrate significant cross-reactivity with
related viruses, including DENV which co-circulates in many of the areas affected by the current ZIKV
epidemic [82]. Multiple groups have identified antibodies from DENV patients, which cross-react, and
in some cases, neutralize ZIKV [78,83–86]. Barba-Spaeth et al. identified a subset of ZIKV-neutralizing
antibodies that target a conformational epitope and reported the crystal structure of two of these
antibodies in complex with the ZIKV E protein to reveal an epitope conserved between DENV and
ZIKV [83]. These structural details of a conserved quaternary epitope may provide an important
antigenic target for the development of cross-protective vaccines [83].

Although neutralizing antibodies may provide protection against ZIKV infection, there is
also concern for antibody dependent enhancement (ADE) which may occur due to cross-reactive,
poorly neutralizing antibodies. ADE is an immunological phenomenon in which non-neutralizing
or weakly neutralizing antibodies facilitate viral entrance into Fc-receptor bearing cells such as
monocytes and macrophages and has been described extensively in the context of secondary DENV
infection [87–90]. While there has, to date, been no indication in epidemiological studies that prior
DENV infection results in ADE of ZIKV infection or disease, in vitro analyses of ZIKV cross-reactive
antibodies from DENV-infected individuals have demonstrated enhanced ZIKV infection through an
Fc receptor-mediated process [84,86]. In AG129 (immunocompromised) mice, a DENV cross-reactive
anti-ZIKV mAb enhanced DENV2 infection and disease; however, the LALA version of the mAb,
which lacks the ability to bind to the Fc receptor, did not enhance disease [77]. While evidence of ADE
has been demonstrated in vitro and in mouse models, extensive epidemiological studies are required
to determine the clinical significance of ADE in areas where ZIKV and DENV co-circulate.
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6.3. Cell Mediated Immunity

While significant information is emerging regarding humoral responses against ZIKV, there have
been relatively few studies that explore cell mediated immune (CMI) responses against ZIKV. Data
from DENV infection have demonstrated that T cell responses contribute to protection and/or disease
enhancement [91–95]. Similarly, strong CD4+ and CD8+ T cell responses against the live-attenuated
YFV vaccine, 17D have been established [96–98]. CMI responses against flaviviruses including JEV
and WNV have also been reported [99,100]. Rivino et al. presented the argument that due to the
high degree of sequence homology among DENV and ZIKV, some of the HLA-restricted CD8+ T cell
epitopes may be conserved [92].

ZIKV-specific T cell responses have been elaborated in animal models [67,68,80,101–103] and
humans [77]. In the NHP model, both CD4+ and CD8+ T cells were expanded as plasma viral
RNA loads decreased following infection of rhesus macaques with an Asian lineage ZIKV strain.
Additionally, IFN-γ secretion was detected in response to in vitro stimulation of peripheral blood
mononuclear cells (PBMC) isolated from infected animals with overlapping peptides from the ZIKV
NS5 [67]. Furthermore, increased expression of CD69 (a marker of early T cell activation) by T cells
occurred following ZIKV infection and peaked between Days 2 and 5 post-infection [68]. ZIKV-specific
cytokine production by CD4+ and CD8+ T cells was identified in both PBMC and lymph nodes
of ZIKV-infected NHP at multiple time-points post-infection with peak responses noted on day 28
post-infection [68]. Elong Ngono et al. recently used mouse models to begin to dissect the CD8+ T
cell responses against ZIKV[58]. They identified increases in antigen-experienced CD8+ T cells in
mice infected with both African (MR766) and Asian (FSS13025) strains of ZIKV [58]. Moreover, they
identified ZIKV-derived epitopes recognized by CD8+ T cells which encompassed peptides from
the majority of the ZIKV proteins with a predominance of E protein-derived epitopes [58]. These
ZIKV-responsive CD8+ T cells were multifunctional and also found to mediate cytotoxicity [58].
Furthermore, depletion of CD8+ T cells resulted in increased levels of infectious ZIKV in the serum
and multiple tissues, including the brain [58]. In humans, CD4+ T cell responses against the ZIKV
NS1 protein have been demonstrated [77]. These T cell responses were primarily in the CXCR3+
compartment and were poorly cross-reactive with DENV [77]. Although much remains to be learned
about the T cell responses against ZIKV, current data support an important role for T cells in protection
against ZIKV.

7. Diagnostics

The development of diagnostic tests for ZIKV has proven challenging due, in part, to serological
cross-reactivity among flaviviruses [104,105]. There are currently no US Food and Drug Administration
(FDA) approved ZIKV diagnostic tests; however, both serologic and nucleic acid amplification tests
(NAAT) including the immunoglobulin (Ig)M class capture enzyme-linked immunosorbent assay
(MAC-ELISA) and the Trioplex reverse transcription polymerase chain reaction (RT-PCR) have been
given Emergency Use Authorization (EUA) by the FDA [106]. In addition to these diagnostic tests
given EUA, there are numerous research-based assays; however, these assays do not provide validation
using the most recent viral strains and fully documented clinical specimens [104].

7.1. Serological Tests

Due to the complexities of serological diagnostic testing for ZIKV infection, interim guidance for
the interpretation of ZIKV antibody test results has been published [107]. Huzly et al. demonstrated
high specificity of the Eurimmun ZIKV ELISA in European individuals with previous flavivirus
exposure (either from infection or vaccination) including TBEV, DENV, and YFV [108]. However,
a very recent study demonstrated high levels of cross-reactivity using commercially available DENV
ELISA kits [109]. In this study, 100% of convalescent samples from NAAT confirmed ZIKV-infected
individuals demonstrated cross-reactivity with DENV [109]. Although there is still some risk of
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cross-reactivity, the plaque reduction neutralization test remains the most specific serological method
for diagnosing flaviviruses, including ZIKV [104]. An ELISA using the ZIKV NS1 antigen has been
proposed as a more specific serological test [110]. In an initial study of sera from individuals with
either RT-PCR confirmed or suspected ZIKV infection, sensitivity of combined IgG and IgM ELISA was
100% if samples were obtained ≥6 days post-symptom onset [110]. Furthermore, there was extremely
limited cross-reactivity with sera from known DENV, WNV, JEV infected or YFV vaccinated individuals
(specificity of 99.8%) [110]. The significant cross-reactivity demonstrated by most serological tests
has hindered diagnosis in areas were multiple flaviviruses co-circulate. Development of serological
tests with improved specificity is essential for assessing prevalence of ZIKV infection and aiding
in diagnosis.

7.2. NAAT

NAAT to detect ZIKV RNA in the serum, whole blood, urine, and cerebrospinal fluid (CSF)
are available [105]. While NAAT are more specific than serological tests, they are limited by the
short duration of RNAemia and RNAuria. In general, ZIKV RNA is detectable from serum for
approximately seven days post-infection and in urine for approximately 15–20 days post-infection [111].
The sensitivity of different NAAT varies. In a comparison of seven published and two new RT-PCR
assays, Corman et al. found that some published RT-PCR assays may be of limited value for diagnostics
in the current outbreak due to lack of sensitivity or difficulty in obtaining necessary reagents [112].
Currently, 12 molecular assays are available through EUA [106].

8. Vaccines

It is widely accepted that vaccines provide a cost-effective method of preventing infectious
diseases [113]. Given the rapid spread of and severe outcomes associated with ZIKV infection, the
development of a safe and efficacious vaccine is critical. The existence of successful vaccines against
other flaviviral diseases (YFV, JEV, DENV, and TBEV) indicates that it is possible to develop a vaccine
against ZIKV. Forty-five ZIKV vaccine candidates consisting of multiple vaccine platforms are currently
under consideration and at various stages of development as summarized in the WHO vaccine pipeline
tracker [114]. Five candidate vaccines, including inactivated whole organism, DNA, synthetic peptide,
and mRNA platforms are already in Phase I clinical trials (Table 1) and larger Phase II and III studies
are planned pending the results of the Phase I trials [21]. Due to the large number of vaccine candidates
under investigation, this review will focus on those in clinical trials or for which animal model data
is available.

Table 1. Summary of anti-Zika virus (ZIKV) vaccine candidates currently in clinical trials.

Type of Vaccine Developers/Collaborators Candidate Vaccine
Name (If Available)

Stage of
Development

Clinical Trial
Registration Number

Inactivated whole
organism

WRAIR/BIDMC/Harvard/
NIAID/Sanofi Pasteur

Clinical (Phase 1)
NCT02963909
NCT02952833
NCT02937233

DNA GeneOne Life Science,
Inc/Inovio Pharmaceuticals GLS-5700 Clinical (Phase I) NCT02809443

NCT02887482

DNA VRC/NIAID VRC ZIKV DNA Clinical (Phase I) NCT02840487
NCT02996461

Synthetic peptide NIAID AGS-v Clinical (Phase I) NCT03055000

Measles-vectored Themis Bioscience MV-ZIKA Clinical (Phase I) NCT02996890

mRNA Valera (Moderna) mRNA-1325 Clinical (Phase I) NCT03014089

WRAIR: Walter Reed Army Institute of Research, BIDMC: Beth Israel Deaconess Medical Center, NIAID: National
Institutes of Allergy and Infectious Diseases, VRC: Vaccine Research Center.
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8.1. Inactivated Whole Organism (with or without Adjuvant)

Several developers are focusing on inactivated whole organism vaccine candidates [114].
Inactivated vaccines against flaviviruses including JEV and TBEV have been used successfully
providing support for this method [115,116]. Benefits of an inactivated whole organism vaccine
include multiple antigenic targets and non-replicating virus, which may improve safety. Purified
inactivated virus (PIV) derived from a Puerto Rican strain of ZIKV was tested in Balb/c mice which
received 1 µg of PIV vaccine with alum by either the intramuscular or subcutaneous route or sham
inoculated with alum alone [117]. The PIV vaccine was shown to induce ZIKV-specific neutralizing
antibodies after a single immunization and complete protection against ZIKV viremia was observed in
those mice that received intramuscular injection [117]. It is important, however, as mentioned above,
to note the limitations of this mouse model in recapitulating human disease. In recent studies by
Abbink et al., 16 rhesus monkeys were immunized subcutaneously with 5 µg of ZIKV PIV with alum as
an adjuvant or sham inoculated. It was demonstrated that all PIV inoculated animals developed both
E protein-specific antibodies as well as neutralizing antibodies [79]. Furthermore, all PIV-inoculated
monkeys were protected against challenge with wild-type ZIKV and had no detectable virus by RT-PCR
in blood, urine, CSF, colorectal, or cervicovaginal secretions [79]. All sham inoculated monkeys had
detectable viremia and in the majority, virus was detected in other body fluids as well [79]. In order to
improve vaccine accessibility and reduce manufacturing costs, Yang et al. very recently proposed a
cDNA clone-launched platform for high yield production of inactivated ZIKV vaccines [118]. Currently,
Phase I trials of anti-ZIKV PIV vaccine candidates are underway (Table 1) [114,119].

8.2. DNA

DNA vaccines have been in development since the early 1990s and consist of a selected gene
sequence cloned into a plasmid backbone. The plasmid is injected allowing DNA to be taken up
by antigen presenting cells, which then express the plasmid-encoded genes to generate the target
antigen(s) [120]. A candidate DNA vaccine against WNV was previously tested in humans and
demonstrated excellent safety and immunogenicity [121,122]. A monovalent (DENV1) DNA vaccine
candidate was also found to have an excellent safety profile in a Phase I clinical trial; however, it did
not induce high levels of neutralizing antibodies [123]. Multiple ZIKV DNA vaccine candidates are
in Phase I clinical trials (Table 1) [114,124]. These DNA vaccine candidates encode the prM/E genes
of ZIKV. The E protein, in particular, is thought to be a major antigen against which neutralizing
antibodies are produced and is considered important for protective efficacy in flaviviral vaccines [21].
In mice, a single immunization with DNA vaccine candidate encoding prM/E elicited higher E-specific
antibody titers than did a DNA vaccine candidate encoding only E indicating the importance of
prM in immunogenicity [117]. Furthermore, the prM/E DNA vaccine induced CD4+ and CD8+ T
lymphocyte responses against E as demonstrated by increased IFN-γ production by intracellular
cytokine staining [117]. Multiple anti-ZIKV DNA vaccine candidates induce both binding and
neutralizing anti-ZIKV antibodies in rhesus monkeys [79,80,125].

8.3. RNA

RNA vaccines contain an open reading frame encoding the antigen of interest which is
then translated by the host cellular machinery [126]. Because there is not the potential for
genome integration, RNA-based vaccines may have a safety advantage over DNA vaccines [102].
Immunogenicity of several RNA vaccine candidates in animal models have been reported in the
literature [102,103,127]. A lipid nanoparticle encapsulated modified mRNA encoding prM/E from an
Asian lineage ZIKV strain was shown to protect both AG129 mice as well as C57BL/6 mice treated
with blocking anti-IFNAR1 antibody (to create a lethal challenge model) [127]. Richner et al., further
modified the mRNA to delete an immunodominant epitope within the E domain II fusion loop and
demonstrated that the fusion loop mutant elicited serum antibody responses and protected against
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ZIKV challenge in mice. Furthermore, the antibodies elicited by the fusion loop mutant caused less
ADE of DENV1 infection in cell culture and less immune enhancement of DENV2 infection in AG129
mice [127]. Another recently reported anti-ZIKV RNA nanoparticle vaccine candidate encoding the
prM/E proteins of an Asian lineage ZIKV induced both antibody and CD8+ T cell responses in
C57BL/6 mice [102]. Furthermore, in the rhesus macaque model a single immunization of a different
ZIKV prM/E encoding mRNA lipid nanoparticle vaccine demonstrated neutralizing antibody titers
that were fifty times greater than those induced by a single immunization of a DNA vaccine and
more than twice as high as those induced by two immunizations of a DNA vaccine measured using
the same assay in the same laboratory [103,125]. These results indicate promise for RNA anti-ZIKV
vaccine candidates. There is currently a Phase I clinical trial of an mRNA vaccine candidate underway
(Table 1) [114].

8.4. Recombinant Viral Vector

In rhesus monkeys, a rhesus adenovirus serotype 52 (RhAd52) vector-based vaccine elicited
ZIKV-specific neutralizing antibodies following a single immunization which demonstrated a
substantial breadth of antibody responses against linear ZIKV E protein epitopes (peptide microarray
assays) [79]. Furthermore, this vaccine candidate protected against challenge with wt ZIKV as
demonstrated by lack of detectable viral RNA in plasma [79]. Very recently, a recombinant vesicular
stomatitis virus (rVSV) anti-ZIKV vaccine was tested in mice and demonstrated maternal protective
immunity in challenged newborn mice born to vaccinated mothers [101]. Betancourt et al. investigated
multiple rVSV expressing ZIKV E or prM/E constructs in mice and identified an attenuated VSV
with mutated matrix protein expressing prM/E (VSVm-ZprME) that induced high neutralizing
anti-ZIKV antibody titers as well as IFN-γ production by CD8+ T cells [101]. Furthermore, in a
neonatal mouse challenge model, seven-day-old mice born to VSVm-ZprME vaccinated mothers were
partially protected against neurological manifestations of ZIKV infection following challenge [101].
Additional recombinant viral-vectored anti-ZIKV vaccine candidates are in the pre-clinical stages of
development [114].

Additional vaccine candidate platforms in pre-clinical studies include live-attenuated vaccines,
recombinant subunit vaccines, peptide vaccines, and ZIKV exosome vaccines [114].

9. Therapeutics

There are currently no drugs approved for the treatment of ZIKV-infection. The aim of drug
development is primarily to reduce viral load, reduce symptoms, and protect the unborn fetus from
neurological sequelae [128]. Multiple studies have focused on “re-purposing” existing compounds
for the treatment of ZIKV [129–134]. Zmurko et al. tested multiple compounds, including ribavirin
and polymerase inhibitor 7-deaza-2′-C-methyladenosine (7DMA), to identify potential anti-ZIKV
therapeutics [134]. Of the compounds tested, 7DMA inhibited ZIKV replication in vitro, and,
when administered for 10 consecutive days (beginning 1 h prior to infection), reduced viremia
as well as delayed time to disease progression in ZIKV-infected AG129 mice [134]. While 7DMA
was well tolerated by the mice, there was only modest reduction in viremia and the initiation
of treatment prior to infection is impractical in non-research settings. Rapid, high-throughput
screening of drug/compound libraries has also been utilized in an attempt to identify compounds
with in vitro anti-ZIKV activity [129,131]. In a large screen of 727 compounds using a high-throughput
cell-based assay to screen for anti-ZIKV activity, ZIKV was found to be sensitive to pyrimidine
synthesis inhibitors (e.g., brequinar) [129]. Furthermore, Barrows et al. screened 774 FDA-approved
drugs for anti-ZIKV activity and identified over 20 compounds, including mycophenolate mofetil,
daptomycin, and sertraline, that reduced viral infection in vitro [131]. In an even larger screen,
~6000 compounds, including approved drugs, clinical trial drug candidates, and pharmacologically
active compounds, were tested to determine their ability to either inhibit ZIKV infection or suppress
infection-induced caspase-3 activity in neuronal cells [133]. Of the compounds screened in this
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study, emricasan, a pan-caspase inhibitor, was the most potent anti-cell-death compound and it
demonstrated neuroprotective activity for human neuronal progenitor cells, but did not suppress
ZIKV replication [133]. Additionally, several anti-malarial compounds were identified as having
anti-DENV2 and anti-ZIKV properties using a cell-based cytotoxicity assay [130]. Bullard-Feibelman et
al. demonstrated that an FDA-approved hepatitis C virus (HCV) anti-viral, sofosbuvir, inhibited ZIKV
replication and infection in tissue culture as well as protected mice from ZIKV-induced death [132].
However, it is important to note that in this study mice were treated one day after inoculation with
ZIKV, a time-line that is not practical in human infections.

Although anti-ZIKV therapeutic agents would likely be a welcome addition to the
armamentarium, there are multiple challenges that face their development. Because clinical infection
with ZIKV is typically mild, the primary populations for whom treatment would be indicated are
pregnant women and those at increased risk for neurological complications, such as GBS. There
are multiple ethical considerations in the development of therapeutics to be used during pregnancy.
In general, pregnant women are excluded from clinical trials of new investigational compounds. In this
setting, the inclusion of pregnant women would be warranted; however, the agent would need to
be low risk to the mother, low risk to the fetus (not teratogenic), effective in preventing adverse fetal
outcomes, and practical for use in resource-limited settings [128].

10. Conclusions

ZIKV is a rapidly emerging virus with a complex clinical picture. To date, much progress has
been made in understanding the epidemiology and pathogenesis as well as developing vaccines
which are essential to addressing the spread of ZIKV. However, many questions remain and a
sustained global effort is required to battle this public health threat. Among the major issues requiring
attention are the need for: (a) an improved understanding of the epidemiology including the potential
interaction of ZIKV infection with other flaviviral infections; (b) an improved understanding of the
clinical risk factors and mechanisms of severe disease; (c) identification of immunological correlates
of protection which may aid in the rapid development of vaccines; and (d) the development of
additional animal models which faithfully recapitulate human disease to better understand ZIKV
pathogenesis and facilitate the development of countermeasures. In sum, an improved understanding
of the epidemiology, pathogenesis, clinical risk factors for severe manifestations, and immunological
correlates of protection are critical in developing effective countermeasures against this pathogen,
including vaccines and therapeutics.
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