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Abstract: Non-proteinogenic amino acids have attracted tremendous interest for their essential
applications in the realm of biology and chemistry. Recently, rising C–H functionalization has been
considered an alternative powerful method for the direct synthesis of non-proteinogenic amino
acids. Meanwhile, photochemistry has become popular for its predominant advantages of mild
conditions and conservation of energy. Therefore, C–H functionalization and photochemistry have
been merged to synthesize diverse non-proteinogenic amino acids in a mild and environmentally
friendly way. In this review, the recent developments in the photo-mediated C–H functionalization of
proteinogenic amino acids derivatives for the rapid synthesis of versatile non-proteinogenic amino
acids are presented. Moreover, postulated mechanisms are also described wherever needed.
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1. Introduction

Amino acids (AAs) are an important class of compounds containing amino groups and carboxyl
groups at the same time and also fundamental building blocks of proteins responsible for life
activities [1,2]. Different from the basic and common proteinogenic amino acids (PAAs), which can be
found in proteins and have standard genetic codes, non-proteinogenic amino acids (NPAAs) are not
naturally encoded, but essential building blocks, because not only do they take part in the composition
of peptides and proteins with versatile functions [3,4], they also act as multifunctional molecules,
such as drugs (Figure 1a) [5], biotechnological tools (Figure 1b) [6], and catalysts (Figure 1c) [7]. Thus,
the construction of NPAAs has continuously attracted attention from chemists and biologists [8].
Compared with the de novo synthesis of NPAAs through enantioselectively constructing bonds
around the Cα center [9–11], the direct modification of PAAs has been considered as an efficient
and convenient strategy to achieve NPAAs rapidly for the ready availability of PAAs. However,
the conventional modification of NPAAs relied on the simple organic transformations of highly active
groups such as the hydroxyl groups of serine, threonine, and tyrosine, amino groups of arginine
and lysine, carboxyl groups of aspartic acid and glutamic acid, as well as the sulfhydryl group of
cysteine [12–16]. For the other low active reaction sites, especially the abundant but inert C–H bonds
of the PAAs, direct C–H functionalization in modern chemistry has emerged as a powerful way to
synthesize versatile NPAAs directly and rapidly [17,18]. Although the transition-metal-catalyzed C–H
functionalization of PAAs has been well developed, the employment of expensive and polluting heavy
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metal, the harsh reaction conditions such as the high temperature limited its practical application to a
certain extent. Thus, the development of an alternative method to construct NPAAs directly from PAAs
under mild and environmentally friendly conditions is highly desirable considering the deteriorating
environmental problems.
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Figure 1. Selected examples of non-proteinogenic amino acids (NPAAs) as drugs (a), biotechnological
tools (b) and catalysts (c).

In recent years, photocatalysis has become an appealing noncanonical synthetic method,
in redox [19,20], cross-coupling [21,22], and C–H functionalization reactions [23], due to its mild
reaction conditions, sustainable light source, simple operation, as well as the less pollution and waste.
Therefore, it is highly attractive to modify PAAs and peptides via photo-mediated C–H functionalization
at ambient temperature, exhibiting high competence, broad functional group tolerance, and great
energy-saving performance. Although the relevant topic of photocatalytic transformations of amino
acids and peptides has been reviewed, it mainly focused on the decarboxylative coupling reactions and
functionalization of active sulfydryl groups [24]. In this review, we focus our attention on the recent
advances in the photo-mediated C–H functionalization of PAA derivatives directly toward NPAAs
(Scheme 1). The reactions are classified according to what kind of chemical bonds are formed (C–C,
C–N, C–S, C–O, C–P, C–X bonds) after the photo-mediated C–H activation, and then, the classifications
are divided into corresponding C(sp3)–H and C(sp2)–H activations, respectively.Molecules 2020, 25, x FOR PEER REVIEW 3 of 41 
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2. C–C Formation

2.1. C–H Alkylation

The alkyl group is one of the most fundamental groups. Thus, the development of ideal
photo-mediated C–H alkylation reactions has attracted great interest from chemists for their broad
applications [25,26].

2.1.1. C(sp3)–H Alkylation

Alkyl Katritzky salts (N-alkyl-2,4,6-triphenylpyridinium salts, TPPs) were employed in the
photo-mediated C(sp3)–H alkylation reactions of glycine derivatives by Lou and Liu’s group [27] and
Xu’s group [28], respectively. In Lou and Liu’s work, the authors used [Ir(dtbbpy)(ppy)2]PF6 as the
photocatalyst to excite the Katritzky salts to generate the alkyl radical group to access the alkylated
glycine derivatives in moderate efficiency under visible-light irradiation (Scheme 2a). Interestingly,
Xu’s group then reported a visible-light promoted catalyst-free C(sp3)–H alkylation reaction of glycine
derivatives with Katritzky salts in good yields. The electron donor–acceptor (EDA) complex, which was
formed with glycine derivatives, Katritzky salts, and the base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU),
could enable the single electron transfer (SET) and subsequent radical coupling to furnish the amino
acids functionalization reactions in the presence of the visible light (Scheme 2b). Moreover, these two
works both extended the method to the photo-mediated functionalization of glycine-containing
peptides, well exhibiting excellent functional group tolerance (Scheme 3).
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Scheme 3. C(sp3)–H alkylation of Gly-containing peptides with TPP by the catalysis of iridium complex
(a) and EDA complex (b).

N-hydroxyphthalimide (NHP) esters, considered as the alternative alkyl precursors, could also
allow the photo-mediated alkylation reactions of glycine derivatives (Scheme 4a) and peptides
(Scheme 4b) in high yields, as reported by Xu and Wang’s group [29]. The NHP esters could generate
alkyl radical in situ through the visible-light-induced Cu-catalyzed decarboxylative process to couple
with the glycine derivative carbon radical to accomplish the C(sp3)–alkylation reaction of glycine
derivatives (Scheme 4c).
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Scheme 4. C(sp3)–H alkylation of Gly derivatives (a) and Gly-containing peptides (b) with
N-hydroxyphthalimide (NHP) esters. (c) Proposed mechanism.

Later in 2019, Duan and Wang’s group used N-alkoxyphthalimides as the alkylation reagents in
the visible-light-induced Cu-catalyzed C(sp3)–alkylation reaction of glycine derivatives (Scheme 5) [30].
Interestingly, the authors have realized the regioselective α- and δ-activation of N-alkoxyphthalimide
through adding different additives with acidic or alkaline properties. In the presence of basic
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1,4-diazabicyclo[2.2.2]octane (DABCO), the reaction exhibited α-selectivity after the resonance to
more stable α-oxy carbon-centered radical anion, while in the presence of acidic (R)-BNDHP,
the generated alkoxy radical after protonation would subsequently undergo 1,5-HAT to give the
remote carbon-centered radical. Then, these two kinds of radicals coupled with glycine radical cation,
which was produced along with the regeneration of Cu(I) to yield the final α- and δ-selective product.
It is worth noting that N-alkoxyphthalimides show different chemical activity to generate alkoxy
radicals first rather than the direct generation of the alkyl radicals compared with the NHP esters.
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Scheme 5. C(sp3)–H alkylation of Gly derivatives with N-alkoxyphthalimides.

In 2017, Sugiyama and Park’s group has developed a photo-induced alkylation of glycine
derivatives with silyl enol ethers as another kind of alkylation reagent (Scheme 6) [31]. This reaction
was cooperatively catalyzed by 5-aminofluorescein and InBr3. 5-Aminofluorescein as the photocatalyst
was excited to oxidize the glycine derivatives to imines, while InBr3 was added to facilitate the
Mannich-type reaction of imines and silyl enol ethers.
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Scheme 6. C(sp3)–H alkylation of Gly derivatives with silyl enol ethers.

Apart from silyl enol ethers, enol ester like α-angelicalactone was employed by Zhang and
Li’s group as the alkylation reagent to furnish the tandem C(sp3)–alkylation and intramolecular
cyclization reaction of glycine derivatives under the merging catalysis of Rh-6G and H2SO4 to form the
γ-lactams (Scheme 7) [32]. The acid catalysis is critical to this transformation, because only a trace
amount of product was observed in the control experiments without H2SO4.
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Scheme 7. C(sp3)–H alkylation of Gly derivatives with α-angelicalactone.

Guan and He’s group also attempted the N-acetylenamine as the similar alkylation reagent in the
Rose Bengal-catalyzed photo-oxidative alkylation of glycine derivatives (Scheme 8) [33]. Similar to
the above-mentioned enols, here, the N-acetylenamines captured the carbon radicals of glycine
derivatives to generate carbon radical intermediates, which were abstracted as a hydrogen atom and
then underwent cyclization, rearrangement, and hydrolysis to obtain the final N-acylation-α-alkylation
products in good yields.
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Scheme 8. C(sp3)–H alkylation of Gly derivatives with enamines.

Electron-deficient olefins were also investigated as alkylation reagents employed in the photo-mediated
C(sp3)–alkylation of amino acids. In 2016, Kamijo’s group described the 2-ClAQ-catalyzed alkylation
of proline derivate with 1,1-bis(phenylsulfonyl)ethylene in 72% yield (Scheme 9a) [34]. Additionally,
the tinstalled bis(phenylsulfonyl)ethylene group was a helpful synthetic intermediate for further versatile
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transformations. Later in 2019, Rovis’s group also reported an example of photo-mediated functionalization
of the lysine derivative with tert-butyl acrylate in 58% yield with 1:1 dr value (Scheme 9b) [35]. Notably,
the authors have tested other protecting groups such as the trifluoroacetyl group, p-toluenesulfonyl
group, and acetyl group, and they are all deleterious to this process, which indicated that the
trifluoromethanesulfonyl group as the protecting group on the nitrogen atom was extremely essential to
the reaction.
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tert-butyl acrylate (b).

As it remains challenging to functionalize C(sp3)–H of the substrates containing unprotected
primary amines, Rovis and Schoenebeck’s group has developed a CO2-activated tandem C(sp3)–H
alkylation and intramolecular cyclization to deliver the γ-lactam derivative of lysine (Scheme 10) [36].
CO2 first activated the primary amine to form the alkylammonium carbamate, which would be
abstracted as a hydrogen atom to generate the carbon-centered radical to furnish the radical coupling
and dissociate the CO2 to give the final product. According to the experimental and computational
results, CO2 could act as a protecting group to prevent the N-alkylation and a negatively charged
carbamate anion to simultaneously accelerate the intermolecular hydrogen atom transfer (HAT) process.
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Shi and coworkers described an example of the photo-mediated C(sp3)–H alkylation reaction of the
β-position of the tryptophan-containing peptides with high levels of selectivity (Scheme 11) [37].
The reaction exhibited a broad substrate scope for tolerating several endogenous peptides and
electron-deficient olefins. Interestingly, only tryptophan could proceed in the process, while other similar
benzyl-containing residues such as phenylalanine and tyrosine had no reaction. The possible highly
selective mechanism might be that the benzylic proton was more acidic than others due to the formation of
the indole radical cation after the one-electron oxidation of indole N atom. So, theβ-H could be abstracted
by the base, and the more stable carbon radical was formed to couple with the electron-deficient olefins
to realize the photo-mediated C(sp3)–H alkylation reaction of the tryptophan-containing peptides.
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Scheme 11. C(sp3)–H alkylation of Trp-containing peptides with electron-deficient olefins.

In 2017, MacMillan’s group has described a C(sp3)–alkylation of lysine derivatives using alkyl
bromide as the alkylation reagent (Scheme 12) [38]. The butyronitrile group has been functionalized at
the position adjacent to the nitrogen atom of lysine derivative under the irradiation of visible light.
This alkylation process involved three catalysis (HAT catalysis, photoredox catalysis, and tnickel
catalysis) simultaneously. The proposed mechanism of the triple catalysis is as follows. First,
the photocatalyst was excited under the irradiation of the visible light to form the excited state,
which then oxidizes quinuclidine to give the cationic radical. The cationic radical and the lysine
derivative engaged in the HAT catalytic cycle to form the alkyl radical of the lysine derivative
(Alk1·), which is trapped by Ni(0) to arrive at the Ni(I)-alkyl intermediate. Oxidative addition with
4-bromobutanenitrile and subsequent reductive elimination obtained the final alkylation product,
along with the Ni(I) complex, which could be reduced by Ir(II) to regenerate the Ni(0) catalyst for
the next nickel catalytic cycle. Additionally, this method has also been applied to the late-stage
functionalization of peptides containing methionine residues in moderate yields with high selectivity
(Scheme 13).
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What is more, Wu’s group has described a C(sp3)–H functionalization reaction of glycine esters with
the β-keto esters in 2015, which was cooperatively catalyzed by [Ru(bpy)3](PF6)2 and Co(dmgH)2pyCl
(Scheme 14) [39]. In this case, β-keto esters containing reactive α-Hs as alkylation reagents were used
to produce the alkylated glycine derivatives. Significantly, this cross-coupling hydrogen evolution
reaction avoided the requirement of equivalent amounts of bases or oxidants to activate the β-keto
esters and generated only H2 as the by-product, because the cobalt catalyst was chosen to capture the
electrons and protons eliminated from the β-keto esters, which made this method economical and
environmentally benign.
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2.1.2. C(sp2)–H Alkylation

In 2010, the C(sp2)–alkylation of tryptophans has been realized by Stephenson’s group with diethyl
bromomalonate under the catalysis of [Ru(bpy)3]Cl2 (Scheme 15a) [40]. Additionally, dipeptides were
also compatible in this alkylation reaction. Later in 2019, Noël and Carrillo’s group has developed a
novel 2,2′-bithiophene-based organic photocatalyst for photoredox C–H alkylation in a continuous-flow
photo-microreactor (Scheme 15b) [41].
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complex (a) and bithiophene (b).

4-Alkyl-1,4-dihydropyridine (DHP) reagents were also employed as alkylation reagents in the
C(sp2)–alkylation of histidine derivatives with the assistance of the oxidant Na2S2O8 by Wang and
Chen’s group in 2019 (Scheme 16a) [42]. Various alkyl groups containing reactive functional groups
(such as the hydroxy group, azido group, and the alkynyl group, etc.) could be installed on bioactive
peptides, peptide drugs, and even a small protein in moderate to good yields and excellent selectivities
when omitting Na2S2O8 (Scheme 16b). Notably, the avoidance of the strong external oxidant could
suppress the formation of undesired by-products, because the peptide containing Tyr, Trp, and Met
residues would be oxidized by the strong oxidants, which was a serious problem in the modification
of peptides.
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In addition, diazo compounds are a kind of alternative reactive chemical reagent that are commonly
used in C(sp2)–alkylation reactions. Gryko’s group has described the photoalkylation of tryptophans
with diazo esters in 67% yield (Scheme 17) [43]. It was worth noting that the catalyst loading could
be as low as 0.2% when the reaction scale was 0.25 mmol, which is beneficial to scale up and apply
in industry.
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In addition to intermolecular alkylation reactions, the intramolecular photocatalyzed alkylation
of tryptophan was also investigated when tryptophan was substituted by a glutaroyl group
(Scheme 18) [44]. The carboxylic acid was first coupled with NPht-OH and then underwent
photocatalytic decarboxylative alkylation, leading to the pyridotryptophan through a one-pot protocol.
The authors hope to use this methodology in the rapid synthesis of versatile indole-containing bioactive
molecules and natural products.
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2.2. C–H Benzylation

C–H benzylation is an attractive method to introduce the benzyl group to construct the bioactive
structures [45]. Especially, the important diarylmethanes compounds could be achieved through the
C(sp2)–H benzylation of the (hetero)arenes [46].

2.2.1. C(sp3)–H Benzylation

Wessig’s group [47] and Griesbeck’s group [48] have independently reported the catalyst-free
photo-mediated intramolecular C(sp3)–benzylation of amino acids derivatives in 1999 and 2002,
respectively. In Wessig’s work, dipeptides of l-β-benzoylalanine and proline esters could deliver the
bicyclic indolizinones under the photoirradiation (Scheme 19a). Notably, the protecting group R1 could
be Cbz, Alloc, and Boc, rather than Fmoc, because the biphenyl skeleton of Fmoc would quench the
triplet excited benzoyl group to suppress this process. In Griesbeck’s work, β-lactams were produced
from phenylglyoxyl amino acid derivatives in excellent yields with broad substrate scope and good
to high diastereoselectivities (Scheme 19b). Unfortunately, this transformation had no memory of
chirality to induce the asymmetric cyclization.
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Since 2016, Xiao’s group [49] and Wang’s group [50] have developed the photocatalytic benzylation
of glycine derivatives with ketones and aldehydes, respectively, to produce useful 1,2-amino alcohols
in moderate efficiency. Xiao and coworkers believed that the lithium salt LiBF4 took the important role
as a Lewis acid in the activation of the ketones to the corresponding ketyl radical (Scheme 20). Then,
the ketyl radical coupled with the amino radical to form the final product after a protonation process.
While in Wang’s work, the authors proposed a proton-coupled electron transfer (PCET) pathway of the
complex containing the aldehyde, DABCO, and a protonic acid (Scheme 21).
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Scheme 21. Intermolecular C(sp3)–H benzylation of Gly derivatives with aldehydes.

Apart from the intra- or intermolecular carbonyl groups, benzylidenemalononitrile could also be
considered as an alternative photo-benzylation reagent. It was employed in the benzylation reaction of
proline derivative catalyzed by the acridinium photocatalyst Mes-Acr+ClO4

− under the irradiation of
34 W blue light emitting diode (LED) (Scheme 22) [51]. Notably, the stop-flow microtubing (SFMT)
reactor showed better results than the conventional batch reactor. Moreover, the catalytic amount of
HCl was essential to the photocatalytic process for its function in hydrogen atom transfer (HAT) to
activate C(sp3)–H.
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2.2.2. C(sp2)–H Benzylation

In 2015, a metal-free, photochemical strategy for the C–H benzylation of tryptophan has been
reported by Melchiorre’s group (Scheme 23) [52]. The benzylated product was received in 68% yield
through the photochemical activity of the EDA complex from tryptophan and benzyl bromides with
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electron-withdrawing groups, such as 2,4-dinitrobenzyl bromide. Importantly, the EDA complex
has been successfully isolated and unambiguously characterized by X-ray, and it has been proved to
have the photochemical activity in this benzylation reaction, which provided valuable information for
further investigations on the EDA complex in photochemistry.
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In 2018, Stephenson’s group has developed lithium bis-catechol borate (LiB(cat)2) as a novel,
efficient, and inexpensive reductive quencher in the photoredox-mediated C–H benzylation due to
its absence of α-protons to avoid undesired HAT, which commonly occurred when trialkyl amines
were employed as sacrificial reductive quenchers (Scheme 24) [53]. The redox potential of LiB(cat)2

was similar to other candidates, while the cost was significantly lower than the others, such as the
commercially available 4-methoxy-N,N-diphenylaniline. Therefore, the authors employed LiB(cat)2 as
a reductive quencher to furnish the functionalization of tryptophan with pyrroloindolines.
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2.3. C–H Allylation

Wood’s group has realized an intermolecular photo-accelerated α-allylation of N-(2-iodobenzoyl)
amino acid derivatives in 2009 (Scheme 25) [54]. With the increase of the steric hindrance of R1

(R1 = H, R1 = Me, R1 = iPr), the yield of the corresponding product would dramatically decline,
indicating the difficulty in constructing remarkably hindered quaternary carbon centers. Mechanically,
the allylation process might involve the aryl radical formation, hydrogen transfer to generate the key
α-aminoalkyl radical intermediate, allyl radical formation, and radical coupling processes to finish the
allylation reaction.
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2.4. C–H Fluoroalkylation

Due to the important role of fluoroalkyl group in biomolecules to increase the reactivity, solubility,
and polarity, fluoroalkylation particularly attracted researchers’ interests [55–57].

Early in 1992, Kimoto’s group found that the photo-irradiation of a mixture of tyrosine and
CF3I could lead to the trifluoromethylation of the tyrosine derivative in 33% yield (Scheme 26a) [58].
Apart from the ortho-trifluoromethylation, a small amount of meta-trifluoromethylation product was
also found according to the 19F NMR and GC-MS. As a result of the gaseous property and the
inconvenience of using CF3I, NaSO2CF3 has been developed as an alternative trifluoromethylation
reagent in the visible-light-mediated trifluoromethylation of tyrosine and its peptides by Krska and
Parish’s group in 2018 (Scheme 26b) [59]. Interestingly, different from Kimoto’s work, bis-CF3 tyrosine
as another kind of side product was generated under the conditions. What is more, 14 examples of
peptides including bioactive angiotensin, casomorphin, dermorphin, and even insulin could well
participate in the trifluoromethylation reactions (Scheme 26c).
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Trifluoromethylation of tryptophans from plentiful trifluoromethyl synthons in photochemistry has been
widely investigated (Scheme 27). Trifluoromethanesulfonyl chloride, 2-(trifluoromethylsulfonyl)ethanone,
and Umemoto reagent II have been used in the trifluoromethylation reactions independently by
Blechert’s group [60], Li’s group [61], Hamashima and Egami’s group [62], since 2015. NaSO2CF3 as a stable,
inexpensive, and easy-handling trifluoromethyl synthon has been applied in the trifluoromethylation of
tryptophans catalyzed by the mesoporous graphitic carbon nitride (mpg-CN) [63] and iridium complex [64],
respectively. Notably, electrochemistry was merged with photochemistry to catalyze the trifluoromethylation
of tryptophan with NaSO2CF3 [65]. The cooperative catalysis by electrophotochemistry relied on the anodic
electrooxidation to undergo the regeneration of the photocatalyst, rather than the chemical oxidants.
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Scheme 27. C(sp2)–H trifluoromethylation of Trp derivatives.

Particularly, Chiang’s group has expended the scope of the visible-light-induced photoredox
trifluoromethylation to the tryptophan-containing peptides with excellent chemo- and site-selectivity
under mild and biocompatible conditions (Scheme 28) [64].
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Scheme 28. C(sp2)–H trifluoromethylation of Trp-containing peptides with NaSO2CF3.

Other than the trifluoromethyl group, the perfluorobutyl group was also functionalized on the
tryptophan and its peptides in moderate yields under a photocatalyst-free condition reported by
Chen’s group (Scheme 29a) [66]. Gem-difluoromythylation was realized using triaryl phosphine as
an electron donor to combine with 2,2-difluoro-2-iodoacetate for the formation of an EDA complex
facilitating the reaction by Zhang’s group in 2020 (Scheme 29b) [67].
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2.5. Miscellaneous C–H Alkylation

2.5.1. C(sp2)–Phosphonoacetylation

A metal-free phosphonoacetylation of tryptophan derivative with 2-bromophosphonoacetic
ester under the catalysis of Eosin Y has been described by Opatz’s group in 2018 (Scheme 30) [68].
The synthetic potential of further transformation of phosphonates through Horner-olefinations made
this research of great importance and application value.
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2.5.2. C(sp2)–Diazomethylation

Carbynes as fundamental and highly electrophilic but arcane intermediates have been largely
unexplored, resulting from the limited carbyne equivalents and generation strategies [69,70]. Hence,
investigations on carbynes and their equivalents are highly desirable to help chemists better understand
chemical reactivities. Suero’s group described a photocatalyzed diazomethylation of phenylalanine
with benziodoxolone as a carbyne equivalent species in 2018, which provided a great example for
carbyne’s generation and subsequent transformation (Scheme 31) [71].
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2.6. C–H Alkenylation

The alkenyl group is an extraordinary powerful structure, which could be further transformed
through the addition, oxidation, reduction, annulation and transition-metal-catalyzed cross-coupling
reaction, such as a Heck reaction [72]. Therefore, the introduction of the alkenyl group into the amino
acids has also been investigated for the remarkably increasing potential diversity of the products and
also the intermediates in the total synthesis of natural products [73].

In 2014, Inoue and Kamijo’s group reported a metal-free sulfonylalkenylation reaction of proline
derivative with bis(phenylsulfonyl)ethylene in quantitive yield under the photo-irradiation conditions
(Scheme 32) [74]. The sulfonylalkene could be easily converted to prenyl alcohol and pyrrole derivative,
which gives this transformation possess extended synthetic utility.
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Scheme 32. C(sp3)–H alkenylation of Pro derivative with bis(phenylsulfonyl)ethylene.

Alkenylboronic acids have also been developed as visible-light-mediated alkenylation reagents for
the styrenation of methionine and leucine catalyzed by Eosin Y under mild conditions (Scheme 33) [75].
Taking the leucine for example, an amidyl radical is formed by single-electron transfer from Eosin Y*,
generating the carboxylate anion (p-CF3PhCO2

−) at the same time. Subsequently, the C(sp3)–H bond
would be activated through 1,5-HAT to give the carbon-centered radical. Then, it could attack the
alkenylboronic acid to undergo SET and deboronation to deliver the final styrenation product.
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2.7. C–H Alkynylation

In 2013, Inoue’s group has developed a photochemical alkynylation of proline with 1-tosyl-2-
(trimethylsilyl)acetylene when diphenyl ketone worked as a precursor reagent (Scheme 34a) [76]. Moreover,
the alkynylated proline derivative could be easily transformed to corresponding carboxylic acid and
phenylacetylene efficiently. Ethynylbenziodoxolone reagents could also incorporate the phenylacetyl
group in valine and isoleucine catalyzed by 4CzlPN (Scheme 34b) [77]. A dipeptide (Cbz-Gly-Val-NHMe)
was also functionalized smoothly in 65% yield under visible-light irradiation.
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2.8. C–H Acylation

C–H acylation remains a powerful and convenient strategy to introduce the carbonyl group into
the organic compounds to generate the versatile ketones [78,79].

2.8.1. C(sp3)–H Acylation

An intramolecular photocatalysis C(sp3)–H acylation of β-position of alanine (R = H) and
valine (R = Me) N-succinimides to deliver the medium-ring product under the photoirradiation of a
low-pressure mercury lamp was reported in 1986 (Scheme 35) [80]. The succinimide first abstracts a
hydrogen atom and then undergoes the cyclization to give an azacyclobutanol intermediate. Due to its
high ring strain, a retro-transannular process happens to obtain the final product.
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Afterwards, an intermolecular C(sp3)–acylation of proline was developed by Kamijo’s group
in 2016 through a tandem aldoxime group introduction and hydrolysis (Scheme 36) [81]. A proline
derivative is abstracted as hydrogen by photoexcited 4-benzoylpyridine (4-BzPy), and it attacked
the sulfonyl oxime to provide the aminyl radical. Finally, the product is afforded through the
left of the sulfonyl radical. Formylated proline could be easily achieved after the acid treatment
with formaldehyde.
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2.8.2. C(sp2)–H Acylation

The acylation of tryptophan with aldehydes under the cooperative catalysis of visible-light photoredox
and palladium with high efficiency has been reported by Jana’s group in 2017 (Scheme 37) [82].
Pyrimidine was chosen as the directing group substituted on the nitrogen of the indole to coordinate
palladium for C–H activation. Additionally, tert-butyl hydroperoxide (TBHP) was essential in the reaction
due to the failure of the reaction without TBHP. Mechanically, the oxidative addition of the palladium
complex with the acyl radical, generated from the aldehyde under the photocatalysis, occurred to form
the Pd(III) intermediate. Then, the desired product was obtained through single electron transfer and
reductive elimination, and finally, the palladium catalyst was regenerated for the next catalytic cycle.
Although this work merged the photocatalysis and palladium-catalysis perfectly for the acylation of
tryptophan, the introduction of the pyrimidine-directing group increased the difficulty for practical
application to some extent.
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2.9. C–H Cyanation

In 2011, Inoue’s group has developed a protocol for the direct photo-cyanation of proline
with TsCN under the irradiation of a 100 W medium pressure mercury lamp in high efficiency
and diastereoselectivity (Scheme 38a) [83]. Additionally, TMSCN was used as an alternative
cyanation reagent to provide the cyanated glycine derivative under the visible-light catalysis in
2018 (Scheme 38b) [84].
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Scheme 38. C(sp3)–H cyanation of Pro (a) and Gly (b) derivatives.

Particularly in 2018, Kanai and Oisaki’s group reported a C(sp3)–H cyanation of methionine and its
dipeptide through the cooperative visible-light photoredox/phosphate acid catalysis (Scheme 39) [85].
However, because of two possible reaction sites adjacent to the sulfur atom, this cyanation reaction
proceeded in poor regioselectivity, albeit in good to excellent yields. The phosphate acid generates the
phosphate radical through one-electron photooxidation to work as a HAT catalyst, which was inspired
by the natural DNA cleavage mechanism induced by photolysis.
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2.10. C–H (Hetero)arylation

The (hetero)aryl-containing motif is one of the most common and valuable scaffolds, and C–H
(hetero)arylation offers a more step-economical and greener method to synthesize (hetero)aryl
derivatives [86,87].

2.10.1. C(sp3)–H Arylation

In 2012, Rueping’s group reported the C(sp3)–functionalization of glycine derivatives with
indoles as nucleophiles under the cooperative visible-light photoredox catalysis and Lewis acid
catalysis (Scheme 40) [88]. The Lewis acid activated the hydroperoxide intermediate to form the
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highly electrophilic complex, which was easily attacked by the indole nucleophiles to generate
the functionalized glycine derivatives. Moreover, 10 examples of dipeptides were successfully
functionalized with excellent regioselectivities, and no peptide degradation was found under the
mild conditions.
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Scheme 40. C(sp3)–H arylation of Gly derivatives with indoles through the cooperative catalysis of
photoredox and Lewis acid.

Different from Rueping’s strategy of the combination of visible-light photoredox catalysis and
Lewis acid catalysis, Wu’s group has merged photoredox catalysis with cobalt catalysis to realize the
C(sp3) functionalization of glycine derivatives with indoles in excellent yields under oxidant-free and
water-free conditions (Scheme 41) [39]. In this work, the cobalt catalyst was introduced to capture the
electrons and protons from the photocatalyst and the substrate radical cation, respectively.
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Scheme 41. C(sp3)–H arylation of Gly derivatives with indoles through the cooperative catalysis of
photoredox and cobalt.

Aryl nucleophiles have been further expended to 7-azaindole, 1H-benzo[g]indole, pyrrole,
naphthalen-2-ol, and phenol by Hong’s group in the photoredox-mediated arylation reactions of
glycine derivatives catalyzed by ruthenium complex with a household compact fluorescent light
(CFL) (Scheme 42) [84]. Notably, this reaction could also occur under a catalyst-free condition with a
significantly longer reaction time.
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Scheme 42. C(sp3)–H arylation of Gly derivatives with arenes.

In addition, benzothiazole could also be functionalized to amino acids through the photo-mediated
C(sp3)–H activation under mild conditions. Wang’s group [89] and Yu’s group [90] independently
reported the heteroarylation of proline (Scheme 43a) and valine (Scheme 43b) in moderate
yields, respectively.
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Scheme 43. C(sp3)–H arylation of Pro (a) and Leu (b) derivatives with benzothiazole.

In addition to electron-rich aryl compounds, electron-deficient aryl bromides were also employed
as the arylation reagent in the photocatalytic arylation reactions. A proline derivative was arylated
with 4-bromobenzotrifluoride through the combination of photoredox-mediated catalysis and nickel
catalysis (Scheme 44) [91].
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2.10.2. C(sp2)–H Heteroarylation

In 1987, Koch’s group developed a photochemical coupling reaction between 5-bromouracil and
tryptophan, tyrosine, and histidine derivatives, respectively, under the irradiation of a 400 W medium
pressure Hg lamp, delivering corresponding coupling products in 83–92% yields (Scheme 45) [92].
The photocoupling reaction showed excellent regioselectivities. For instance, uracil was decorated on
the 2-position of the indole of the tryptophan derivative.
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Scheme 45. C(sp2)–H heteroarylation of Trp, Tyr, and His derivatives with 5-bromouracil.

Later in 1989, Celewicz’s group has developed a photochemical coupling reaction between
tryptophan and 5-bromo-1,3-dimethyluracil to produce adducts in 52% yield (Scheme 46) [93].
Interestingly, other than the 2-functionalized product, a previously unreported coupling product was
characterized to be tryptophan with uracil on the 7-position of the indole. In addition, the reaction
exhibited excellent regioselectivities with alkyl substituents on the 6-position of the uracil, albeit the
poor reactivities.
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3. C–N Formation

Although significant progress has been made in the realm of photo-mediated C–C formation of
amino acids, the C–H nitrogenation reactions are also investigated for the practical use of the azido
group [94] and the frequent occurrence of the amie or amide structure in the organic molecules [95].

3.1. C(sp3)–N Formation

In 2016, Chen’s group reported an example of C(sp3)–azidation of leucine-containing dipeptides
with azidoiodane in moderate yields under the photocatalysis by [Ru(bpy)3]Cl2 (Scheme 47) [96].
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A direct amination on the α-position of amino groups of amino acids under the visible-light
mediation has been developed by Muñiz’s group [97]. Proline (Scheme 48a), phenylalanine, and leucine
(Scheme 48b) derivatives were regioselectively aminated with triflamide (TfNH2), a catalytic amount
of molecular iodine, and PhI(O2CAr)2 in 59–68% yields. Mechanically, ArCO2I was formed from
PhI(O2CAr)2 and molecular iodine [98], which subsequently reacted with TfNH2 to generate the
N-iodinated species. Photo-induced homolysis and the following HAT process would yield the
iodo-substituted amino acids. An iodine(III) derivative was formed through an alkyl iodide oxidation
phase to react with TfNH2 to generate the final amination product and the electrophilic (ArCO2)2IH
for the next catalytic cycle (Scheme 48c).
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3.2. C(sp2)–N Formation

In 2014, Lee’s group has realized the C–H imidation of tyrosine derivatives via visible-light-induced
photocatalysis with N-chlorophthalimide (Scheme 49) [99]. Interestingly, the protecting groups on the
phenols have a great influence on the regioselectivities in this reaction. The methyl group delivered
products in 7:1 rr, while the acetyl group delivered products just in 1:1 rr.

Different from Lee’s work on C–H imidation reactions, in 2019, Leonori’s group achieved the
photocatalytic C–H amination of phenylalanines using alkyl amines, which converted to N-chloramines
in situ by the assistance of N-chlorosuccinimide (NCS) [100]. In this work, amination was not
only applied to phenylalanines (65–98% yields) (Scheme 50a), but also tetrapeptides containing
phenylalanines (53–63% yields) (Scheme 50b). Moreover, 4-azidepiperidine was compatible in the
amination process and showed better regioselectivities than cyclobutylamine, providing promising
chances for further functionalization.
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Scheme 50. C(sp2)–H amination of Phe derivatives (a) and Phe-containing peptides (b) with
alkyl amines.

Recently, Nemoto and Nakajima’s group employed simple phthalimide, PhI(OAc)2, and molecular
iodine to form N-iodophthalimide in situ to realize the direct metal-/photocatalyst-free C–H imidation
(Scheme 51) [101]. According to the broad absorption in the UV-vis region of N-iodophthalimide
covering 400 nm and the theoretical calculations based on density functional theory (DFT),
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N-iodophthalimide was proposed to absorb the light to generate the phthalimidyl radical for the
following process.Molecules 2020, 25, x FOR PEER REVIEW 28 of 41 
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Scheme 51. C(sp2)–H imidation of Tyr derivatives with phthalimide.

4. C–S Formation

C–S bonds are privileged structures that are commonly found in natural products [102], drugs [103],
and semiconductors [104]. For this reason, the construction of the C–S bond has also been widely
researched due to the values of organosulfur compounds [105].

4.1. C(sp3)–S Formation

Inspired by the intramolecular HAT reactions to functionalize the unactivated C(sp3)–H bonds,
Alexanian’s group reported an intramolecular C(sp3)–H dithiocarbamylation of valine in which the
dithiocarbamate worked as the transfer group (Scheme 52) [106]. Importantly, the dithiocarbamate
group is an attractive pharmacophore with versatile pharmacological activities, such as antimicrobial,
antifungal, antiviral, and antiparasitic activities, as well as a multifunctional precursor for allylation,
deuteration, azidation, and thiolation [107,108].
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Scheme 52. Intramolecular C(sp3)–H dithiocarbamylation of Val derivative.

4.2. C(sp2)–S Formation

A C(sp2)–H sulfenylation of tryptophan with thiophenol under the photocatalysis of
[Ir{dF(CF3)ppy}2(dtbpy)]PF6 was described by Gustafson’s group in 2019 (Scheme 53) [109].
The mechanism was similar to that of the phosphonylation of tryptophan, via the attack by a
nucleophilic sulfur radical, which was supported by the cyclic voltammetry and density functional
theory calculations.
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5. C–O Formation

C–H oxidation has been continuously investigated for its wide involvement in the biosynthetic
pathways [110] and natural products’ total synthesis [111,112].
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In 2011, Long’s group has developed a photo-hydroxylation reaction of cysteine derivatives
with tetraphenylporphyrin (TPP) as the photosensitizer and molecular oxygen as the oxygen source
(Scheme 54) [113]. Several thiohemiacetals were obtained in moderate to good yields under the
irradiation of a 500 W halogen lamp. Additionally, the thiohemiacetals could be easily further
transformed to versatile bicyclic and even monocyclicβ-lactams (the nucleus of penicillins), which might
have promising applications for potential antibacterial activities.
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Scheme 54. C(sp3)–H hydroxylation of Cys derivative.

Hydroxyl perfluorobenziodoxole (PFBl–OH) was employed as the oxygen source in the ruthenium
catalyzed C(sp3)–H hydroxylation reaction of valine and leucine derivatives and peptides under the
irradiation of 23 W CFL (Scheme 55) [114]. Interestingly, the hydroxylation of leucine derivatives would
deliver lactone products in moderate yields after the spontaneous intramolecular transesterification
reactions. Notably, PFBl–OH showed better results than other Bl–OH analogs for its enhanced
electrophilicity of the perfluorobenziodoxole radical, which was more reactive to abstract the H atom
from the substrates.
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Scheme 55. C(sp3)–H hydroxylation of Val (a) and Leu (b) derivatives with hydroxyl
perfluorobenziodoxole (PFBl–OH).

Tiefenbacher’s group also synthesized the lactone from the valine derivative under the irradiation of
a white LED lamp (Scheme 56) [115]. The tandem reaction underwent the bromination, photo-mediated
bromide transfer, intramolecular cyclization, and hydrolysis reactions, involving the brominated valine
derivative as the key intermediate.
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Scheme 56. C(sp3)–H hydroxylation of Val derivative through tandem bromination/atom
transfer/cyclization.

Water has also been applied in the photocatalytic hydroxylation reaction of the leucine derivative
by Ragains’s group (Scheme 57) [116]. The Tzo group designed by Baran’s group [117] was decorated
on the leucine derivative to undergo the acidification, dediazoniation, H-abstraction, oxidation,
nucleophilic attack by water molecule, and the final intramolecular transesterification to give the
lactone product.
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6. C–P Formation

Phosphorus-containing organic compounds occupy an important place in pharmaceuticals [118],
catalysts [119] and materials [120], resulting in the great demand of methods for the introduction of
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the phosphine [121]. Among the methods, the visible-light mediated direct C–H phosphorization has
practical advantages for the chemical economy [122].

In 2017, König’s group developed a direct C–H phosphonylation of electron-rich heteroarenes
through the photoredox catalysis of [Ru(bpz)3](PF6)2 and applied the method into the tryptophan in
61% yield (Scheme 58) [123]. In this reaction, triethyl phosphite attacks the radical cation of tryptophan,
and then hydrogen atom abstraction by SO4

•− occurred to form the phosphonium intermediate. Finally,
the rearrangement of phosphonium and SO4

2− yielded the phosphonylated tryptophan.
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Scheme 58. C(sp2)–H phosphonylation of Trp derivative with triethyl phosphite.

7. C–X Formation

Halogen atoms can be found in plentiful bioactive molecules [56]. Additionally, the incorporation of
the halogen atoms into the lead compounds could significantly increase the drug-like properties [124,125].

7.1. C–H Fluorination

Selectfluor, as a commonly used fluorination reagent, has been widely investigated in the
photo-induced C(sp3)–fluorination of amino acids. Leucine derivatives could be fluorinated at the
γ-position, catalyzed by anthraquinone (AQN) [126], acetonephenone [127], and iridium complex [77],
under the irradiation of the visible light (Table 1, entries 1–3). Additionally, Hamashima and Egami’s
group reported a catalyst-free fluorination of leucine (Table 1, entry 4), phenylalanine (Table 1, entry 7),
and valine (Table 1, entry 8) derivatives under the irradiation of an LED (365 nm) [128]. Meanwhile,
phenylalanine could also be photo-fluorinated at the β-position catalyzed by 9-fluorenone (Table 1,
entry 5) [129] and 1,2,4,5-tetracyanobenzene (TCB) (Table 1, entry 6) [130] in moderate yields. Moreover,
Leonori and coworkers also applied the method to the isoleucine (Table 1, entry 9) and lysine (Table 1,
entry 10) derivatives, albeit with unsatisfied efficiency [77].
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Table 1. C(sp3)–H fluorination of amino acids with Selectfluor.
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Lectka’s group reported a phenylalanine-specific visible-light-sensitized, 5-dibenzosuberenone-catalyzed
benzylic C(sp3)–H fluorination of phenylalanine-containing peptides with Selectfluor (Scheme 59) [131].
Interestingly, the reaction exhibited excellent intramolecular selectivity but unexpected low intermolecular
selectivity, which may be ascribed to a product-determining step after the rate-determining step.
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In 2014, Britton’s group developed a photocatalytic fluorination reaction of leucine and
isoleucine derivatives with N-fluorobenzenesulfonimide (NSFI) as the mild fluorine atom transfer
reagent, which was catalyzed by the easily prepared tetrabutylammonium decatungstate (TBADT)
(Scheme 60a) [132]. Based on this work and the study on the uniquely susceptible property to C–H
abstraction [133–135], Britton, Schaffer, and coworkers [136] further investigated the photocatalytic
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fluorination reaction of Leu-containing peptides, and 37 examples of reaction gave high yields up to
87%. Importantly, the isotope 18F could also be successfully labeled in 10 peptides, which had great
positive impact on the discovery of radiolabeled peptides as imaging agents and peptide-based drugs
(Scheme 60b).
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7.2. C–H Chlorination and Bromination

In 2016, Chen’s group developed the visible-light-promoted halogenation reactions with the
Zhdankin azidoiodane reagent and ruthenium catalyst [96]. When LiCl was used as the additive,
the dipeptide of leucine could be chlorinated at the γ-position in moderate yield (Scheme 61a).
While when the additive was altered to nBu4NBr, the bromination product of leucine derivative could
be achieved in 71% yield (Scheme 61b).

Molecules 2020, 25, x FOR PEER REVIEW 33 of 41 

 

In 2014, Britton’s group developed a photocatalytic fluorination reaction of leucine and 

isoleucine derivatives with N-fluorobenzenesulfonimide (NSFI) as the mild fluorine atom transfer 

reagent, which was catalyzed by the easily prepared tetrabutylammonium decatungstate (TBADT) 

(Scheme 60a) [132]. Based on this work and the study on the uniquely susceptible property to C–H 

abstraction [133–135], Britton, Schaffer, and coworkers [136] further investigated the photocatalytic 

fluorination reaction of Leu-containing peptides, and 37 examples of reaction gave high yields up to 

87%. Importantly, the isotope 18F could also be successfully labeled in 10 peptides, which had great 

positive impact on the discovery of radiolabeled peptides as imaging agents and peptide-based 

drugs (Scheme 60b). 

 

Scheme 60. C(sp3)–H fluorination of Leu and Ile derivatives (a) and Leu-containing peptides (b) with 

N-fluorobenzenesulfonimide (NSFI). 

7.2. C–H Chlorination and Bromination 

In 2016, Chen’s group developed the visible-light-promoted halogenation reactions with the 

Zhdankin azidoiodane reagent and ruthenium catalyst [96]. When LiCl was used as the additive, 

the dipeptide of leucine could be chlorinated at the γ-position in moderate yield (Scheme 61a). 

While when the additive was altered to nBu4NBr, the bromination product of leucine derivative 

could be achieved in 71% yield (Scheme 61b). 

 

Scheme 61. C(sp3)–H chlorination (a) and bromination (b) of Leu derivatives with Zhdankin reagent. Scheme 61. C(sp3)–H chlorination (a) and bromination (b) of Leu derivatives with Zhdankin reagent.

In 2020, Roizen’s group installed a N-chlorosulfamide group to the valine derivative (Scheme 62) [137].
The substrate could proceed with chlorine-atom abstraction, 1,6-HAT, and the final chlorination process to
finish the formal 1,6-chlorine-atom transfer reaction.
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8. Conclusions

This review has described the direct synthesis of NPAAs from PAAs through the photo-mediated
C–H functionalization reactions. Furthermore, on account of the mild conditions, high competence,
broad functional group tolerance, and great energy-saving performance, photo-mediated C–H
functionalization reactions have been considered as powerful methods to modify peptides with
plentiful and valuable functional groups. Hopefully, the elegant pioneering works reviewed here
would serve as a solid base and provide guidance to the development of more photoreactions to deliver
more versatile bioactive functionalized amino acids and peptides under mild conditions.
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