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Many problems of modern genetics and functional genomics require the assessment 
of functional effects of sequence variants, including gene expression changes. Machine 
learning is considered to be a promising approach for solving this task, but its practical 
applications remain a challenge due to the insufficient volume and diversity of training 
data. A promising source of valuable data is a saturation mutagenesis massively parallel 
reporter assay, which quantitatively measures changes in transcription activity caused 
by sequence variants. Here, we explore the computational predictions of the effects of 
individual single-nucleotide variants on gene transcription measured in the massively 
parallel reporter assays, based on the data from the recent “Regulation Saturation” 
Critical Assessment of Genome Interpretation challenge. We show that the estimated 
prediction quality strongly depends on the structure of the training and validation data. 
Particularly, training on the sequence segments located next to the validation data results 
in the “information leakage” caused by the local context. This information leakage allows 
reproducing the prediction quality of the best CAGI challenge submissions with a fairly 
simple machine learning approach, and even obtaining notably better-than-random 
predictions using irrelevant genomic regions. Validation scenarios preventing such 
information leakage dramatically reduce the measured prediction quality. The performance 
at independent regulatory regions entirely excluded from the training set appears to be 
much lower than needed for practical applications, and even the performance estimation 
will become reliable only in the future with richer data from multiple reporters. The source 
code and data are available at https://bitbucket.org/autosomeru_cagi2018/cagi2018_
regsat and https://genomeinterpretation.org/content/expression-variants.
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iNTRoDUCTioN
Recent progress in medical genetics has drawn attention to sequence 
variants in the regulatory regions that can alter transcription factor 
binding (Deplancke et al., 2016), affect cell identity (Liu et al., 2017), 
and bring about disorders like cancer (Killela et al., 2013) and 
schizophrenia (Fabbri and Serretti, 2017). Yet, the genetics approach, 
the genome-wide association study, is somewhat limited for it is not 
always able to select the causal variant from several genetically linked 
mutations. Genome-Wide Association Studies identify segments 
that usually contain many sequence variants, of which only one or a 
few may be directly involved in the development of a disorder. This 
puts forward the technologies that measure the impact of individual 
sequence variants directly. High-throughput functional assays 
(Ipe et al., 2017), such as massive parallel reporter assays (MPRA) 
(Kwasnieski et al., 2012; Melnikov et al., 2012; Kheradpour et al., 
2013; Mogno et al., 2013; Smith et al., 2013; White et al., 2013) or 
alternative methods (Canver et al., 2015; Rajagopal et al., 2016) such 
as STARR-Seq (Arnold et al., 2013) yield direct measurements of the 
transcriptional response caused by sequence variants.

Despite fast progress in experimental technologies, current 
methods cannot test all the variants of interest at the whole genome 
level. The additional complication comes from the fact that a 
regulatory genomic variant normally affects transcription activity 
only in a small number of cell types (Visser et al., 2012) or in 
particular conditions. Thus, only a small fraction of single-nucleotide 
variants (SNVs) can be directly assessed for their functional effect. 
Generalization of the limited experimental data for more cell types or 
functional conditions can be achieved by computational approaches 
(Shi et al., 2018), e.g., the machine learning methods that can predict 
the estimated functional impact of the individual variants located in 
different regulatory elements in the human genome in silico.

The 2018 Critical Assessment of Genome Interpretation (CAGI) 
initiative included the “Regulation Saturation” challenge, the 
objective of which was to predict the functional effect of SNVs by 
using the data of the saturation mutagenesis MPRA (Shigaki et al., 
2019). In this experiment, nine promoters and five enhancers were 
cloned into reporter constructs, with random changes in functional 
sequences introduced by the PCR-based saturation mutagenesis. The 
regulatory impact of particular SNVs was estimated from expression 
of reporters with different variants of mutated regulatory sequences.

Here, we show that the strategy of data splitting between the 
training and validation datasets by slicing the existing regions 
into several adjacent segments, which was used in the challenge, 
is biased by the information leakage from the local context. This 
information leakage allows reproducing the prediction quality of 
the best CAGI challenge submissions with a fairly simple machine 
learning approach. Finally, we discuss the actual reliability of the 
prediction and its possible improvement.

MeThoD

overview of the initial Data and the 
Challenge Setup
The CAGI “Regulation Saturation” challenge data (Shigaki et al., 
2019) included expression changes observed for more than 17 

thousand induced SNVs within regulatory regions using reporters 
constructed from 5 human enhancers (IRF4, IRF6, MYC, SORT1, 
ZFAND3), and 9 promoters (F9, GP1BB, HBB, HBG, HNF4A, 
LDLR, MSMB, PKLR, TERT), each tested in a particular cell type 
(TERT was tested in two cell types). For all the regions, 25% of 
the data were available for model training and 75% for validation.

From the experimental data, for each SNV, two values were 
calculated from the gene expression change: the confidence 
score, i.e., the general measure of the regulatory potential, and the 
direction of expression change (upregulation or downregulation 
of the reporter expression).

According to the data providers, SNVs that significantly 
changed gene expression and exhibited the confidence of no 
less than 0.1 were considered regulatory. The expression change 
direction, in turn, could equal 1 or -1 for up- and downregulating 
SNVs, respectively, or 0 for those not passing the confidence 
threshold. The predictions from the CAGI challenge included 
both the confidence score (a regression problem) and the 
expression change direction (a multiclass classification problem). 
The average class balance between significant regulatory SNVs 
(confidence ≥ 0.1) and nonsignificant SNVs (confidence 
< 0.1) was approximately 2:7. Detailed information on the 
experimental data can be found in (Shigaki et al., 2019) and at 
the CAGI “Regulation Saturation” challenge webpage (https://
genomeinterpretation.org/content/expression-variants).

As an additional validation dataset, we used the independent 
MPRA data on SNV expression effects for ALDOB and ECR11 
regulatory regions (Patwardhan et al., 2012). The expression 
change P-values were capped and subjected to log-transformation 
to obtain confidence scores, as in the CAGI challenge data.

Data Splitting Setup
The initial data splitting strategy of the CAGI challenge was the 
following. Approximately 25% of the SNVs from each reporter 
were allocated for training and 75% for model validation. The 
training data were arranged as a series of segments alternating with 
validation data and more or less distributed uniformly along each 
reporter with the total volume proportional to the reporter length. 
For each reporter, the training data were distributed into multiple 
16 base pair long blocks with spacers in between that were used 
as the validation dataset (Figure 1A). For each particular training 
block, the confidence score and the direction of the expression 
change were provided in each position for each of the three possible 
nucleotide substitutions. The complete data for all the regulatory 
regions were made publicly available after the challenge. On these 
data, we used the two additional train/validation splitting setups in 
our analysis. First, we used a single continuous block per reporter 
with the block length equal to 25% of the corresponding reporter 
length (Figure 1B). Second, we varied block lengths from 1 to 64 
base pairs (Figure 1C) and sampled the blocks from each reporter 
in a uniform manner, maintaining the 25/75 ratio between the 
training and validation data.

Prediction Quality Measures
The challenge setup and existing submitted predictions allowed 
us to assess the prediction performance of both confidence 
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scores (continuous scale from 0 to 1, the regression problem) 
and expression change directions (-1, 0, or 1, the three-class 
classification problem). We computed several prediction 
quality measures.

Quality measures for the confidence score prediction (the 
regression problem): Mean absolute error (MAEc), mean 
squared error (MSEc), mean error (MEc), Pearson (PCCc), and 
Spearman (SCCc) correlation coefficients between the predicted 
and experimental confidence scores. Quality measures for 
the expression change direction prediction (the multiclass 
classification problem): Pearson (PCCd) and Spearman (SCCd) 
correlation coefficients between the predicted and experimental 
expression change direction values.

We also performed binary classification (regulatory SNVs 
versus neutral SNVs, i.e., combined 1 and -1 classes versus 0 class) 
by setting discrimination thresholds for predicted confidence 
scores (i.e., solutions of the regression problem). We assumed 
that the regulatory SNVs of 1 and -1 classes should receive higher 

predicted confidence values, while the neutral SNVs of the 0 
class (no significant expression change) should receive lower 
predicted confidence values. We computed the areas under the 
curves for the receiver operating characteristic (AUCROC) and 
precision-recall curve (AUPRC) for this binary classification and 
used these quantities as primary measures of prediction quality 
throughout the study.

Machine Learning framework
For the primary analysis, we used a standard software 
implementation of a nontweaked random forest (Boulesteix 
et al., 2012) from the scikit-learn package (Pedregosa et al., 2011). 
With 500 estimators, the other parameters were set to default 
values. As we split the data only into two parts, the training and 
validation datasets, we did not perform any hyperparameter 
tuning to avoid overfitting (Cawley and Talbot, 2010). Possible 
redundancy of the features should have no significant effect on 
the random forest classifier. Three different data sources were 
used for feature generation: sequence motif analysis, functional 
genomics data, and neuron values from the last layer of the 
DeepSea (Zhou and Troyanskaya, 2015), the deep learning-
based algorithm for predicting the chromatin effects of sequence 
alterations at single-nucleotide resolution.

Features Derived From Sequence Motif Analysis
2,168 features were generated by applying PERFECTOS-
APE (Vorontsov et al., 2015) for all SNVs in each reporter. 
PERFECTOS-APE estimates the impact of nucleotide 
substitutions within transcription factor binding motif 
occurrences, which are relevant in terms of putative regulatory 
effects. We used mononucleotide and dinucleotide (771 + 313) 
position weight matrices from HOCOMOCO collection v11 
representing binding motifs of human transcription factors 
(Kulakovskiy et al., 2018). Two floating-point values were 
obtained and log-transformed for each SNV: P-value of the best 
binding motif occurrence overlapping the reference allele, and 
P-value fold change for the alternative allele. Conversion from 
position weight matrix scores to motif P-values was performed 
with precomputed thresholds-to-P-value dictionaries available in 
HOCOMOCO.

Features Derived From Genomic Tracks
5,857 features were generated from genomic tracks representing 
different types of experimental data: ChIP-Seq, ATAC-Seq, and 
DNase-Seq, providing information regarding transcription 
factor binding and open chromatin regions in different cell types. 
Genomic coordinates of reporters that were used for feature 
extraction are provided in Supplementary Table 1. UCSC 
liftOver (Meyer et al., 2013) was used to convert coordinates 
between hg19 (CAGI default, DNase-Seq data) and hg38 (ATAC-
Seq, ChIP-Seq) genome assemblies. The floating-point values 
were linearly scaled to fit the [0,1] interval using scikit-learn 
MinMaxScaler separately for each reporter. For each genomic 
feature and each reporter, mean nonnormalized values were 
saved and used as additional 5,857 features (constant for all SNVs 
in each reporter).

fiGURe 1 | Data separation into training and validation subsets. A single 
reporter is shown, the scheme was identical for all reporters. Yellow bars: 
training subset, brown bars: validation subset. (A) Original CAGI setup. For 
each reporter, the training subset of single-nucleotide variants (SNVs) (25% 
from total) consists of multiple 16bp blocks spanning over neighboring 
reporter coordinates. (B) Continuous blocks covering 25% of reporter length 
for each reporter with a varying shift from the reporter 5’ end. (C) Training 
data with varying block lengths from 1 to 64bps.
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GTRD Chip-Seq-Based Features
5,703 features were generated from the ChIP-Seq read alignments 
obtained from the Gene Transcription Regulation Database 
(GTRD) (Yevshin et al., 2017; Yevshin et al., 2018). The ChIP-
Seq alignments were processed in a uniform manner: the reads 
were extended to 300 bp, and the extended read coverage at 
each genomic position (i.e., for each SNV) was calculated using 
DeepTools (Ramírez et al., 2014).

Features Generated From ENCODE Dnase-Seq and ATAC-
Seq Data
106 features were generated from 53 consolidated DNase 
accessibility profiles provided by the Roadmap Epigenomics 
project (Kundaje et al., 2015). The features were extracted from 
the signal (bigwig) profiles of fold change and p-value tracks. 
Similarly, 48 features were generated from ENCODE (Dunham 
et al., 2012) ATAC-Seq fold change signal profiles (bigwig).

Features Derived From the Deepsea Neural Network
DeepSEA is an artificial neural network trained to predict the 
results of more than 900 ENCODE experiments for each position 
in the human genome from sequences of 1000-nucleotide 
windows surrounding the target genomic positions. DeepSEA 
is considered to learn and integrate transcription factor binding 
motifs, including composite elements from transcription factor 
interactions, and other aspects of the regulatory grammar. While 
direct predictions of DeepSEA do not allow proper classification 
of MRPA results, DeepSEA provides useful features that notably 
improve the next layer of the machine learning application. 4,595 
features were generated by the DeepSEA (Zhou and Troyanskaya, 
2015). We used 919 neuron outputs of the last DeepSEA layer 
for the reference allele, 919 outputs for the alternative allele, 919 
values of differences between neuron outputs for the reference 
and alternative alleles, as well as E-values and log fold changes of 
the difference.

Unrelated Features From Nonrelevant Genomic 
Regions
To roughly estimate the contribution of information leak from 
genomic segments of training data to neighboring validation 
segments, we made a set of irrelevant DeepSEA features 
extracted from alien genomic regions using the same training/
validation layout. There were no reporters on chromosome 3, 
thus we generated the irrelevant features by extracting chr3 data 
using the reporter coordinates on the correct chromosomes. 
The only exception was IRF6 reporter, which was located at the 
chromosome 1 (which is longer than chromosome 3) and out of 
chr3 expansion, so we performed modulo operation with chr3 
length as the second argument. The exact coordinates are provided 
in Supplementary Table 1. By construction, the resulting features 
carry no actual biological information from the target reporters.

Source Code and Features Data Availability
The source code and features data are available at the BitBucket 
repository (https://bitbucket.org/autosomeru_cagi2018/
cagi2018_regsat). The actual data from the saturation 
mutagenesis massively parallel reporter assays are available at 

the CAGI challenge website (https://genomeinterpretation.org/
content/expression-variants).

ReSULTS

Deepsea Provides Sufficient and 
Necessary features for the Top-
Performing Solution
Several top-performing submissions for the CAGI challenge 
(Shigaki et al., 2019) used DeepSEA (Zhou and Troyanskaya, 
2015) to compute the features for classifiers based on decision 
trees. To clarify the contribution of DeepSEA features to the top-
level predictions of variant effects in the original CAGI setup, 
we compared the performance of newly built random forest 
classifiers with CAGI submissions. Diverse performance measures 
showed a very consistent result: the random forest model atop the 
DeepSEA-only features was the top-performing solution without 
any hyperparameter tweaking (Figure 2, Supplementary Table 2).

We did not perform any comprehensive feature selection, but 
checked a few fixed combinations of features sets (Supplementary 
Table 2) and used two classifiers as the baseline for the further 
analyses: the top-performing DeepSEA-based approach, 
RF(DeepSEA), and the classifier based on genomic features 
and sequence motif analysis, RF(Genomic,Motifs), which 
demonstrated good but not the top-level prediction performance. 
Of note, DeepSEA-processed features were essential and the only 
necessary to reach the top performance level.

Prediction Performance Achievable for a 
Reporter Strongly Depends on the Training 
Data from the Same Reporter
In the original challenge setup, the training data included fragments 
of data from each reporter (see Method, Figure 1). Thus, predictions 
for a particular reporter used the data from known regions of the 
same reporter. To investigate to what extent the training data setup 
contributed to the model performance, we made up a “holdout 
model” for each reporter. The holdout model for a particular target 
reporter used all the data from the baseline model for training but 
did not include the SNVs from the target reporter (Figures 3A–D). 
Next, we estimated the resulting performance of such models 
for each target reporter and realized that the performance of the 
holdout models drastically degraded for all reporters as compared to 
the baseline models. There were two exceptions worth mentioning.

First, the MYC reporter did not follow the global trend. This 
reporter contained only a few regulatory SNVs (86 of 1790), 
thus leading to unstable AUCROC/AUPRC values. Second, the 
prediction for TERT reporters did not change upon a single 
holdout. Indeed, data for TERT were obtained in two cell types, 
and holdout of data from a single cell type could be compensated 
for by the information on the same sequence tested in the second 
cell type. Holding out both cell types resulted in reduced model 
performance similar to that for the other reporters with the target 
constructions held out.

To verify that the performance reduction was not caused by 
the reduced training data size, we used the complete data from 

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 1078

https://bitbucket.org/autosomeru_cagi2018/cagi2018_regsat
https://bitbucket.org/autosomeru_cagi2018/cagi2018_regsat
https://genomeinterpretation.org/content/expression-variants
https://genomeinterpretation.org/content/expression-variants
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Context Hampers Regulatory Variants PredictionPenzar et al.

5

all reporters for training (rather than 25% as in the original 
setup), excluding the target reporter. On average, the increased 
training data volume slightly improved the prediction quality 
(Figures 3E–H) but did not compensate for the effects from 
holding out the data from the target reporter. Thus, the 
inclusion of SNVs from the target reporter was critical for the 
models’ performance.

These results agree well with the data from dimensionality 
reduction by UMAP (McInnes et al., 2018) shown in 
Supplementary Figure 1, where regulatory and non-regulatory 
SNVs are indistinguishable, but SNVs belonging to particular 
reporters form clear well-defined areas. Particularly, SNVs of the 
MYC reporter form two separate clusters, which might be related 
to its special behavior in holdout tests.

Assessing the Contribution of Local Context
There can be two alternative explanations of the major 
contribution of the training data from the target reporter into the 

prediction performance. Known SNVs from the target reporter 
may either allow prioritizing the features relevant to a particular 
reporter or provide an information leakage due to the fact that 
regulatory function is performed by a sequence segment rather 
than an isolated nucleotide, and such segment has characteristic 
composition of k-mers (Mariño-Ramírez et al., 2004), e.g. 
corresponding to a local arrangement of transcription factor 
binding sites.

The original CAGI setup of the training-validation data 
(Figure 1A) provides “sneak peeks” at different regions of 
each reporter, thus possibly revealing key regulatory sites in 
the surrounding sequence. To validate this hypothesis, we 
used continuous blocks of 25% of the length of each reporter 
to construct a new training dataset (Figure 1B) and placed 
the blocks at 0–75% from the 5’ end of each reporter, with the 
remaining data used for validation. For each reporter, we then 
computed the difference in AUCROC and AUPRC between the 
new model and the baseline solution. The holdout model was 
taken as a reference.

fiGURe 2 | The performance of different models predicting regulatory single-nucleotide variant (SNVs) of the CAGI “Regulation Saturation” challenge. Orange dots, 
Random Forest classifier using DeepSEA features. Blue dots, Random Forest classifier using features based on genomic data and sequence motif analysis. Grey 
dots, CAGI challenge submissions. (A, B) Different performance measures for prediction of expression direction (d) and confidence scores (c): Pearson (PCCc and 
PCCd) and Spearman (SCCc and SCCd) correlation coefficients, area under curve for receiver operating characteristic (AUCROC), area under precision-recall curve 
(AUPRC), mean absolute error (MAEc), mean squared error (MSEc), and mean error (MEc). (C, D) Receiver operating characteristics and precision-recall curves.
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The results are presented in Figure 4: the single-block design 
of training data degraded the performance of the models to 
the “holdout” level. Importantly, the relative placement of the 
training data block (i.e., the shift from the 5’ end of each reporter 
measured as the percentage of the reporter length, Figure 1B) 
did not affect the overall quality reduction. Furthermore, by 
varying the block size (Figure 1C) and maintaining the training 
data size (i.e., by composing the required volume of training 
data from multiple fixed-size non-overlapping blocks at random 
positions), we observed that shorter blocks resulted in higher 
model performance (Figures 4E, F), probably due to a more 
uniform sampling of each reporter. Notably, the original CAGI 
setup used blocks of 16bps. In the case of training with random 
blocks sampling, we observed a similar performance for shorter 
blocks of 4bps. We believe this may come from the specific regular 
sampling of blocks and spacers in the original CAGI setup, where 
the spacers between the blocks were selected in a non-random 
regular fashion providing pieces of information from all regions 
of each reporter.

All in all, this confirms that there is an information leakage 
from known regulatory SNVs included in the training data, 
which is related to the local context of the regulatory regions.

interdependencies of Neighboring 
Reporter Segments Allow for Good 
Predictions With irrelevant features
The grammar of regulatory regions makes neighboring positions 
in regulatory regions dependent, e.g., if they are localized 
within a particular transcription factor binding site. This is 
also reflected in the distribution of regulatory SNVs along 
reporters, with many SNVs with significant expression effects 
being clustered together (Shigaki et al., 2019). Thus, a locally 
correlated feature may allow predicting SNV effects given the 
training data are evenly distributed within a particular reporter, 
as in the original CAGI setup. That is, any nonlocal feature used 
in the setup, in which the mutual information between the 
training and validation data is not negligible, will have a great 
chance to induce information leakage.

To validate this hypothesis, we used irrelevant features 
extracted from the single chromosome (chr3) for all reporters (see 
Methods). This procedure removes any meaningful information 
conveyed by features but retains local intercorrelation of feature 
values for neighboring variants. One could expect a huge 
reduction in performance, comparable to that of a “random 
guess” classifier. However, Random Forest atop of irrelevant 

fiGURe 3 | Prediction performance drops as the data from target reporters are excluded from training. Training on the complete data improves prediction quality, 
but cannot compensate for the holdout of the data for single-nucleotide variants (SNVs) from the target reporter. Green dots, the baseline models trained in the 
CAGI setup. Grey dots, the CAGI submissions. Red dots, the models trained in the CAGI setup with the data from the target reporter held out. Violet dots, the 
performance for the TERT target reporter with the data from both TERT assays held out from training. Yellow dots, the models trained with the complete data from 
all reporters excluding the target reporter. Reporter names are given at the X-axes. (A, B) Area under precision-recall curve (AUPRC) and area under curve for 
receiver operating characteristic (AUCROC) for Random Forest with DeepSEA features (baseline and holdout models). (C, D) AUPRC and AUCROC for Random 
Forest with Genomic signal and sequence motif features (baseline and holdout models). (e, f) AUPRC and AUCROC for Random Forest with DeepSEA features 
(baseline, holdout, complete training models). (G, h) AUPRC and AUCROC for Random Forest with Genomic signal and sequence motif features (baseline, holdout, 
complete training models).
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features performed quite well reaching AUCROC of 0.75 and 
AUPRС of 0.47 (Supplementary Figure 2).

To estimate the practical usability of models directly trained 
on CAGI MRPA data, we used independent data on SNVs tested 
in ALDOB/ECR11 reporters (Patwardhan et al., 2012). Two 
baseline solutions, RF(DeepSEA) and RF(Genomic,Motifs), 
trained either on the CAGI “blocks” setup and or on the complete 
CAGI data, were used to predict SNV effects in the independent 
validation dataset.

The results appear to be rather discouraging (Table 1), with 
the DeepSEA-based solution performing poorly if trained on 
the CAGI blocks setup and even worse if the complete CAGI 
data was taken. The model based on genomic signals and motif 
analysis showed moderately better performance, improving its 
results on ALDOB/ECR11 validation dataset with the increased 
training data amount. However, in holdout tests, this model 

displayed generally weaker performance than that of DeepSEA 
solution, thus complicating the choice of the most reliable 
approach, since the validation dataset contained data for only 
two reporters. A general solution may appear with increased 
volume of experimental data, e.g. with multiple reporters tested 
in a single cell type in a single experiment, thus allowing direct 
and more robust cross-validation.

DiSCUSSioN
Assessment of a regulatory effect is an essential step in the 
annotation of SNVs, important both for understanding deeper 
functional consequences of somatic mutations (Kalender Atak 
et al., 2017) and SNP allele effects. Computational approaches 
to functional annotation require training data sets, and MRPAs 
could become one of the key data sources. MPRA and machine 
learning are two recent technologies, the power of which is yet 
to be harnessed for the progress of genetic studies, particularly 
in regulatory genomics. MPRA is an expensive method, and 
only a limited number of variants or genomic regions can be 
studied in an experiment directly. Open challenges like CAGI 
can facilitate the application of machine learning techniques 
and suggest the most fruitful setup for the design of MPRA 
experiments to obtain the most suitable information for further 
reliable predictions.

fiGURe 4 | (A-D) Training data of a single continuous block per reporter degrade performance of the prediction regulatory single-nucleotide variants 
(SNVs). X-axis, locations of training data blocks relative to the 5' ends of the reporters. Y-axis, the difference in AUCROC and AUPRC values for each model 
versus the baseline. The holdout of SNVs from each reporter is shown for the reference. Boxplots aggregate data from all reporters. Random Forest using 
DeepSEA features: (A) AUCROC, (C) AUPRC. Random Forest using genomic data and sequence motif features: (B) AUCROC, (D) AUPRC. (e–f) Shorter 
blocks in training data improve models performance due to information leakage. Orange lines: Random Forest classifier using DeepSEA features. Blue 
lines: Random Forest classifier using features based on genomic data and sequence motif analysis. Solid lines show the mean and standard deviation of 10 
random samples with a fixed block length (X-axes). Dashed lines show the values reached in the original CAGI setup of the training data. (e) AUCROC values, 
(f) AUPRC values.

TABLe 1 | Area under precision-recall curve (AUPRC) and area under curve for 
receiver operating characteristic (AUCROC) reached by the baseline models on 
the independent validation dataset.

Model AUCRoC AUPRC

RF(DeepSEA), CAGI setup training 0.6 0.2
RF(DeepSEA), Complete training 0.5 0.15
RF(Genomic,Motifs), CAGI setup training 0.67 0.2
RF(Genomic,Motifs), Complete training 0.79 0.31
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In this study, we have confirmed that (1) the features 
preprocessed with machine learning methods (DeepSEA) 
provide a better basis for prediction of MPRA data than 
simple genomic signals and statistical quantities (motifs), 
and (2) the local context of selected regulatory regions has 
a significant contribution to MPRA-based training and 
validation, which apply strong constraints on possible 
training/validation layouts.

Eukaryotic regulatory regions are adapted to harbor 
diverse combinations of transcription factors under different 
conditions, bringing about complex statistical interactions 
between regulatory genetic variants and other features of the loci 
(Greenside et al., 2018) that affect machine learning applications. 
At this point, it is difficult to completely estimate the biological 
nature and scale of local grammar restrictions.

Surprisingly, the separation of the train and test data remains 
an open question in machine learning applications for genomics 
and sometimes might result in overoptimistic estimates of the 
prediction quality. A model with a large number of parameters 
could behave unexpectedly, indirectly deducing genomic 
coordinates from the given features and using only the data on 
the test loci, instead of employing genome-wide data for the 
prediction (Schreiber et al., 2019). In a recent notable publication 
(Xi and Beer, 2018), it was demonstrated that high performance 
of a model predicting enhancer-promoter interaction (Whalen 
et al., 2016) was explained by information leakage caused by 
inappropriate split of training and validation data.

By adopting the DeepSEA preprocessing, we estimated the 
extent to which the results of MPRA-based training could be 
used after allowing for the local grammar. The results might look 
disappointing, because the prediction appears to be significantly 
inflated due to the information leakage from the training SNVs 
in the neighboring segments. However, after holding out the data 
on a particular reporter, it is still possible to obtain better-than-
random predictions.

If a model achieves good prediction performance only for 
the train regions, with the actual experimental information, 
the practical value of such prediction is somewhat limited. 
Particularly, annotation of somatic mutations and eQTLs 
requires the predictions at genomic regions, in which prior 
information is unavailable. Thus, it is practically important to 
estimate the degree, to which MRPA-trained models are suitable 
for prediction of effects within non-tested regions.

Unfortunately, the small number of reporters in the study and 
high variability of the prediction quality between the reporters 
did not allow us to obtain a stable measure of the prediction 
accuracy. Particularly, the prediction for the MRPA dataset 
from another study, although performed at a small number of 
reporters, displayed contrasting results, in which the features 
based on simple statistical quantities outperformed the features 
based on DeepSEA preprocessing.

The organizers of the CAGI challenge have spent a notable 
effort to provide a proper evaluation of computational predictions 
by slicing the data from tested reporters in a zebra-like fashion 
between training and validation subsets. However, as we 
demonstrate here, this layout is not a sufficient counter-measure 

against the strong local interdependencies within particular 
regulatory regions, thus allowing the models to benefit from 
the information leakage. Training data of single blocks from 
each reporter (Figure 4) could be a better alternative in terms of 
models evaluation, but also might be overly restrictive in terms 
of diversity of training data. A more reliable way would be to test 
multiple reporters in a single cell type and to use the complete 
data from the independent reporters for training and evaluation.

To sum up, we believe that further careful exploration of 
MRPA-based training data setups is necessary as soon as more 
MRPA data would be accumulated and new powerful machine 
learning methods would be adopted. This would lead to improved 
stacking of machine learning models and allow better predictions 
in non-explored genomic regions.
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