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Abstract

Human T-cell lymphotropic virus type 1 (HTLV-1) is an infectious virus that has been linked

to adult T cell leukemia /lymphoma, aggressive CD4-T cell malignancy and many other

immune-related medical illnesses. So far, no effective vaccine is known to combat HTLV-1,

hence, the current research work was performed to design a potential multi-epitope-based

subunit vaccine (MEBV) by adopting the latest methodology of reverse vaccinology. Briefly,

three highly antigenic proteins (Glycoprotein, Accessory protein, and Tax protein) with no or

minimal (<37%) similarity with human proteome were sorted out and potential B- and T-cell

epitopes were forecasted from them. Highly antigenic, immunogenic, non-toxic, non-aller-

genic and overlapping epitopes were short-listed for vaccine development. The chosen T-

cell epitopes displayed a strong binding affinity with their corresponding Human Leukocyte

Antigen alleles and demonstrated 95.8% coverage of the world’s population. Finally, nine

Cytotoxic T Lymphocytes, six Helper T Lymphocytes and five Linear B Lymphocytes epi-

topes, joint through linkers and adjuvant, were exploited to design the final MEBV construct,

comprising of 382 amino acids. The developed MEBV structure showed highly antigenic

properties while being non-toxic, soluble, non-allergenic, and stable in nature. Moreover,

disulphide engineering further enhanced the stability of the final vaccine protein. Addition-

ally, Molecular docking analysis and Molecular Dynamics (MD) simulations confirmed the

strong association between MEBV construct and human pathogenic immune receptor TLR-

3. Repeated-exposure simulations and Immune simulations ensured the rapid antigen clear-

ance and higher levels of cell-mediated immunity, respectively. Furthermore, MEBV codon

optimization and in-silico cloning was carried out to confirm its augmented expression.

Results of our experiments suggested that the proposed MEBV could be a potential
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immunogenic against HTLV-1; nevertheless, additional wet lab experiments are needed to

elucidate our conclusion.

Introduction

The Human T-cell lymphotropic virus 1 (HTLV-1) is a part of family “Retroviridae”, subfamily

“Orthoretrovirinae” and genus “Deltaretrovirus” [1]. It is the first human retrovirus to be ever

reported, having been identified independently in the United States [2] and Japan [3] in 1980

and 1982 respectively. HTLV-1 contains an outer envelope that encloses single stranded, seg-

mented, and positive-sense RNA genome. It is an infectious virus that has infected nearly 15 to

20 million people globally [4, 5], however, the true number of affected individuals is undeter-

mined, due to inadequate epidemiological studies in the endemic areas [4]. HTLV-1 is wide-

spread in the United States, South America, Africa, Oceania, Caribbean and Japan [2, 6–8].

Increased age, polygamy and insecure sex are the potential risk factors of HTLV-1 infection,

whereas, transmission within humans occur due to injecting drugs via parenteral routes, blood

transfusion and breastfeeding [9–11].

HTLV-1 encompasses 8507 nucleotides in its genome, which like all other retroviruses

encodes both structural (such as gag and core antigens) and enzymatic proteins (such as

Reverse Transcriptase). Furthermore, being a complex retrovirus, HTLV-1 also employs inter-

nal initiator codons and an alternative splicing procedure, to synthesize several accessory and

regulatory proteins. It has four Open Reading Frames (ORFs), where ORF-3 and ORF-4 are

the most important ones as they codes for Rex protein and Tax transactivating protein respec-

tively [12, 13]. Rex is required for regular transportation of viral RNA [14, 15] and Tax triggers

various transcription factors and enhancers to initiate transcription of many cellular genes

that are primarily linked to host cell proliferation [16, 17].

Almost 90% of the HTLV-1 affected individuals show no symptoms throughout their lives,

however, almost 10% patients establish a chronic inflammatory disease, among which Adult

T-cell leukemia (ATL) is the most prevalent one, found in 5% of the HTLV-1-infected people

[18, 19]. HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is the other

secondary complication that is prevalent in about 1–4% patients of HTLV-1 [20]. Other

HTLV-1 complexities include; HTLV-associated uveitis [21], Leprosy [22], aggressive CD4-T

cell malignancy [23], Tuberculosis [24], Strongyloides stercoralis [25].

The mechanism of how HTLV-1 mediates the development of these disorders is not evi-

dently known, however, it is believed that these disorders are a probable result of the virus’s

potential to elicit lymphocyte activation. HTLV-1 infects cytotoxic T cells (CD8+) as well as

Helper T cells (CD4+), consequently, the immune system triggers a T-cell mediated immunity,

which binds to MHC-I or MHC-II complexes. Activated T-cells prompts the secretion of cyto-

kines, whose major role is to trigger a rapid immune response against HTLV-1 [26–30]. In

actuality, the immunopathogenesis of HTLV-1 is worth noting, as its lifetime persistence in T-

cell lymphocytes result in enhanced interaction amongst the immune system and virus, which

ultimately results in a number of HTLV-1 associated diseases. Such complications are either

due to the direct viral action on immune system or an outcome of the immune reactions

against virus. Till now, no effective vaccine against HTLV-1 is known; however, number of

affected individuals is continuously increasing.

The rise of immunoinformatics and bioinformatics has resulted in great advancements in

vaccine design and development. Methods like Structural vaccinology and reverse vaccinology
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have tremendously increased the development of new vaccines against pathogens [31]. Owing

to these easily accessible bioinformatics tools, we can precisely predict the antigenicity of cov-

eted proteins. Accurate determination of such antigenic components is essential to develop an

effective vaccine subunit [32].

Investigation of possible epitopes and designing of Multi-Epitope Based Vaccine (MEBV) is

an important development in vaccinology as they can proficiently evoke both humoral- and

cell-mediated immune responses [33, 34].

In contrast to conventional vaccines, MEBVs hold a number of merits, including: their

affordability, harmlessness and their efficiency in engineering the epitopes rationally [35].

Consequently, the present study was intended to use immunoinformatics techniques to design

a MEBV against HTLV-1. The whole proteome of HTLV-1 was considered to forecast an effec-

tual MEBV. Molecular docking analysis was also carried out to examine the binding potential

and stability of designed MEBV with human pathogenic receptors. Besides authenticating the

immunogenic potential of the designed MEBV, in- silico immune simulations were also exe-

cuted. Finally, the MEBV codon optimization was accomplished for E. coli system, followed by

in-silico cloning to validate the profiling expression.

Methodology

Flow diagram of the entire procedure opted in the current research work is illustrated in Fig 1.

Retrieval and analysis of HTLV-1 proteome

Firstly, the proteome of HTLV-1 was assessed and downloaded from the Uniprot database.

Vaxijen v.2.0 online website was operated to find the proteins having strong antigenicity. This

tool evaluates antigenic properties by virtue of alignment-free method and chiefly by analyzing

their physio-chemical properties [36]. Fasta sequences were pasted as an input sequence whilst

0.4 value was set as a threshold. Proteins depicting strong antigenicity were then estimated for

their physiochemical properties through the ProtParam tool of ExPasy online server. This soft-

ware only analyzes the physiochemical properties depending upon the submitted protein

Fig 1. Diagrammatic depiction of strategy adopted in the current study.

https://doi.org/10.1371/journal.pone.0258443.g001
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sequences, however, this online tool is unable to identify the post-translational modifications

of protein [37]. Finally, proteins showing acceptable antigenicity and physio-chemical proper-

ties were tested for similarity index with human proteins; Blastp was utilized for this purpose.

Proteins showing similarity index more than 37% were excluded for further experimentation.

The 3D structures of shortlisted proteins were recovered from the Protein Data Bank (PDB)

database [38], however, 3D structure of the proteins for which no structure was found in PDB

was predicted by online bioinformatics tools. Secondary structure was investigated via GOR4

server [39], whereas tertiary structure was modeled through I-TASSER. I-TASSER is a classi-

fied bioinformatics tool that is actually a structure modeling server used for analyzing the ter-

tiary structure by using ab-initio modeling [40]. Predicted 3D structures were then refined

through GalaxyRefine2 server [41], followed by quality assessment through Rampage and

PROSA web servers where former one assesses the structure by Ramachandran plot and later

one evaluates it by measuring the z-score [42].

T-cell epitope recognition and evaluation

Forecasting of T-cell epitopes (TCEs) not only makes the whole procedure of vaccine designing

cost-effective but also, in compared to the laboratory experiments, lessens the time required for

the entire protocol [43]. The Immune Epitope database Analysis Resource (IEDB-AR) version

2.22 [44] was employed to recognize the TCEs. This online server provides many tools for the

estimation and assessment of antigenic epitopes, MHC-I binding prediction tool (http://tools.

immuneepitope.org/mhci/) made it possible to identify 12-mer MHC-class I epitopes (Cyto-

toxic T-lymphocytes). MHC-II binding prediction tool was utilized to recognize 15-mer MHC-

class II T-cell epitopes (Helper T-lymphocytes). Fasta formatted protein sequences were pro-

vided, consensus mode was elected as prediction technique, human was chosen as source specie,

and all offered alleles were considered for the estimation of epitopes. Lower consensus score

accounts for the strong binding capacity to alleles, therefore, epitopes with consensus score

lower than 2 were taken for further experiments. All of the predicted epitopes were further ana-

lyzed through different online bioinformatics tools i.e. VaxiJen v2.0 was employed to evaluate

antigenic character, IEDB-AR v.2.22 MHC-I immunogenicity tool [45] was utilized for identify-

ing immunogenicity, AllergenFP v1.0 server [46] was used for analyzing allergenic character

and Toxin Pred online server [47] was engaged to forecast the toxic behavior of predicted epi-

topes. AllergenFP server computes descriptor-based alignment-free fingerprint protocol to

identify the allergenic character of peptides with 88.9% accuracy [46], whereas, Toxin Pred

online tool engages machine-learning with a quantitative matrix to predict toxicity [47].

B-cell epitope recognition and evaluation

Recognition of B-Cells Epitopes (BCEs) is a vital step in the designing of MEBVs as it releases

antibodies that lead to the generation of humoral immunity. There are two different types of

BCEs; namely, linear BCEs and conformational BCEs. Linear BCEs were identified by the

means of ABCPred online tool, that uses the neural networking based approach to identify the

BCEs [48]. The amino acid length and the threshold values were set to 14 and 0.5 respectively.

Additionally, conformational BCEs were predicted through ellipro tool of IEDB-AR v.2.22.

Ellipro working is based on geometric properties of protein structure such as adjacent cluster

residues, entire protein shape and residual protrusion index [49], therefore, protein structures

were uploaded in PDB format whereas all other parameters were set as by default. Finally, the

selected BCEs were evaluated for antigenic, allergic, immunogenic, and toxic profiles through

vaxiJen v2.0, AllergenFP v1.0, IEDB-AR v.2.22 MHC-I immunogenicity and ToxinPred

respectively.
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Conservation analysis and selection of predicted epitopes

An epitope should demonstrate 100% conservancy if it has to be used for vaccine designing

protocol, therefore, conservancy of the estimated BCEs and TCEs was determined through

Epitope Conservancy Analysis tool [50], offered by IEDB-AR v.2.22. Epitopes showing 100%

conservancy were considered for further study. Forecasting of cytokine-prompting abilities of

epitopes is an important parameter in finding out the efficacious epitopes that could be used

for vaccine designing. Interferon-gamma (IFN-γ) is a chief cytokine that can prompt intrinsic

safe responses and also restrict viral replication [51]. Besides that, IFN-γ also promotes the

flexible immune responses by triggering both Helper T Lymphocyte (HTL) and Cytotoxic T

Lymphocyte (CTL). The IFN-γ inducing probability of the forecasted epitopes was examined

through IFNepitope online tool that works on MERCI and support vector machine hybrid

algorithms. Eventually, epitopes were filtered after overlapping, toxicity, antigenicity and con-

servancy tests, were chosen for subsequent examination.

Epitope modeling and molecular docking

PEP-FOLD v.3.0 online tool was considered to construct the 3D model of short-listed HTL

and CTL epitopes from scratch. sOPEP sorting scheme with 200 simulations was adopted for

this purpose. PEP-FOLD v.3.0 estimates the peptide’s tertiary structure by implementing for-

ward backtrack/taboo sampling algorithm [52]. Once the 3D structures of epitopes were ready,

they were docked with particular Human Leukocyte Antigen (HLA) alleles to assess their bind-

ing affinity. Crystal structures of HLAs were downloaded from RCSB PDB [38]. Docking was

executed through HPepDock server [53] and the docked complex was inspected via PyMOL

molecular graphic system v.1.3 [54].

Estimation of population coverage

Expression of the distinctive HLA provide astounding dispersion at varying frequencies, that

are assorted in different regions and ethnicities all over the Globe [55]. Thus the allele dispen-

sation plays an essential part in the development of an efficacious MEBV [56]. In this research

work, the population coverage analysis tool [57] of IEDB-AR v.2.20 was used to examine the

population coverage of the short-listed HTL and CTL epitopes and their particular HLA-bind-

ing alleles.

Designing of vaccine construct

Generally, epitopes that are highly antigenic, 100% conserved, non-allergic, with noteworthy

population coverage, having no identity with human proteins and exhibiting significant bind-

ing capability with human HLA allele are considered to construct a MEBV. Hence in the cur-

rent study, only those epitopes were considered for vaccine designing that were displaying the

above-mentioned properties. β-defensin adjuvant was connected to the very first CTL epitope

via EAAAK linker, the purpose of which is to enhance the immune response. β-defensin was

employed as an adjuvant owing to its capability of acting as an antimicrobial as well as an

immunomodulatory agent [58]. All other CTL, HTL and LBL epitopes were joined with each

other through AAY, GPGPG and KK linkers correspondingly. The purpose of connecting

them with these linkers is to support their individualistic immunogenic actions.

Host homology analysis

Homology to host protein can prompt autoimmunity, therefore, the NCBI BLASTp online

software was opted to examine the homology of constructed MEBV with the entire human
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proteome, [59]. Vaccine’s primary sequence was added in the FASTA format. The target

organism under consideration was Homo sapiens (taxid:9606).

Evaluation of allergenicity, antigenicity and physiochemical properties

Different online tools were adopted to evaluate the final vaccine construct for physiochemical

properties, antigenicity and allergenicity. VaxiJen v2.0 online web tool was accessed to scruti-

nize the antigenic behavior of MEBV construct, whereas AllerTop v2.0 was adopted to evaluate

its allergenicity. AllerTop includes the alignment-free estimation of the allergenic character of

a protein by assessing its chief physicochemical properties [60]. Protparam tool of Expasy was

used to recognize different physiochemical effects of the final MEBV protein for instance; the-

oretical pI, Grand Average of Hydropathicity (GRAVY), aliphatic index, stability index,

molecular weight and expected half-life for mammal cells, yeast and E. coli. Additionally, solu-

bility on the subject of overexpression in E. coli cells was anticipated through SOLpro tool [61]

of SCRATCH suite.

Secondary structure of MEBV

Secondary structure is a major contributing factor of protein-folding characteristics; MEBV

structure was designed using the Psipred server. This server considers the two feed-forward

neural networks, where one network refines the other through the medium of Position-Spe-

cific Iterated–BLAST [62].

Tertiary structure of MEBV

The final constructed MEBV is the combination of distinct epitopes therefore no appropriate

template was available, hence its tertiary structure was identified by following de novo model-

ing approach by employing CABS-fold server. This server works on CABS modeling approach

in addition to multiscale modeling pipeline and Replica Exchange Monte Carlo pattern [63].

Predicted 3D structure was then refined by GalaxyRefine2 server. The quality of the modified

structure was then checked through RAMPAGE server, ProSA-web server, ERRAT server and

Verify 3D server. RAMPAGE server evaluates the 3D structure based on Ramachandran Plot

analysis [64], ProSA-web server evaluates structure’s validity based on the statistical assess-

ment of protein structures [42], ERRAT server identifies the structure’s excellence by calculat-

ing the non-bonded connections in the examined structure [65] and Verify 3D estimates the

agreement between the tertiary structure and its own amino acids sequence [66].

Prediction of B-cells epitopes

Both linear BCEs and conformational BCEs of constructed MEBV were distinguished using

the ABCPred online server and Ellipro tool of IEDB-AR v.2.22. In the former, MEBV primary

sequence was provided as the input and the amino acid length was fixed at 14, while in the lat-

ter one all of the parameters remained unchanged and the MEBV tertiary structure was

inserted as input. PyMOL molecular graphic system v.1.3 was again adopted to demonstrate

the discontinuous epitopes in the final designed MEBV [54].

Protein-protein docking between vaccine and immune receptor (TLR3)

Interactions between the vaccine protein and the host immune cells trigger an efficient

immune reaction. Therefore, molecular docking approached was used to discern the binding

capability of MEBV with human immune receptors. TLR3 (PDB ID: 1ZIW) was selected for

this study as the protein is known for eliciting an efficient antiviral immune response. Docking
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of the MEBV with TLR3 was performed using the HADDOCK v.2.2 server [67], that involves

an information-driven flexible docking approach, useful for studying biomolecular complexes

[68]. Visualization of the docked complex was carried out through the PyMOL molecular

graphic system v.1.3 [54] and the interacting residues were identified by analyzing the struc-

tures in PDBsum online database [69].

Disulphide engineering of final vaccine construct

Disulphide engineering is a new method of adding disulphide bonds between amino acids of a

protein structure. A disulphide bond is the covalent bond that imparts significant stability to a

protein structure by authorizing the accurate geometric conformations. Disulphide by Design

v2.12 online tool was employed for disulphide engineering of MEBV protein. Refined MEBV

structure was submitted and run for the residue-pair examination, potential residue pairs were

identified for mutation, and cysteine residue was taken as an ultimate objective [70]. Residues

having an energy score lesser than 2.2 kcal/mol and χ3 angle within a range of − 87˚ and + 97˚

were considered for the formation of disulphide linkages [70].

In-silico estimation of vaccine construct

In-silico immune simulation was achieved through C-ImmSim 10.1 server to substantiate the

immunological responses of the designed MEBV. The C-ImmSim activates three chief constit-

uents of the functional mammal physiological system, including the bone marrow, lymph

node, and thymus, [71]. The parameters entered for running the software were the following:

volume (10), HLA (A0101, A0101, B0702, B0702, DRB1_0101, DRB1_0101), number of steps

(100), random seed (12345), number of injections set to 1. All other parameters were set to be

unchanged.

In-silico codon optimization and cloning

Once the properties and in silico immune simulations of constructed MEBV were carefully ana-

lyzed, codon optimization was carried out by using Java Codon Adaptation Tool [72]. Codon

optimization is a procedure commonly utilized to ameliorate the gene expression and enhance

the translational efficiency of a gene of interest by inserting codon bias of the host organism

[73]. Codon optimization of MEBV was done in E. coli K12 prokaryotic expression system.

Three extra available options were chosen to dodge: (1) restriction enzymes cleavage sites (2)

prokaryote ribosome binding-site and (3) rho-independent transcription termination. GC con-

tent and Codon adaptation index (CAI) values were noted and checked whether they fall under

the acceptable range or not, which was 30–70% for GC content and<0.8 for CAI [74]. Besides

that, restriction and cloning of the modified MEBV sequence was expedited by the addition of

BamHI and HindIII restriction sites at its C and N-terminals correspondingly. This modified

sequence was then taken for in-silico cloning via SnapGene v4.2 tool. Cloning was done in vec-

tor E. coli pET30a (+) to validate the expression of sequence in in vitro systems.

Molecular Dynamics (MD) simulation

MD simulation is contemplated as a principle methodology to scrutinize the stability of

docked complexes [75]. These simulations provide important supporting information for pre-

dictions and interpretations of the experimental data. MD simulations were performed

through GROMACS 5.0 Software [76, 77]. In carrying out the simulations, for the docked sys-

tem of MEBV -TLR3 and the structure of TLR3, default parameters were used. The systems

were solvated in a cubic water box, with the complexes placed at least 1.0nm from the edge of
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the box. The Optimized Potential for Liquid Simulation (OPLS) force field [78] was employed

and the physiological pH of the system was maintained using the Single Point Charge

Extended (SPCE) water model [79]. The neutrality of the systems was maintained by adding

Na+ or Cl- ions with the steepest descent approach for energy minimization comprising of

50,000 cycles. The systems were then equilibrated for the constant number of particles, volume

and temperate (NVT) and constant number of particles, pressure and temperature (NPT), fol-

lowing these equilibrations, the systems were simulated for 20ns. The trajectories for the com-

plex and the protein were saved after every 2 fs.

Results

Proteome retrieval and highest antigenic protein selection

Full proteome of HTLV-1 was downloaded from Uniprot (Proteome ID: UP000007683)

HTLV-1 proteome consisted of nine different proteins. Proteins names and accession no are

enlisted in S1 Table. Antigenicity of all of these proteins was evaluated by VaxiJen v.2.0, results

of which represented that only six proteins had vaxijan score >0.45 therefore, the sequence of

only these proteins was submitted to Blastp for identifying their similarity with human pro-

teins. Blastp results showed that Accessory Protein p12I (AP) and Protein TAX-1 (PT) had no

significant similarity with any of the human proteins whereas Envelop Glycoprotein gp 62

(GP) depicted a maximum similarity index of 32.14% with Syncytin-1 Precursor (Accession

No: NP_001124397.1) while the other 3 proteins had a similarity index of more than 60% with

one or more human proteins (S1 Table), hence AP, PT and GP were selected for further study.

Moreover, these three proteins were subjected to Protparam online tool to compute their phys-

ical properties including aliphatic index, theoretical pI, stability profiling, molecular weight

and half-life (S2 Table). Secondary structure of the proteins was appraised via GOR4 server (S3

Table). Crystal structure of short-listed proteins was searched in RCSB PDB database, from

where only the 3D structure of GP was found (PDB ID: 1mg1.1.A) whilst no structure was

found for other two proteins, therefore, their structures were predicted by i-TASSER online

tool and refined by the GalaxyRefining2 server (S1 Fig). The attributes of these final structures

were elucidated through Ramachandran plot assessment, ERRAT Value and z-score. (S2 Fig

and S4 Table) depicts that both of the predicted 3D structures had a good quality as all of the

analyzed parameters were within the acceptable range. The purpose of this designed model

was to estimate the conformational BCE of chosen proteins.

T-cell epitope recognition and evaluation

IEDB consensus method was adopted to forecast TCEs (including both MHC-I and MHC-II)

of target proteins. Owing to their strong defensive capabilities, epitopes showing interactions

with more than one allele are taken as the most appropriate epitopes. Conservancy of predicted

epitopes inside the protein sequences was determined through IEDB conservancy analysis

tool. Their allergenicity and antigenicity was evaluated by Allergen FP 1.0 and Vaxijen. Epi-

topes that are highly antigenic, bound to multiple alleles, 100% conserved, and non-allergenic

were taken for further study. In total, 40 CTL epitopes (AP-07, PT-11 and GP-22) (S5 Table)

and 39 HTL epitopes (AP-18, PT-10 and GP-11) were shortlisted (S6 Table).

B-cell epitope recognition and evaluation

Linear/continuous B cell epitopes (LBL) of all target proteins were picked by ABCPred server.

Just like T-cell epitopes, selected LBL were 100% conserved, non-allergenic and antigenic. In

accordance with this criterion, 17 LBL epitopes (AP-1, GP-12, and PT-4) were predicted
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(S7 Table). Whereas, Ellipro online tool was adopted to identify conformational/discontinuous

B cell epitopes (CBL) by considering the 3D models of target proteins and a total of 8 CBL epi-

topes (AP-3, GP-3, and PT-2) were predicted in this way (S8 Table).

Evaluation and selection of epitopes for further analyses

The criteria intended to include the epitopes in the MEBV was that they should be 100% con-

served among proteins, should be significantly antigenic/immunogenic, should be non-toxic

and non-allergenic, should generate IFN-γ response and should not be within the glycosyla-

tion sites and post-translation modification sites of the particular protein. Therefore, epitopes

satisfying the above-mentioned criteria were selected for further analyses. In total, 9 CTL epi-

topes (AP-3, GP-4 and PT-2), 6 HTL epitopes (AP-2, GP-2, and PT-2) (Table 1) and 5 LBL epi-

topes (AP-1, GP-3 and PT-1) were selected to construct MEBV (Table 2).

Molecular docking between epitopes and HLA alleles

The 3D structures of selected CTL and HTL epitopes were modeled through PEPFOLD online

tool (S2 Fig). Molecular Docking was executed by HPepDock server to assess the binding

Table 1. Final selected T-cell epitopes from HTLV-1 antigenic proteins employed to develop the MEBV construct and their binding details with their corresponding

HLA alleles.

Sr. No Epitopes Protein Position Antigenicity Immunogenicity Alleles Binding Score (kcal/mol)

MHC Class I

1. LSPLALTALLLF AP 9–20 1.0379 0.06216 HLA-B�57:01 -144.82

2. LPITMRFPARWR AP 72–83 1.1198 0.27479 HLA-B�57:01 -187.26

3. FPARWRFLPWKA AP 78–89 1.4942 0.48458 HLA-B�27:05 -185.32

4. PYWKFQHDVNFT GP 131–142 1.1361 0.011 HLA-C�07:02 -178.38

5. HLTLPFNWTHCF GP 266–277 1.0691 0.34638 HLA-B�57:01 -187.47

6. YAAQNRRGLDLL GP 374–385 1.0626 0.02544 HLA-C�06:02 -179.81

7. LPSRVRYPHYSL GP 470–481 1.0175 0.00525 HLA-C�07:02 -179.92

8. QLSPPITWPLLP PT 158–169 0.7867 0.28116 HLA-B�35:03 -152.39

9. EYTNIPISLLFN PT 311–322 1.0096 0.14199 HLA-A�24:02 -143.93

MHC Class II

10. PPPAPCLLLFLPFQI AP 34–48 0.7086 0.06395 HLA-DRB1�01:02 -181.08

11. PPAPCLLLFLPFQIL AP 35–49 0.6695 0.09924 HLA-DRB1�01:02 -173.42

12. TNYTCIVCIDRASLS GP 221–235 1.0023 0.19499 HLA-DRB1�03:06 -180.28

13. NYTCIVCIDRASLST GP 222–236 0.9098 0.0536 HLA-DRB1�03:06 -171.90

14. GDCVQGDWCPISGGL PT 21–35 1.1352 0.14051 HLA-DRB1�03:05 -152.31

15. CVQGDWCPISGGLCS PT 23–37 1.1086 0.16304 HLA-DRB1�03:05 -150.82

(� is the part of allele’s specific naming system).

https://doi.org/10.1371/journal.pone.0258443.t001

Table 2. Final chosen LBL epitopes from HTLV-1 antigenic proteins employed to develop the MEBV construct.

Sr. No LBL Epitopes Protein Position Antigenicity Immunogenicity

1 PCLLLFLPFQILSG AP 38 0.6293 0.0873

2 TNYTCIVCIDRASL GP 221 1.0062 0.23894

3 LTLPFNWTHCFDPQ GP 267 1.2029 0.44788

4 RRGLDLLFWEQGGL GP 379 0.9600 0.3664

5 HQITWDPIDGRVIG PT 52 0.8070 0.65428

https://doi.org/10.1371/journal.pone.0258443.t002
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affinity of TCEs with their corresponding HLA alleles. All examined epitopes displayed excel-

lent binding affinity with the receptor binding domain of HLA alleles (Fig 2).

Population coverage estimation

The HLA allele distribution varies among different ethnic groups, existing in different geo-

graphical regions of the World. This makes the coverage of the population an important

parameter in constructing MEBV. This study involves calculation of collective population cov-

erage of shortlisted HTL and CTL epitopes along with their corresponding HLA alleles. This

investigation indicated that the selected epitopes have a combined coverage of ~95.80% in the

worldwide population (Fig 3). Highest population coverage was reported in India (98%), fol-

lowed by Unites States and Mexico, where 97.14% and 95.95% coverage was reported corre-

spondingly. The results affirmed that selective epitopes are significant for developing the

MEBV construct.

Construction of multi-epitope subunit based vaccine

The MEBV construct was developed by making use of the short-listed epitopes. The HTL, LBL

and CTL epitopes were merged with each other using the KK, GPGPG and AAY, KK Linkers

correspondingly. The use of linkers not only promotes the process of immunization and epi-

tope presentation but it also inhibits the production of junctional epitopes [80, 81]. Addition-

ally, β-defensin was attached as an adjuvant, to the N-terminal region of the final constructed

vaccine through EAAAK linker. This linker adds to the overall stability of the structure while

reducing connections with other protein parts by proficient detachment [82]. The final struc-

ture of the vaccine construct, displayed in (Figs 4 and 5A) comprises of 382 amino acids.

Fig 2. Docked complex of chosen 15 epitopes (blue licorice illustration) and their corresponding HLAs (red cartoon illustration) as demonstrated in Table 1.

https://doi.org/10.1371/journal.pone.0258443.g002
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Fig 3. Collective population coverage of the chosen T-cell epitopes based on their corresponding HLA alleles.

Areas of specific significance were considered in this display.

https://doi.org/10.1371/journal.pone.0258443.g003

Fig 4. Graphical representation of constructed MEBV structure, encompassing 382 amino acids having one

adjuvant (at N-terminal), 9 CTL, 6 HTL and 5 LBL epitopes.

https://doi.org/10.1371/journal.pone.0258443.g004

PLOS ONE Multiepitope subunit vaccine against human T-cell lymphotropic virus type 1

PLOS ONE | https://doi.org/10.1371/journal.pone.0258443 October 27, 2021 11 / 28

https://doi.org/10.1371/journal.pone.0258443.g003
https://doi.org/10.1371/journal.pone.0258443.g004
https://doi.org/10.1371/journal.pone.0258443


Immunogenic and physiochemical profiling

The development of a vaccine construct was followed by immunogenic and physiochemical

analysis. This was done by evaluating the homology model of MEBV against the human prote-

ome. The results indicated that no significant similarity index was observed between MEBV

with any part of the human proteome. Determination of the antigenic, toxic and allergenic

properties of the MEBV revealed it to be extremely antigenic, the antigenic score of the com-

plex being 0.7840 (at threshold = 0.5), it was further proved to be potentially non-allergenic

and non-toxic in nature. The physiochemical features of MEBV, evaluated using ProtParam

online tool showed it had a Molecular weight of 42154.54 Da, while the theoretical pI and

GRAVY had values of 9.39 and +0.024, where the positive value indicated hydrophobic nature

of the construct. The mean half-life of MEBV was estimated at 30 h> 20 h and >10 h in the

mammalian reticulocyte, E. coli and yeast cells. The solubility of MEBV was calculated using

the SOLpro server revealed it was highly soluble, having a probability value of 0.972835. On

the basis of these analyses, MEBV was deemed to have strong potential to serve as a vaccine.

Secondary structure examination

PSIPRED server was accessed to evaluate the secondary structure features of MEBV protein.

18.3% and 14.4% of the total constituent residues contributed to the construction of α-helix

and β-strands respectively, whereas the remaining 67.3% amino acids participated in the for-

mation of coils (S3 Fig).

Tertiary structure modeling

Tertiary structure of MEBV protein was modeled through CABS-fold online tool. Predicted

structure was additionally refined through GalaxyRefine2 server (Fig 5B). Validity of the final

developed model was evaluated using the Ramachandran plot analysis. It indicated 89.2% and

7.6% of the total amino acids residues in the favorable and allowed regions, while only 3.2%

amino acids were indicated in the outer region (Fig 5C). Based on further evaluation, it was

revealed that no poor rotamers existed in the final structure. The probability estimation

(Z-Score) and quality factor for the structure had values of -5.53 (S4 Fig) and 55.5944. This

refined structure was also passed by verify 3D. All of these findings demonstrated that the

refined structure of designed MEBV is of excellent quality.

Disulphide engineering for vaccine stability

Disulfide engineering was done via Disulfide by design v2.0 online tool, to improve the stabil-

ity and constancy of the final refined structure of MEBV. In total, 25 different pairs of residues

can be considered for performing disulfide engineering (S9 Table), however, the criteria for

the selection of residues pairs is that they must depict the normal Chi3 value and energy. Our

designed MEBV demonstrated only single residue pair following the selection criteria, there-

fore, only two mutations were generated in the selected residue pair i.e. Trp 90-Gly 382, with

an energy of 1.42 kcal/mol and Chi3 value of -71.13 (Fig 6).

Estimation of B-cells epitopes in MEBV

There are two vital roles which are associated with B-lymphocytes, i.e., antibodies generation

and releasing cytokines, where former function is directly involved in inducing humoral

immunity. Thus, an ideal MEBV candidate must encompasses B cell epitopes within its final

deigned structure. In the current study, ABCPred 2.0 and Ellipro online tools represented that

our constructed MEBV encloses thirty-two LBL (S10 Table) and ten CBL epitopes (S11 Table).
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PyMOL molecular graphic system v.1.3 enabled us to envisage the CBL epitopes in the final

structure of MEBV (Fig 7).

Interaction analysis between vaccine and TLR-3

An ideal vaccine candidate must be having a strong binding potential with the immune recep-

tor of host’s immune system to stimulate an effective and appropriate immune response.

Therefore, HADDOCK v.2.2 server was utilized to conduct molecular docking analysis

between our designed vaccine candidate and TLR3. TLR3 is a human immune receptor that,

upon virus recognition, can applicably prompt immune responses. The docking analysis

showed that the MEBV and TLR3 had strong interactions. The TLR3-MEBV binding score

was 63.8 kcal/mol. The docking figures are revealed in Table 3. In the docked complex, TLR3

is showed in red, while MEBV-construct is shown in blue color respectively, as shown in (Fig

8A). Moreover, PDBsum was opted to achieve the conventional sketch of- interaction among

the docked-complex. PDBsum is a freely available online server that gives a schematic charac-

terization of all sorts of interactions within the docked proteins-complex. In this research

work, 16 H-bond interactions were detected between MEBV and TLR3 within a range of

3.22Å (Fig 8B).

In-silico estimation of vaccine construct

Fig 9 displays the host immune response (in-silico) against our designed MEBV (act as an anti-

gen). Among the primary responses, IgG + IgG and IgM concentration was found to be the

Fig 5. (A) MEBV construct sequence. Black letters represents the epitopes sequences. Purple letters depict adjuvant

sequence, Maroon color shows EAAAK linker, Blue color displays GPGPG linkers and red color demonstrates the KK

linkers; (B) Pipes representation of refined 3D model of final MEBV construct (cyan color shows α-helix, red color

depicts β-strands and magenta color illustrates random loops); (C) Ramachandran plot analysis of estimated MEBV

model, showing the presence of 89.2% residues in the favored region.

https://doi.org/10.1371/journal.pone.0258443.g005
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highest one succeeded by IgM, IgG1 + IgG2 and IgG1 production at both the secondary and

primary stages, accompanied by the depletion of antigen (MEBV). The in-silico host immune

system response to the antigen is shown in Fig 9. Our designed MEBV also represented very

strong cytokine and interleukin responses. Overall, the results of C-ImmSim 10.1 server dem-

onstrated that the designed MEBV has a robust and appropriate immune response with clear-

ance capability after successive encounters with pathogen.

In-silico cloning

In-silico cloning was done to assure the expression of MEBV in extensively employed E. coli
hosts. Before cloning, JCat server was utilized to optimize MEBV codons in accordance with E.

coli (strain K12) expression system. The optimized MEBV sequence contains 1146 nucleotides,

CAI value 1.0, and a GC content of 58.46%, which clearly ensuring the reliability and positive

expression of our desired protein. In-Silico cloning was executed to validate the expression of

MEBV in a host cell. This step was supported by the addition two restriction sites (BamHI and

Fig 6. Disulfide engineering, depicting one mutated residues pair with red color.

https://doi.org/10.1371/journal.pone.0258443.g006
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HindIII) on both ends of MEBV optimized nucleotide sequence. This modified sequence was

then cloned at the multiple cloning sites of the Pet30a (+) vector (Fig 10). The entire clone had

a size of 6557bp.

Molecular dynamics and simulation

In order to assess the micro interactions between the ligand and vaccine complex MD simula-

tions are a popular method [83, 84] The structural integrity of the MEBV-TLR3 complex was

determined through analysis of the Hydrogen bonds (HB), Root mean square deviations

(RMSD) and Root mean square fluctuations (RMSF) carried out after performing MD simula-

tions of 20ns. The Native structure of TLR3 not bound to any ligand, used as a control was also

simulated for 20ns. The structural integrity of the MEBV-TLR3 complex was determined by

calculating the RMSD of the backbone of the complex (Fig 11A) the average value of RMSD

for MEBV-TLR3 was 0.4 nm and that of TLR3 was 0.45 nm. The RMSD value of MEBV-TLR3

was very stable for 10ns, after which it exhibited deviation and remained stable for the remain-

der of the simulation. The value of RMSD exhibited that the complex of MEBV-TLR3 endures

stability for the whole 20ns of MD simulations. Additionally, RMSF figure (Fig 11B) value was

Fig 7. Conformational B-cell epitopes (cyan) recognized in the final MEBV vaccine (magenta).

https://doi.org/10.1371/journal.pone.0258443.g007

Table 3. Data of the top TLR3-MEBV docked cluster.

Parameters Value

HADDOCK v2.2 score -63.8 +/- 23.6

Cluster Size 4

RMSD from the overall lowest-energy structure 19.3 +/- 1.2

Van der Waals energy -104.2 +/- 9.9

Electrostatic energy -444.9 +/- 42.4

Desolvation energy 17.1 +/- 10.4

Restraints violation energy 2398.0+/-122.33

Buried Surface Area 3124.7+/- 82.1

Z-Score -1.4

https://doi.org/10.1371/journal.pone.0258443.t003
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Fig 8. TLR3-MEBV docked complex shown at the left in cartoon representation. Interacting residues of MEBV are

highlighted at right side. MEBV construct revealed with blue color and TLR3 displayed with red color. Red lines

represent salt bridges, blue lines show Hydrogen bonds, whilst orange lines demonstrate the other contacts in docked

complex. The colors of interacting residues are interpreting the characteristics of amino acids (neutral: green, Cys:

yellow, aromatic: pink, aliphatic: grey, positive: blue, negative: red, and Pro&Gly: orange).

https://doi.org/10.1371/journal.pone.0258443.g008

Fig 9. In silico immune response employing MEBV as an antigen. (A) Production of immunoglobulin as a result of

antigen injection (B) population of B cells after three times antigen exposure.

https://doi.org/10.1371/journal.pone.0258443.g009
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calculated to estimate the residual flexibility of the backbone of MEBV-TLR3 complex. There

were no major fluctuations in the structures with the average value of RMSF for MEBV-TLR3

being 0.35 nm and that of TLR3 being 0.37 nm. Hydrogen bonds present in the protein struc-

ture are the main stabilizing force. The study of hydrogen bonds in the MEBV-TLR3 complex

and the TLR3 protein provide evidence that the hydrogen bond interactions taking place are

stable throughout the 20ns simulation and the complex exhibits a greater number of hydrogen

bonds further validating stability of the complex (Fig 11C).

Discussion

HTLV-1 is a T-cell affecting retrovirus that usually shows no symptoms, however, some of its

patients develop adult T-cell leukemia [19], HTLV-associated uveitis [21], HAM/TSP [20], or

other inflammation-associated medical illnesses [5]. At present, no treatment is available for

Fig 10. In silico cloning of codon optimized MEBV construct into pET28a(+) expression system. The black region exhibits the plasmid back-bone, whereas

the maroon section demonstrates the inserted DNA sequence.

https://doi.org/10.1371/journal.pone.0258443.g010
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this infection, and it has severe lifelong effects; therefore, there is a need to recognize some

therapeutic substances to fight against this chronic infection. Currently, vaccination is consid-

ered as the most powerful tool to boost the immune system, helping the body to combat vari-

ous infectious diseases. Manufacturing and Development of an effective live or attenuated

vaccine is a comparatively labour-intensive, costly and time-consuming process. Besides that,

the use of traditional attenuated vaccines is also limited by certain factors, such as their weak

support in boosting the immune responses and a variety of allergic reactions [85]. Multi-epi-

tope based vaccines (MEBV) are preferred over the traditional vaccines owing to its cost-effec-

tiveness, improved safety, and the prospect to sensibly engineer the epitopes for amplified

potency [35]. MEBV also excludes all of the unwanted parts from the final vaccine construct

that might lead to adverse pathological effects [86]. Currently, a variety of immunoinformatics

approaches are available for the efficient designing of MEBV, Similar techniques have been

used previously to suggest an appropriate MEBV for Dengue virus [87], Lassa virus [88], Hepa-

titis C virus [89], influenza virus [90], Respiratory Syncytial Virus [91], Zika Virus [92], Coro-

navirus (COVID-19) [93, 94] and many others. Even we have also followed the same

methodology to propose vaccines against Mycoplasma pneumonia and SARS-CoV-2. There-

fore, owing to extensively described worthiness and widespread adoption, immunoinformatics

based methodologies were considered for the designing of an effective MEBV against patho-

genic HTLV-1.

We have conducted an extensive literature review and to the best of our information, the

current study is the very first research to propose an effective MEBV against HTLV-1 by

exploring the whole proteome of HTLV-1. Although, Raza et al. in 2021 constructed the

Fig 11. Comparisons of the RMSD, RMSF values and the number of hydrogen bonds present in the structure of

MEBV-TLR3 and TLR3 protein, obtained through MD simulation. (A) RMSD of the backbone of the MEBV-TLR3

and the TLR3 Protein (B) RMSF of the backbone of the complex and the TLR3 protein (C) Hydrogen bonds present in

the MEBV-TLR3 complex and the TLR3 Proteins.

https://doi.org/10.1371/journal.pone.0258443.g011
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MEBV against the same virus, however, they only considered Tax protein to fulfill their objec-

tives [95]. Furthermore, there study didn’t incorporate the molecular dynamic simulation

studies to validate the findings of molecular docking experiments. Similarly, Alam et al. also

worked on HTLV-1 virus; however, they only marked out the potential epitopes that could be

employed for the development of HTLV-1 vaccine without designing complete vaccine con-

struct. Moreover Alam et al. only employed glycoproteins to predict epitopes of interest [96],

while the current study scrutinized the entire HTLV-1 proteome to screen for the efficient epi-

topes that could be used to construct a fully functional MEBV. Therefore, our proposed

MEBV is more effectual and immunogenic against HTLV-1.

In the current study, MEBV was constructed by employing strong TCEs and BCEs, attained

from three key proteins of HTLV-1 i.e. Accessory Protein p12I (AP), Envelop Glycoprotein gp

62 (GP) and Protein TAX-1 (PT). Accessory proteins of HTLV-1 play a key role in viral infec-

tivity. They are also responsible for the harmful effects on normal function of mitochondria,

alteration of genes expression and enhancement of T-lymphocyte activation [97]. Glycopro-

teins of HTLV-1 not only mediates the viral attachment to specific cellular receptors but also

aid its entry within the cell [98]. Tax proteins of HTLV-1 are involved in the complex pathway

that prompts adult T-cell leukemia [99]. Thus, all these proteins serve as suitable therapeutic

targets for HTLV-1. B-lymphocytes prompts antibody production [100], HTLs provoke cellu-

lar as well as humoral immune responses [101] and CTLs are responsible for the inhibition of

viral spread through the generation of antiviral cytokines. They also play an essential function

in the extermination of body cells which have been infected with virus [102]. Due to high

importance in provoking immune responses, both BCEs and TCEs were forecasted to design a

final MEBV construct.

Ideal epitopes were chosen based on the four distinct factors, namely; antigenicity, allerge-

nicity, immunogenicity, and toxicity. Cytokines secreting HTLs encompasses a strong poten-

tial to activate different immune cells and to overcome pro-inflammatory responses, which

eventually bring down the likelihood of tissue injuries. Thus, Cytokines secreting capability of

HTLs was also evaluated to ultimately pick the finest epitopes to design MEBV construct. β-

defensin (an a djuvant) was firstly attached to the very first CTL through EAAAK linker while

all other CTL were connected together with the aid of AAY linkers. The reason of attaching an

adjuvant with the CTL was to selectively regulate both cellular and acquired immune response

[103]. Additionally, Adjuvants also increases the stability of vaccine by providing defensive

actions against pathogenic infections [104]. In the current research work, β-defensin was

employed as adjuvant by virtue of its strong antimicrobial and immunomodulatory effects

[58]. β-defensin has already been used in different published studies on MEBV construction

[91, 105, 106]. Just like CTL, HTL and BCEs were also joined together via GPGPG and KK

Linkers respectively. The reason of adding linkers was to increase the stabilization, folding and

expression of the final developed vaccine [107]. The endmost vaccine construct was very

extensive in size with a molecular weight of 42.15kDa, still, the prolonged size doesn’t hinder

the expression and stability of MEBV, as supported by previous studies in which vaccines with

longer sequences were proposed [88, 108, 109].

Our constructed vaccine sequence didn’t show any significant homology with human pro-

teome, making it an ideal vaccine with no side effects on normal proteins of human body.

Moreover, recombinant MEBV depicted eminent solubility against the up-regulated expres-

sion in E. coli host cells, which is another merit of this vaccine making it easily available for the

host cells [110]. Results of Instability index also validated the stable nature of designed vaccine

upon expression in host, consequently supplementing the usage capacity further. The theoreti-

cal pI of our proposed vaccine against HTLV-1 was found to be 9.39 which clearly represents

the alkaline class of vaccine and provides a stable connection in the physiological pH range.
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Besides, the hydrophobic nature and thermostability of the constructed MEBV was confirmed

by GRAVY score and aliphatic index respectively. Our designed vaccine showed a mean half-

life of 0 h in yeast< 20 h in vivo< 30 h in vitro that is also consistent with literature [91, 111,

112].

The HLA alleles are so important because they retain the responses to TCEs, although,

based on ethnicity, these alleles are extraordinary polymorphic. TCEs are expected to depict

binding affinity with a lot of HLA alleles so that more population coverage can be achieved.

Consequently, CTL and HTL epitopes, along with their corresponding HLA alleles, were nom-

inated to forecast the allele distribution globally. The outcomes demonstrated that the selected

epitopes and their respective alleles are found in major geographical areas of the World with

global population coverage of 95.8%. The highest coverage was seen at 98% in India. The pop-

ulation coverage was recorded to be 97.14% and 94.06% in the United States and Japan respec-

tively, where the discovery of HTLV-1 was made and had numerous epidemics [113].

The modeling of 3D structure provides outstanding support in the estimation of protein

dynamics, function and interaction capabilities with other proteins. Therefore, 3D model of

MEBV was predicted and its desirable properties were considerably increased through refine-

ment. Ramachandran plot analysis (89.2% residues in favored region, 7.6% in allowed and

only 3.2% in outer region), Errat quality factor (−4.74), Clash score (14.8), GDT-HA (0.8829),

Poor Rotamers (0), MolProbity (2.250), RMSD (0.592) and Z-score (-5.53) validated the qual-

ity of final model.

For a vaccine a foremost requirement is that it must develop stable connections with

immune receptors so that it can be expeditiously absorbed and transported throughout the

host body [114]. Molecular docking and MD simulations were conducted to analyze the bind-

ing affinity of developed MEBV with immune receptor TLR-3. Results of these software con-

firmed that very small energy is required to establish a stable complex with powerful

interactions between vaccine and TLR-3. These results imply that our designed MEBV can

successfully bind with the immune receptors.

It is strongly needed that the designed MEBV should elicit robust cellular and humoral

immune reactions. Our developed MEBV displayed elevated generation of IFN-γ with consid-

erable activities of IL-2 and IL-10. Additionally, surplus active immunoglobulin, including

IgM, IgG and there isotopes, were also reported for our MEBV. The irrelevant Simpson index

also suggested a divergent immune response, which is possible only if the MEBV encompasses

many BCEs and TCEs. Another important step to validate a certain vaccine construct is to per-

form its serological assessment [115]. Expression of the foreign genes may differ inside the

genome of a host cell and the reason behind this variation is the inconsistency of mRNA

codon; therefore, it is required to optimize the codon to ensure higher expression level in host

cell [116]. CAI (58.46) and GC (1.0) content of optimized codon clearly indicates the upregu-

lated expression of vaccine protein in E. coli host cell, which is the most widely employed

expression system for the synthesis of recombinant protein [117, 118]. In-silico restriction

cloning was also achieved by utilizing the pET30a (+) vector. The significance of using this vec-

tor includes the presence of S- and His-tags as the fusion partners that are important for

uncomplicated protein purification. Besides that, S-tag further stabilizes the proteins with

their affluence of charged and polar residues [119]. Disulphide engineering was conducted to

further enhance the stability of final vaccine structure. This step remarkably augmented the

thermostability of vaccine protein and also assisted in the investigation of genetic components

of MEBV [120].

The current research work was carried out to suggest a vaccine construct against HTLV-1

by following the next-generation vaccine designing methodology. We are of view that our pro-

posed vaccine will effectively generate both humoral and cell-mediated immune response. Its
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protein structure is not only immensely stable but also capable of interacting with immune

receptors. Moreover, in immune simulation, effective immune responses were observed in real

life.

Because the vaccine was designed with an adjuvant, B cell, and T cell epitopes (CTL, HTL),

it can promote innate and adjuvant immunological reactions in the host body, making it an

excellent and suitable candidate for HTLV-1 vaccine production. Thus, in silico designed

MEBV vaccine against HTLV-1 can prove to be effective in stimulating specific cell mediated

and humoral immune response and activating the acquired immune system against HTLV-1

in healthy individuals; treating both asymptomatic and symptomatic HTLV-1 infection; and

preventing the development of further pulmonary, neurological, ophthalmological, autoim-

mune diseases, and rheumatoid. However, further wet lab investigations are highly needed to

validate its actual potential to combat HTLV-1. However, further wet lab investigations are

highly needed to validate its actual potential to combat HTLV-1.

Conclusion

HTLV-1 infection is a global health issue that prompts ATLL and mediates many different

immune-related disorders. Due to the unavailability of any therapeutic option, it is necessary

to identify some preventive methods to combat this harmful viral infection. Because of the

enormous advantages, Reverse vaccinology and computational techniques have been

employed to construct MEBV. The current study utilized immunoinformatics and computa-

tional investigations to propose an efficacious MEBV model. We are confident that the pro-

posed vaccine will trigger appropriate humoral and cell-mediated immune reactions. Immune

simulations confirmed the immune responses of the final MEBV construct. Yet, further wet

lab investigations are necessary to authorize the safety and efficiency of the designed MEBV

against HTLV-1.
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