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Abstract

Aging is the single greatest cause of disease and death worldwide, and understanding the 

associated processes could vastly improve quality of life. While the field has identified major 

categories of aging damage such as altered intercellular communication, loss of proteostasis, and 

eroded mitochondrial function1, these deleterious processes interact with extraordinary complexity 

within and between organs. Yet, a comprehensive analysis of aging dynamics organism-wide has 

been lacking. Here we performed bulk RNA-sequencing of 17 organs and plasma proteomics at 10 

ages across the mouse lifespan, and integrated these findings with data from the companion Tabula 
Muris Senis2,3. We uncover previously unknown linear and non-linear expression shifts during 

aging, which cluster in strikingly consistent trajectory groups with coherent biological functions, 

including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and 

inflammatory and immune response. Remarkably, these gene sets are expressed similarly across 

tissues, differing merely in age of onset and amplitude. Widespread immune cell activation is 

especially pronounced and first detectable in white adipose depots during middle age. Single-cell 

RNA-sequencing confirms the accumulation of adipose T and B cells, including immunoglobulin 

J-expressing plasma cells, which also accrue concurrently across diverse organs. Finally, we show 

how expression shifts in distinct tissues are highly correlated with corresponding protein levels in 

plasma, thus potentially contributing to aging of the systemic circulation. Together, these data 

demonstrate a similar yet asynchronous inter- and intra-organ progression of aging, thereby 

providing a foundation to track systemic sources of declining health at old age.

To uncover aging dynamics organism-wide, we measured plasma proteins and sequenced 

RNA from 17 organ types isolated from C57BL/6JN males (n=4, aged 1, 3, 6, 9, 12, 15, 18, 

21, 24, 27 months; equivalent to humans aged 13, 20, 30, 36, 43, 50, 56, 63, 69, 75 years) 

and females (n=2, ages 1, 3, 6, 9, 12, 15, 18, 21 months) (Fig 1a,b). This encompasses 

development at 1 month of age through maturity at 3–6 months, as well as aging through 

adulthood to the median lifespan of 27 mos. We isolated all 17 organs from each mouse, 

including bone (femurs & tibiae), brain (hemibrain), brown adipose tissue (BAT, 

interscapular depot), gonadal adipose tissue (GAT, inguinal depot), heart, kidney, limb 

muscle (tibialis anterior), liver, lung, marrow, mesenteric adipose tissue (MAT), pancreas, 

skin, small intestine (duodenum), spleen, subcutaneous adipose tissue (SCAT, posterior 

depot), and white blood cells (WBCs, buffy coat). Raw data are available from GEO 

(GSE132040), and an interactive data browser is available at https://twc-

stanford.shinyapps.io/maca/. Concurrently, we performed single-cell RNA-sequencing on 

529,823 cells from 20 organs across the lifespan, presented in the companion paper Tabula 
Muris Senis2,3.

Pairwise differential gene expression with age

Aging instigates functional decline across organs, disrupting intricate crosstalk essential for 

maintaining healthy organismal processes. While individual organs segregate by age (Fig. 

1c), we lack a basic comparative understanding of aging between these organs, including 

differences in the onset and rate of aging. We therefore performed pairwise differential 

expression to determine when differentially expressed genes (DEGs) arise and if they persist 

with advancing age. While we find few DEGs between neighboring ages, the number of 
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DEGs increases dramatically in most organs relative to 3mo old adults, suggesting 

progressive, gradual changes that reach detectability only after sufficient time (Fig. 1d,e). 

Some organs, like pancreas and marrow, appear relatively refractory to aging gene 

expression changes, perhaps explaining the relatively small proportion of global variance 

due to aging in the dataset (Extended Data Fig. 1a,b). While core aging profiles are 

maintained relative to 6-month-old mice, DEGs increase greatly when compared to 1-

month-old organs still undergoing development (Extended Data Fig. 2a–c). The clear outlier 

is the spleen, which displays large quantities of cell cycle and blood cell development DEGs 

even into middle age (not shown). Notably, SCAT and GAT DEGs arise in mid-life prior to 

other organs (Fig 1d, Extended Data Fig. 2d). These may be connected to known changes in 

adipose composition, especially regarding immune cell infiltration4. Some organs, such as 

mesenteric fat and the small intestine to which it is attached, undergo acute and drastic gene 

expression changes only late in life. To independently confirm our observations, we 

generated self-organizing maps for each organ, which allows visualization of correlated gene 

nodes (Extended Data Fig. 3a)5. Not only do global aging nodes emerge, but white adipose 

tissues again exhibit strong aging profiles, with visceral GAT and MAT highly similar.

Sex also influences organ function, leading to divergent aging and disease outcomes in 

humans6. We observed prominent sex effects in GAT, SCAT, liver, and kidney, possibly 

connected with known differences in fat storage, sex hormone regulation, and renal 

hemodynamics (Extended Data Fig. 1c, d, Extended Data Fig. 3b)7–9. Upon performing 

differential gene expression between the sexes at each age, these four tissues consistently 

display the most DEGs across the lifespan (Extended Data Fig, 4a, b), and the large overlap 

between young (3mo) and old (18mo) sex DEGs suggests that these differences are 

established early and maintained throughout life (Extended Data Fig. 4c, d). However, the 

biological pathways comprising these sex DEGs largely differ from those comprising aging 

DEGs, therefore providing no evidence that sex differences influence the transcriptional 

aging profiles observed here (Extended Data Fig. 4e–h).

We next asked if early life DEGs persist with advancing age, or if they give way to new 

DEGs at older ages. In bone for example, early life expression of ossification genes 

decreases as bone formation completes, and these genes are highly correlated with late-life 

DEGs that increase in expression, typifying age-related bone loss (Supplementary Table 1). 

Overall, most organs show correlation between early and late DEGs, exemplified for nearly 

every pairwise comparison in GAT, liver, kidney, and heart (Supplementary Table 1). Indeed, 

few genes are unique to any individual age, with organ-specificity outweighing age-

specificity (Fig. 1f). Differential expression common between aging organs is especially 

interesting, as ubiquitous aging pathways may present novel therapeutic opportunities. When 

we isolated genes most commonly differentially expressed across organs, we found strong 

enrichment for immune response pathways (Fig. 1g, Extended Data Fig. 2e–h, 

Supplementary Table 2). Interestingly, the plasma B cell marker immunoglobulin J (Igj/
Jchain) demonstrates a persistent increase throughout life in 11 of 17 organs (Fig. 1g–k). 

Circadian clock genes Bhlhe40/41, Arntl, Npas2, Per3, Ciart, and Dbp also debut among top 

DEGs (Extended Data Fig. 2h). Age-related circadian disruption is well known, but these 

data perhaps highlight the underappreciated organism-wide role for circadian rhythms in 
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declining health. In fact, a malfunctioning circadian clock appears to contribute to metabolic 

and inflammatory disorders, and shortened lifespan10.

Gene expression dynamics with age

Pairwise comparisons are inherently limited, and our data allow interrogation of gene 

expression dynamics with high temporal resolution across the lifespan. We first searched for 

gene expression trajectories across the lifespan with common behavior between organs to 

reveal organism-wide processes. We calculated the average trajectory for each gene across 

all 17 organs, and clustered those averaged trajectories, revealing functional enrichment for 

aging hallmarks such as elevated inflammation, mitochondrial dysfunction, and loss of 

proteostasis (Fig. 2a, Supplementary Table 3, 4). Notably, these hallmarks undergo distinct 

dynamic patterns. For example, cluster 3 declines linearly across the lifespan and is strongly 

enriched for mitochondrial genes, whereas cluster 7 demonstrates a sharp decline of heat 

shock proteins important for protein folding, but only beginning at 12 months of age. This is 

in contrast to cluster 8 extracellular matrix genes which decline rapidly until 6 months, from 

when a more gradual decline prevails. Immune response pathways feature in clusters 4 and 

6; cluster 4 genes like beta-2 microglobulin (B2m) and Igj increase steadily throughout life. 

On the other hand, cluster 6 immune genes like Cd74 and complement C1q experience a 

non-linear increase featured by a plateau between 9 and 15 months.

Each cluster contains genes with similar global trajectories, but organ-specific differences in 

phase and magnitude suggest similar processes undergo unique dynamics. For each cluster 

we assigned an amplitude (absolute z-score change of the mean trajectory between 1mo and 

30mo) and variability index (a measure of the spread from the mean trajectory) (Fig. 2b). 

This revealed that clusters with the largest amplitudes also show the strongest organ-specific 

behavior, with adipose tissues prominently featured in clusters 4 and 6 (immune response), 

cluster 7 (protein folding), and cluster 8 (extracellular matrix) (Fig. 2c). The life-long 

increase in immune response pathways is especially striking when organs are analyzed 

independently, specifically for adipose tissues like GAT (Fig. 2d–g, Extended Data Fig. 5, 

Extended Data Fig. 6, Supplementary Table 5). Indeed, after analyzing genes of cytokine 

mediated inflammatory pathways (GO0019221), GAT displays a pronounced increase 

beginning at 18mos (Extended Data Fig. 7a, Supplementary Table 9). This includes Ccl8, 

which shows very high correlation in a majority of tissue types (Extended Data Fig. 7b). 

Interestingly, however, even though many downstream processes are shared across organs 

(Fig. 2a), there is little overlap of transcription factor (TF) regulatory networks 

(Supplementary Table 6,9). And, although tissue-specific trajectory clusters (Extended Data 

Fig. 5) show several TFs common between tissues - for example Irf1 in kidney, lung, and 

heart - the clusters often differ in behavior between tissues, or are enriched for disparate 

biological pathways (Supplementary Table 7). It thus appears that even though common 

biological pathways emerge between tissues, these are not, for the most part, driven by an 

underlying change to common TF regulatory networks. It is of course possible that more 

distal regulatory elements including enhancers or super enhancers may provide a missing 

link, and future work will hopefully analyze such regulatory elements.
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scRNA-seq confirms plasma B cell infiltration

A fundamental question emerging from transcriptomics of whole organs is whether the 

observed expression shifts are driven by cell-intrinsic changes with age, or by changes in 

cell composition. Using our Tabula Muris Senis single-cell RNA-sequencing (scRNA-seq) 

aging database2,3, we first asked if the top genes correlated with age from bulk RNA-seq 

(Supplementary Table 8) were specific to an individual cell type, or broadly expressed in 

multiple cell types. For each gene in each tissue, we assigned a dispersion score based on the 

distribution of cells expressing that gene in the single-cell data (Fig. 3a–c). For example, in 

the kidney, aconitases Aco1 and Aco2, as well as citrate synthase (Cs), are negatively 

correlated with age and expressed across cell types, demonstrating an organ-wide decline of 

mitochondrial function (Extended Data Fig. 8a–f). Other genes, like Ms4a7, are positively 

correlated with age but expressed only in kidney macrophages (Fig. 3a–c). This is 

characteristic of many other upregulated inflammatory genes specific to these cells 

(Extended Data Fig. 8b). In addition to the dispersion score, we used deconvolution software 

with cell type-specific gene expression profiles from Tabula Muris Senis FACS-Smart-seq2 

(FACS) and microfluidic-droplet (droplet) scRNA-seq data, separately, to estimate cell type 

abundance changes with age in each tissue (Extended Data Fig. 8h)11. Although the cell 

types and profiles captured with these two methods do not always overlap, in the 9 cases 

where both methods found the same cell type significantly changing in abundance with age 

with effect size greater than 0.5, the correlations are highly concordant. This revealed a 

strong increase in liver and GAT B cell numbers with age, providing further evidence that 

accumulating immune cells are a driver of the whole-organ inflammatory signal. 

Furthermore, cell fractions as profiled by the 4 methods (FACS scRNA-seq, droplet scRNA-

seq, FACS bulk deconvolution, droplet bulk deconvolution) show strong agreement, 

indicating highly stable results (Extended Data Fig. 8g). Lastly, as demonstrated in Tabula 
Muris Senis, a combination of cell type abundance shifts and cell-intrinsic gene expression 

is present in most tissues. Although overall, cell type composition appears more significant.

Cell type composition changes with age, especially regarding immune cell accumulation in 

tissues like visceral fat, is well established. However, we lack temporal and cell-specific 

resolution. Given that visceral fat expansion predicts morbidity and mortality12, we aimed to 

discover the origin of the age-related adipose inflammatory signature by using single-cell 

transcriptomic data from Tabula Muris Senis. We identified increasing numbers of gonadal 

adipose tissue T and B cells with age, including a unique cluster of Cd79+ B cells present 

only in old mice (Fig. 3d,e), consistent with increased expression of adaptive immune 

response genes in whole organs (Fig. 2a,g). Unbiased screening of genes enriched in this 

population uncovered high Igj expression (Fig. 3f, Supplementary Tables 11,13). 

Considering we observed Igj differential expression in 11 of 17 whole organs (Fig. 1g), we 

analyzed thousands of Cd79+ B cells across organs, revealing a unique cluster of Igjhigh cells 

in both the FACS scRNA-seq and droplet datasets, concordant with high expression of 

plasma B cell markers Xbp1 and Derl3 (Fig. 3g, Extended Data Fig. 9a,b,f,g). Relative to 

Igjlow cells, these cells show elevated unfolded protein response and endoplasmic reticulum 

stress pathways, characteristic of highly secretory plasma B cells (Fig. 3h, Extended Data 

Fig. 9c, Supplementary Tables 12,14)13. Strikingly, these plasma B cells originate almost 
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entirely from aged mice, and indeed accumulate across diverse organs (Fig. 3i–l, Extended 

Data Fig. 9d,e,h, Supplemental Figure 1). Taking advantage of the high temporal resolution 

available with the whole-organ dataset, we also traced these cells across the lifespan via 

expression of Igj. We observed an initial increase of Igj in marrow, bone, and spleen, organs 

responsible for producing adaptive immune cells (Extended Data Fig. 9i). Interestingly, Igj 
and Derl3 become subsequently elevated in kidney and GAT near 12 months of age, 

preceding Igj elevation in BAT, heart, and lung. Igj expression also increases in human 

visceral and subcutaneous fat (GTEx data; Extended Data Fig. 9j). It is possible that the 

changes to chemokine signaling and cell surface receptors and ligands observed here may 

explain this differential accumulation. We then reconstructed the B cell receptor locus using 

scRNA-seq data, and observe that Igjhigh plasma cells are predominantly of the IgM class 

(Extended Data Fig. 9k). Of note, we detected several clones present across diverse tissues, 

suggesting that these cells are trafficked to tissues from a common origin (Extended Data 

Fig. 9l). The role of these cells or the specificity of the antibodies they produce is currently 

unknown, but it is tempting to speculate that they may contribute to the global increase in 

autoantibodies reported with aging14.

Plasma protein & organ mRNA correlation

Investigating organs individually can reveal detailed aging processes and even common 

phenotypes potentially susceptible to intervention. But aging occurs systemically, with the 

decline of one organ possibly inciting or accelerating dysfunction throughout the body. In 

part, this may be due to alterations to blood-borne factors which mediate intercellular and 

organ-organ communication. Spurred by heterochronic parabiosis experiments 

demonstrating rejuvenation15,16, we and others have identified plasma proteins with 

detrimental or rejuvenating functions in aging brain, muscle, pancreas, bone, and other 

organs17, as well as hundreds more correlated with human aging and associated with traits 

like cognition and grip strength18. However, the origins of these factors remain largely 

unknown.

Here, we attempted to uncover organs contributing to age-related changes in the plasma 

proteome by correlating plasma protein age trajectories with their corresponding gene 

expression trajectories in each organ (Fig. 4a,b). This analysis revealed 25 plasma proteins 

correlated (Spearman correlation coefficient > 0.6) with gene expression in at least one 

organ, totaling 35 unique plasma protein/organ pairs. We discovered remarkably high 

correlation for several, such as vascular cell adhesion molecule-1 (Vcam1) in the kidney and 

fibroblast growth factor 10 (Fgf10) in the spleen, and other notable pairs such as glial 

fibrillary acidic protein (Gfap) and the brain. Especially interesting are Vcam1 and periostin 

(Postn), which both show exceptional correlation across several organs (Fig. 4c–j). Vcam1 
was recently identified as a critical mediator of brain aging by old plasma19, and the loss of 

Postn in adipose tissues contributes to impaired lipid metabolism20. Furthermore, both are 

implicated in extracellular matrix regulation and fibrotic diseases, perhaps indicating age-

related fibrosis. Throbospondin-4 (Thbs4), here decreasing with age and highly correlated 

with gene expression in muscle, was also recently discovered as a young blood-enriched 

protein that promotes synapse formation21. Interestingly, white adipose tissues emerge from 

this analysis as well, with 5 plasma proteins highly correlated with gene expression in 
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visceral MAT and GAT, and 3 in SCAT (Fig. 4a). Surprisingly, limb muscle which shows a 

modest number of DEGs displays 7 plasma proteins correlated with gene expression across 

the lifespan, including Postn, bone morphogenic protein-1 (Bmp1), matrix metalloprotease-2 

(Mmp2), and other extracellular matrix (EM)-associated proteins (Extended Data Fig. 10a). 

EM-associated proteins actually constitute a majority of the 25 plasma proteins we identified 

(Extended Data Fig. 10b). While these findings are intriguing, plasma proteins may change 

in abundance independent of gene expression differences. For example, a tissue may 

preferentially release certain proteins more with age. Furthermore, some tissues lack age-

correlation, but show high gene expression of plasma proteins (Supplementary Table 10). 

Future research will determine if these gene expression changes do indeed contribute to 

functionally relevant age-related differences in the plasma proteome, or if they mediate other 

processes like immune cell adhesion and infiltration.

Discussion

Altogether, our transcriptomic and plasma proteomic dataset offers unprecedented temporal 

resolution across the entire mouse lifespan for all major organs, and can serve as a 

fundamental resource to biologists across disciplines. We discovered gene expression 

trajectories consistent with previously identified deleterious processes like mitochondria 

dysfunction, impaired protein folding, and inflammaging. Furthermore, DEGs emerging in 

middle-age are highly correlated with those in late-life, suggesting that these harmful 

processes emerge early across diverse organs. With rejuvenation strategies like senescent 

cell ablation (senolytics), nutrient sensing manipulation (rapamycin and metformin), and 

plasma proteome alteration progressing rapidly, we need an improved understanding of 

where and when to apply these therapies22. Indeed, the common aging patterns observed 

here may help explain the profound healthspan benefits of such interventions. In closing, this 

organism-wide characterization of aging dynamics may accelerate therapeutic development, 

and the insights into circadian rhythm disruption, plasma cell accumulation, and adipose 

decline suggest avenues for renewed focus.

Methods

Mice and Organ Collection

Male and virgin female C57BL/6JN mice were shipped from the National Institute on Aging 

colony at Charles River (housed at 67–73 °F) to the Veterinary Medical Unit (VMU; housed 

at 68–76 °F)) at the VA Palo Alto (VA). At both locations, mice were housed on a 12-h light/

dark cycle, and provided food and water ad libitum. The diet at Charles River was NIH-31, 

and Teklad 2918 at the VA VMU. Littermates were not recorded or tracked, and mice were 

housed at the VA VMU for no longer than 2 weeks before euthanasia, with the exception of 

mice older than 18mos, which were housed at the VA VMU beginning at 18mos of age. 

After anaesthetization with 2.5% v/v Avertin, mice were weighed, shaved, and blood was 

drawn via cardiac puncture before transcardial perfusion with 20 ml PBS. Whole organs 

were then dissected in the following order: pancreas, spleen, brain, heart, lung, kidney, 

mesenteric adipose tissue, intestine (duodenum), gonadal adipose tissue, muscle (tibialis 

anterior), skin (dorsal), subcutaneous adipose tissue (inguinal pad), brown adipose tissue 

Schaum et al. Page 7

Nature. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(interscapular pad), bone and bone marrow (femurs and tibiae). Mice were randomized and 

organs collected from 8:30am – 4pm over several days. Organs were immediately snap 

frozen on dry ice. All animal care and procedures were carried out in accordance with 

institutional guidelines approved by the VA Palo Alto Committee on Animal Research.

Sample size, randomization, and blinding

No sample size choice was performed before the study. Randomization was performed in the 

case of mouse dissection order and during the preparation of 96-well plates for cDNA 

creation. Blinding was not performed: the authors were aware of all data and metadata-

related variables during the entire course of the study.

RNA isolation and preparation

Snap-frozen bone and skin was crushed on liquid nitrogen with a mortar and pestle. Snap-

frozen whole organs, or crushed bone or skin, were placed in TRIzol and immediately 

homogenized with a TissueRuptor in 50ml conicals (see Supplementary Table 15 for organ-

specific details). Debris from the homogenate was pelleted in 1.5ml tubes at 12,000 × g for 5 

minutes at 4°C. Supernatent was then transferred to a new 1.5ml tube where chloroform was 

added. After vortexing on max speed for 10 seconds, samples were transferred to 1.5ml or 

2ml Phase Lock Gel tubes, where water was added before spinning at 12,000 × g for 5 

minutes at 4°C. The aqueous phase was then transferred to a new tube, and after adding 

isopropanol, mixtures were vortexed at max speed for 10 seconds. Solutions were then run 

through RNeasy columns according to the manufacturer’s instructions, and eluted with the 

indicated volume of water. RNA was then quantified with a nanodrop, and frozen at −80°C.

cDNA synthesis, library preparation, sequencing, and data processing

Methods including cDNA synthesis using the Smart-seq2 protocol23, library preparation 

using an in-house version of Tn524,25, library pooling, quality control, sequencing, and data 

processing are provided at dx.doi.org/10.17504/protocols.io.2uvgew6.

Quality control and differential expression analysis

Samples with less than 4 million uniquely mapped reads were censored to exclude low-

coverage samples. Data visualization and analysis were performed using custom Rstudio 

scripts and the following Bioconductor packages: Rtsne, Deseq226, topGO, destiny and 

org.Mm.eg.db. To assess the quality of our dataset, the raw count matrix was normalized 

using Deseq2 before conducting the built-in variance stabilizing transformation. Principal 

component analysis revealed that samples clustered mostly by tissue, with the exception of 

the white fat tissues. We also plotted our data after running t-SNE, using 500 iterations and 

retaining either 50 or 6 PCs, i.e. with most PCs or only the ones explaining the most 

variance, respectively. We further complemented these analyses with hierarchical clustering 

using Ward’s clustering algorithm. In order to detect whether samples within a given tissue 

would show profound clustering by age, we finally calculated diffusion maps using the R 

package destiny with default parameters.

To identify significant differential expression changes with age, we used the raw count 

matrix as recommended for Deseq2’s standard analysis pipeline. Factors and dispersion 
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estimates were calculated for each tissue separately. We conducted differential expression 

analysis comparing samples from 3 months old mice to each consecutive time point, using 

age and sex as covariates. P-values were adjusted for multiple testing and genes with an 

adjusted p-value of below 0.05 were determined as statistically significant. In addition, we 

ran similar analyses using 1 month or 6 months old mice as reference.

To rank genes based on their regulation across tissues, we summarized in how many tissues 

a given gene would be called as significantly regulated in at least one comparison between 

samples from 3 months old mice and any following sampling time point.

Gene expression trajectory analysis

To estimate gene trajectories during aging, normalized counts from DEseq2 were z-scored 

and LOESS (Locally weighted scatterplot smoothing) regression was fitted for each gene 

using the median expression per age group in each tissue. Whole-organism trajectory per 

gene was estimated using the average trajectory across the 17 tissues. Organism-wide 

analysis focused on 11,403 genes expressed in all tissues (i.e. genes among the 15,000 most 

expressed genes in each tissue).

The distance matrix between whole-organism gene trajectories was computed using the 

Euclidian distance and hierarchical clustering was performed using the complete method. 

We identified 10 clusters of genes changing with age, ranging from 1 to 4,571 genes. 

Clusters 9 and 10 were excluded from further analysis as they included less than 10 genes.

To identify clusters changing the most between tissues, we computed an amplitude and 

variability index. The amplitude index corresponds to the z-score change (absolute value) of 

the average trajectory between 1 and 27mos. The variability index, which measures the 

spread of organ-trajectories, corresponds to the average Euclidian distance between each 

organ-specific trajectory and the organism-wide trajectory.

Reactome, KEGG and GO databases were queried to understand the biological functions of 

each cluster. We used the R TopGO27 package for GO analysis and the R clusterprofiler28 

package for KEGG and Reactome analyses. The 11,403 genes expressed in all tissues served 

as the background set of genes against which to test for over-representation. Since 

clusterprofiler requires EntrezID as input, we mapped Gene Symbols to EntrezID using the 

org.Mm.eg.db29 package. When Gene Symbols were mapped to multiple EntrezID, only the 

1st EntrezID was used. Q-values were estimated using Benjamini–Hochberg approach for 

the different databases taken separately. In addition, for GO analysis, q-values were 

calculated for the three GOs classes (molecular function, cellular component, biological 

process) independently.

Organ-specific clustering were performed using the 15,000 most expressed genes per tissue. 

For each tissue, five clusters were considered for further analysis and the pathways analysis 

used the corresponding background set of genes against which to test for over-

representation.
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Single-cell RNA-sequencing analysis (FACS scRNA-seq)

Pre-processed and annotated scRNA-seq data (FACS followed by Smart-seq2 protocol) from 

gonadal adipose tissue (3 and 24 months old) were obtained from the Tabula Muris Senis 
consortium. Given the lack of data from aged female mice, we focused our analyses on 

samples derived from male mice. Additionally, cells with less than 200 or more than 6,500 

genes were excluded. This yielded 1,962 high quality cell transcriptomes derived from four 

young and four old biological replicates. Data visualization and analysis were performed 

using custom Rstudio scripts and the following Bioconductor packages: Seurat (version 3)30 

and topGO. Data normalization and scaling was performed using Seurat’s built-in 

SCTransform31 function with default parameters. A shared-nearest-neighbors graph was 

constructed using the first 30 PC dimension before clustering cells using Seurat’s built-in 

FindClusters function with a resolution of 0.8 and default parameters. Annotations for B and 

T cells were adopted from the Tabula Muris Senis consortium. Cell numbers were 

normalized to the total number of detected cells and compared using standard t-tests. Igjhigh 

B cells formed a separate cluster and were identified using Seurat’s FindMarkers function 

(parameters: only.pos=T min.pct=0.15 thresh.use=0.25, test=’MAST’).

In order to profile Igjhigh B cells organism-wide, we obtained the complete and pre-

processed scRNA-seq dataset (FACS followed by Smart-seq2 protocol) from the Tabula 
Muris Senis consortium – encompassing cells isolated from all major tissues. Focusing on 

data from male samples only, we filtered for cells showing detectable expression of the 

Cd79a gene (alpha chain of the B cell receptor). Cell transcriptomes were thus derived from 

four young and four old biological replicates. The resulting 10,867 cells were analyzed using 

Seurat, as described above. A shared-nearest-neighbors graph was constructed using the first 

10 PC dimension before clustering cells using Seurat’s built-in FindClusters function with a 

resolution of 0.4 and default parameters. Igjhigh B cells formed a separate cluster (cluster 11; 

129 cells). To characterize Igjhigh-specific expression profile, Seurat’s FindMarkers function 

(parameters: only.pos=F min.pct=0.15 thresh.use=0.25, test=‘MAST’) was run comparing 

the cluster of Igjhigh B cells against all other Cd79a cells in the dataset. Functional 

enrichment analysis of the top 300 differentially expressed genes (sorted by adjusted p-

value) were compared to all 1,051 genes passing the filtering parameters for the test. Top-

ranked GO terms were selected and visualized using the CellPlot package (https://

github.com/dieterich-lab/CellPlot). The full-length GO terms were shortened to fit into the 

figure format; the complete table of significantly enriched GO terms and associated genes 

can be found in Supplementary Table 12.

Single-cell RNA-sequencing analysis (Microfluidic droplet)

The Tabula Muris Senis consortium encompasses scRNA-seq data generated with 

microfluidic droplets, allowing to profile more cells without prior selection of surface 

markers32. In order to profile Igjhigh B cells organism-wide, we obtained the complete and 

pre-processed droplet dataset. Focusing on data from male samples only, we filtered for cells 

showing detectable expression of the Cd79a gene. Cell transcriptomes were derived from the 

following sampling time points: 2× 1 month old, 2× 3 months old, 2× 18 months, 4× 24 

months and 3× 30 months. The resulting 23,796 cells were analyzed using Seurat, as 

described above. A shared-nearest-neighbors graph was constructed using the first 10 PC 
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dimension before clustering cells using Seurat’s built-in FindClusters function with a 

resolution of 0.4 and default parameters. Igjhigh B cells formed a separate cluster (cluster 5; 

1,198 cells). To characterize Igjhigh-specific expression profile, Seurat’s FindMarkers 

function (parameters: only.pos=F min.pct=0.15 thresh.use=0.25, test=‘MAST’) was run 

comparing the cluster of Igjhigh B cells against all other Cd79a cells in the dataset. 

Functional enrichment analysis of the top 300 differentially expressed genes (sorted by 

adjusted p-value) were compared to all 1886 genes passing the filtering parameters for the 

test. Top-ranked GO terms were selected and visualized using the CellPlot package (https://

github.com/dieterich-lab/CellPlot). The full-length terms were shortened to fit into the figure 

format; the complete table of significantly enriched GO terms and associated genes can be 

found in Supplementary Table 14.

Plasma proteomic analysis

All animal care and procedures were carried out in accordance with institutional guidelines 

approved by the VA Palo Alto Committee on Animal Research. Sixty-five male (n=5–6 per 

age group, 1mo/3mo/6mo/9mo/12mo/15mo/18mo/21mo/24mo/ 27mo/30mo) and 16 virgin 

female (n=4 per age group, 3mo/12mo/18mo/21mo) C57BL/6JN mice were shipped from 

the National Institute on Aging colony at Charles River (housed at 67–73 °F) to the 

Veterinary Medical Unit (VMU; housed at 68– 76 °F)) at the VA Palo Alto (VA). Mice were 

provided food (NIH-31 at Charles River, and Teklad 2918 at the VA VMU) and water ad 
libitum. Mice were housed on a 12-h light/dark cycle at both places. Mice older than 18- 

months were housed at the VA VMU until they reached the experimental age. Mice younger 

than 18- months were housed for less than 2 weeks at the VA VMU. After anaesthetization 

with 2.5% v/v Avertin, blood was drawn via cardiac puncture. EDTA-plasma was isolated by 

centrifugation at 1,000g for 10 min at 4 °C. Samples were aliquoted, stored at −80 °C and 

sent on dry ice to SomaLogic Inc. (Boulder, Colorado, US).

The SomaLogic platform is primarily designed to detect and measure human proteins. In 

order to reduce the influence of cross-species effects on our analysis, we first determined 

proteins in our dataset with high evolutionary conservation between mouse and humans. To 

this end, we downloaded the plain text file containing all homologies between mouse and 

human along with sequence identifiers for each species (HOM_MouseHumanSequence.rpt) 

from MGI (http://www.informatics.jax.org/). Next, reference protein sequences for human 

and mouse were downloaded from UniProt (https://www.uniprot.org/). Using the R 

“Biostrings” library a global pairwise sequence alignment has been carried out between the 

human and mouse sequences. Further, only sequences with identity of 80% across the whole 

alignment were included in the downstream analyses.

To determine the effect of age on the plasma proteome, relative fluorescent units (RFUs) 

provided by Somalogic were log10- and linear models adjusted for age and sex were used. 

Type II sum of squares (SS) were calculated using R car package33 and q-values were 

estimated using Benjamini–Hochberg (B.H.) approach34.

Raw protein abundance data as measured by the Somalogic platform were scaled (z-

transformed) before calculating the median across all replicates for each sampled age time 

point to obtain an average trajectory. Normalized RNA-seq counts after pre-processing with 
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DESeq2 were transformed for each tissue alike. In order to compare plasma protein changes 

with shifts in mRNA expression in any tissue, we calculated pairwise Spearman’s rank 

correlation coefficients between a given protein trajectory with the expression trajectory for 

its corresponding gene in each tissue separately. Thus, a given protein could be correlated 

with expression changes in multiple tissues. In order to limit our analysis to mRNA /protein 

pairs reflecting robust changes, we filtered the resulting mRNA/protein correlations as 

follows: (1) The protein had to exhibit a sequence homology between human and mouse of 

at least 75% (770 proteins). (2) The protein had to change significantly with age according 

to the linear modeling analysis (q<0.05; 115 proteins). (3) The corresponding gene had to be 

differentially expressed in the given tissue in at least one pairwise comparison between 3 

months old mice and any consecutive time point (q<0.05; 95 proteins). (4) The mRNA /

protein profiles had to exhibit a Spearman’s rank correlation of at least 0.6 (25 proteins; 35 

protein/gene pairs). BH correction per tissue was applied to assess significance of proteins / 

mRNA profiles correlations. Given that genes can be expressed at differing levels across 

tissues, we additionally calculated average mRNA expression ranks for each gene. To this 

end, we ranked for a given gene each tissue on its average mRNA expression, based on 

DESeq2’s baseMean.

To investigate connectivity networks between top proteins correlated with organ gene 

expressed, we used String version 11.0, available at https://string-db.org/35.

Correlation analysis of gene expression and ageing using self-organizing maps (SOM).

For every gene a tissue-wise Spearman’s rank correlation coefficient was computed based on 

the expression and age. Similarly, we computed Spearman’s rank correlation coefficients for 

expression and sex. The resulting correlation matrix was then filtered, such that only genes 

that were significantly correlated with either age or sex in any tissue (P < 0.01 after false 

discovery rate adjustment with the Benjamini-Hochberg procedure34) were considered. This 

matrix was then used to create a self-organizing map (SOM)36 with the Kohonen R package 

(version 3.0.8)37. In addition to Spearman’s rank correlation coefficients for comparing gene 

expression and sex we also tested other measures, such as log transformed P-values from 

one-sided Wilcoxon Ranksum test (testing both, i.e. “greater” and “less” alternatives and 

flipping the sign if the “greater” alternative yielded a lower P-value) and Somers’ D. Since 

the different approaches gave similar results we stayed for gender and age with the 

Spearmann correlation for better comparability.

Specificity of gene expression for tissues and ages.

To identify how specific a gene is expressed at a certain time point or in a certain tissue we 

employed an approach known from gene set analysis, so-called gene set enrichment analysis 

(GSEA). Instead of computing how significantly a biological category is enriched in a sorted 

list of genes, we computed how enriched a certain tissue, age, or pair of tissue/age is 

enriched in each gene. For each gene we computed 10 enrichment scores for the 10 ages, 17 

enrichment scores for the 17 tissues and 170 enrichment scores for the combinations of 

them. The specificity is defined as the difference between the maximal enrichment and 

second maximal enrichment for all tissues, time points and combinations. The higher the 

difference is the more specific is the gene either for a tissue, time point or the combination 
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thereof. Notably, the maximal enrichment score can be translated into p-values, e.g. by 

random sampling. For better comparability we present however the running sum directly and 

do not translate them to p-values. Here, the approach is referred to as Sample Set 

Enrichment Analysis (SSEA).

Estimating the variance of the data depending on metadata.

To estimate the variance in the data depending on age, tissue or gender we made use of 

Principal Variance Component Analysis (PVCA) as implemented in the Bioconductor 

Package pvca. PVCA combines the strength of principal component analysis and variance 

components analysis (VCA). Originally it has been applied to quantify batch effects in 

microarray data. In our case we however do not provide experimental batches but rather 

groups of meta data as input.

Human transcriptomic data: Human gene expression data were obtained from the GTEx 

portal website (http://www.gtexportal.org/). Read counts from the GTEx analysis v7 

(GTEx_Analysis_2016–01-15_v7_RNASeQCv1.1.8_gene_reads.gct) were normalized 

using yarn38.

Single-cell dispersion score

We first selected FACS cells from Tabula Muris Senis with more than 500 distinct genes and 

50k reads. Due to the lower number of female replicates, we considered only four 3-month-

old and four 24-month-old males. We then created log (1+CPM) transformed single-cell 

count matrices per tissue, calculated a 16-dimensional PCA from this data for each tissue, 

and embedded each cell in a 16-dimensional latent space using the PCA components. Note 

that the dimensionality of the PCA was chosen based on the explained variance per 

component. For each gene in each tissue, we then selected those cells expressing it (log 

(1+CPM) > 0), and calculated their weighted center in the single-cell latent space, where we 

considered normalized gene expression values as weights. We then defined the “single-cell 

dispersion” as the weighted mean distance of the cells from their center, normalizing within 

each tissue to enable cross-tissue comparisons. Finally, we defined methodology to 

systematically analyze gene: we computed for each gene per tissue the Spearman correlation 

of its bulk Deseq2 normalized gene expression with aging. We then plotted the single-cell 

dispersion against the Spearman’s rank correlation coefficient for each bulk aging DEG.

Cell intrinsic gene expression versus cell abundance

We first selected FACS cells from Tabula Muris Senis with more than 500 distinct genes and 

50k reads. Due to the lower number of female replicates, we considered only males. We then 

used the log (1 + CPM) transformed data, and considering each tissue separately, we binned 

these cells into young (≤3mo; Y) and old (>3mo; O). For each gene, we then calculated the 

log2 fold-change of cell counts and read counts between Y and O, where cell count is 

defined as the fraction of cells within the tissue expressing the gene (log (1+CPM) > 0), and 

read count is defined as the mean read count of the gene in the cells that express it. Next, we 

analyzed each gene in the bulk data, first computing the Spearman correlation of DESeq2 

normalized gene expression with age. We then binned genes into those increasing with age 

(Spearman > 0.7; I) and decreasing with age (Spearman < 0.7; D). Finally, we compare the 
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single-cell log2 Y vs. O cell and read counts with the bulk correlations I and D by running 

the Wilcoxon-Mann-Whitney test, to determine if single-cell data based cell or read count 

changes separate the bulk groups I and D. We then plot the resultant read and cell count U-

statistics against the corresponding p-value for each tissue for the droplet and FACS single-

cell data separately.

Deconvolution with CIBERSORTX

We first used the signature matrix creation feature of CiberSortX11, which detects cell type-

specific signature genes using annotated single-cell data. As input, we used male cells from 

Tabula Muris Senis of every age to create tissue-specific signature matrices from the FACS 

and droplet data, separately. Consistent with cell selection criteria used through the 

manuscript, we selected droplet cells with more than 500 distinct genes and 5k reads, and 

more than 500 distinct genes and 50,000 reads from FACS cells. We input single-cell 

normalized CPM data without log transformation, as well as CPM bulk tissue data on which 

to perform deconvolution. Deconvolution was performed in S-mode due to the possibility of 

high technical variance, with all other parameters set to default, and the resultant inferred 

cell type fractions were correlated with age using Spearman’s rank correlation.

Igj and plasma cell validation experiments

RNAscope Multiplex Fluorescent Reagent Kit v2 was used on fresh frozen kidney sections 

20um thick from 3-month-old and 24-month-old C57BL/6JN male mice, with Igj-C1 probes 

and Opal 690 Reagent Pack (Akoya Biosciences FP1497001KT), with no modifications to 

the kit instructions. Images were acquired at 20x on a Keyence BZ-X710 fluorescence 

microscope.

Cell suspensions for fluorescence activated cell sorting (FACS) of plasma cells were 

generated from gonadal adipose tissue (GAT) and kidney. Following cardiac perfusion with 

PBS, tissues were immediately dissected and minced to a paste with scissors. Samples were 

resuspended in 40ml buffer (GAT: 10% horse serum in F12; kidney 2% FBS in RPMI) and 

passed through a 100um filter into a 50ml conical tube, grinding with a syringe plunger to 

further dissociate clumps. Filters were washed with 5ml buffer, and all 45ml was then passed 

through a 35um filter, washing with another 5ml buffer. Filtered cells were then pelleted 

(500 × g, 5 minutes, 4°C) and treated with 10ml ACK lysis buffer for 5 minutes at room 

temperature. After pelleting, washing with 5ml buffer, and pelleting again, cells were 

resuspended in 1ml FACS buffer (2% FBS in PBS), and aliquoted through 35um strainer 

caps into FACS tubes. Cells were pelleted and resuspended in the antibody cocktail: Cd138-

PE (1:400; Biolegend142504), Cd19-BV421 (1:200; Biolegend 115538), B220-APC (1:100; 

Biolegend 103212) for 30min on ice. After pelleting and resuspending, cells were stained 

with 1ul 1:1000 Sytox Green (Thermo S7020) immediately before sorting on a BD FACS 

Aria III. Gates were set to capture live singlets and reduce debris according to standard 

procedures, and Cd138high cells were quantified.
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Extended Data

Extended Data Figure 1. Gene expression variance analysis.
a, Visualization of the Principal Variance Component Analysis, displaying the gene 

expression variance explained by residuals (i.e. biological and technical noise) or 

experimental factors such as tissue, age, sex, and respective combinations. n=904 total 

samples b, c, t-SNE visualization of all samples, based on the first 6 principal components 

colored by age (b) and sex (c). d, Hierarchical clustering of all samples using Ward’s 
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algorithm. Samples are annotated by tissue, sex and age. Highlighted are samples clustering 

by sex in selected tissues. Non-specific clustering of samples derived from white adipose 

tissues is further highlighted.

Extended Data Figure 2. Validation of differential gene expression analysis.
a, Heatmap displaying the number of DEGs per tissue for pairwise analysis on adjacent time 

points. b, Heatmap displaying the number of DEGs per tissue for pairwise comparisons with 

a 1mo reference. c, Heatmap displaying the number of DEGs per tissue for pairwise 
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comparisons with a 6mo reference. d, Boxplot (mean, 1st & 3rd quartiles) representation 

displaying the number of DEGs per tissue (n=17 tissues) for pairwise comparisons with a 

3mo reference. Outliers show tissues undergoing exceptionally strong expression shifts at a 

given age. e, Enrichment for functional categories in the top100 genes differentially 

expressed in the most tissues (ranked using pairwise comparisons with a 3mo reference). 

Pathway enrichment with GO, Reactome, and KEGG databases. Enrichment was tested 

using Fisher’s exact test (GO) and the hypergeometric test (Reactome and KEGG). To 

estimate the contribution of each tissue, we used the number of genes per pathway in the 

top100 DEGs and estimated the percentage of significant genes per tissue. q-values 

estimated with Benjamini-Hochberg for each database separately, and for GO classes 

(molecular function, cellular component, biological process) independently. n as in (d). f, 
Cumulative sum of DEGs per tissue in the ranked top100 genes. g, Number of DEGs per 

tissue in the top100 genes. n=54 (MAT), 52 (kidney), 52 (GAT), 54 (spleen), 50 (liver), 54 

(lung), 50 (intestine), 55 (SCAT), 51 (skin), 53 (BAT), 52 (heart), 52 (muscle), 53 (brain), 52 

(WBC), 54 (bone), 51 (marrow), 46 (pancreas). q-values as in (e). h, STRING analysis of 

the top 30 genes in Figure 1g.

Schaum et al. Page 17

Nature. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 3. Self-organizing maps of gene correlation with age and sex.
Self-organizing maps (SOMs) were generated from transcriptome-wide gene expression 

correlation (Spearman’s rank correlation coefficient) of each gene (n=12,462 genes) with 

age (a) and sex (b). Genes with similar correlation are mapped to the same cell, and cells 

grouped by similarity. The SOM cell layout is common across organs, with the average 

across all organs at bottom.
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Extended Data Figure 4. Sex-specific expression changes across organs.
a, Smoothed lineplot displaying the number of DEGs between female and male animals at 

each age. Positive (negative) values represent up-regulated (down-regulated) genes. Grey 

lines: all other tissues. b, Heatmap representation of (a). c, mRNA expression of Apoe in 

GAT and Axin2 in spleen. Black line: LOESS regression. n=45 (GAT) and n=47 (spleen) 

independent samples. d, Venn diagrams depicting the overlap of DEGs between females and 

males detected at 3mo and 18mo of age in GAT, SCAT, liver and kidney. One-sided Fisher’s 

exact test. *** P<0.0001. e-h, Top 10 GO terms enriched among the DEGs between females 
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and males at 18mo of age in GAT (e), SCAT (f), liver (g) and kidney (h). Means ± SEM. 

n=2 (females) & n=4 (males) independent animals for each organ. q-values estimated with 

Benjamini-Hochberg for each database separately, and for GO classes (molecular function, 

cellular component, biological process) independently.

Extended Data Figure 5. Organs-specific gene expression dynamics.
For each of the 17 organs (rows), the average trajectory of the 15,000 most highly expressed 

genes is represented in the 1st column and unsupervised hierarchical clustering was used to 
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group genes with similar trajectories (columns 2). Five clusters were used (columns 3–7) for 

further analysis. Average trajectory for each cluster +/− SD are represented.

Extended Data Figure 6. Pathway enrichment analysis of organ-specific clusters.
Clusters from Extended Data Figure 5 show enrichment for genes in functional categories. 

Pathway enrichment was tested using GO, Reactome, and KEGG databases. Enrichment was 

tested using Fisher’s exact test (GO) and the hypergeometric test (Reactome and KEGG). 

The top 5 pathways for each cluster are shown. q-values estimated with Benjamini-
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Hochberg for each database separately, and for GO classes (molecular function, cellular 

component, biological process) independently. Sample size per cluster / tissue is indicated in 

Extended Data Figure 5.

Extended Data Figure 7. Cytokine and transcription factor analysis
a, Age-related changes for inflammatory cytokine/chemokine (Cytokine mediated signaling 

pathways GO:0019221; n=501 genes), and transcription factors (TRANSFAC database; 
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n=334 genes). Thicker lines surrounded by white represent the average trajectory for each 

cluster, +/− standard deviation. b, c, Spearman correlation coefficient for aging genes in (a).

Extended Data Figure 8. Integration of bulk and single-cell transcriptomic data.
a, b, Representative GO terms enriched among the genes with highly disperse (a) and cell-

specific (b) expression patterns. n=1,108 cells. q-values estimated with Benjamini-Hochberg 

for each database separately, and for GO classes (molecular function, cellular component, 

biological process) independently. c, Kidney Aco2 mRNA expression. Black line: LOESS 
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regression. ρ: Spearman’s rank correlation coefficient. n=52 independent samples. Means ± 

SEM. d, e, t-SNE visualization of scRNA-seq data (FACS) from the kidney, colored by 

expression of Aco2 (d) and Cs (e) n=1,108 cells. f, Violin plot representing expression of 

Aco1 and Aco2 across all profiled cell types in the kidney. Points indicate cell-wise 

expression levels and violin indicates average distribution split by age. T-test. n=325 cells 

(3mo) and 783 cells (24mo). g, Spearman’s rank correlation for cell type fractions 

significantly (P<0.05) changing with age, based on deconvolution with FACS or droplet 

scRNA-seq expression signatures. n=38 (facs bat), n=37 (droplet gat), n=37 (facs gat), n=34 

(droplet kidney), n=35 (facs kidney), n=35 (droplet liver), n=35 (facs liver), n=37 (droplet 

lung), n=37 (facs lung), n=38 (droplet marrow), n=36 (facs marrow), n=38 (droplet mat), 

n=39 (facs mat), n=34 (droplet pancreas), n=32 (facs pancreas), n=37 (droplet scat), n=38 

(facs scat), n=35 (droplet skin), n=33 (facs skin), n=36 (droplet spleen), n=37 (facs spleen) 

independent samples. h, Pairwise comparisons cell fractions between scRNA-seq (FACS), 

scRNA-seq (droplet), FACS-based bulk RNA-seq deconvolution, and droplet-based bulk 

RNA-seq deconvolution. Each point represents an individual cell type in an individual tissue 

type.
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Extended Data Figure 9. Identifying Igjhigh B cells with FACS and droplet scRNA-seq.
a, t-SNE visualization of all Cd79a-expressing cells present in the Tabula Muris Senis FACS 

dataset (17 tissues). Colored clusters as identified with the Seurat software toolkit. Igjhigh B 

cell cluster 11 highlighted. n=10,867 cells. b, t-SNE in (a) colored by the Igjhigh B cell 

markers Igj, Xbp1 and Derl3. c, GO terms enriched among the top 300 marker genes of 

Igjhigh (n=129 cells) versus Igjlow(n=10,738 cells)(FACS). q-values estimated with 

Benjamini-Hochberg for each database separately, and for GO classes (molecular function, 

cellular component, biological process) independently. d, Distribution of Igjhigh as 
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percentages of Cd79a expressing cells per tissue. e, Percentage of Igjhigh B cells of all 

Cd79a expressing cells across all tissues. n=5 (3mo) & n=4 (24mo) independent animals. T-

test, means ± SEM. f, t-SNE visualization of all Cd79a-expressing cells present in the Tabula 
Muris Senis droplet dataset (17 tissues). Colored clusters as identified with the Seurat 

software toolkit. IgJhigh B cell cluster 5 highlighted. n=23,796 cells. g, t-SNE in (f) colored 

by the B cell marker Cd79a and Igjhigh B cell marker Derl3. h, Percentage of Igjhigh B cells 

of all Cd79a expressing cells across all tissues. i, Heatmap of the z-transformed Igj 
expression trajectories across bone (n=54), marrow (n=51), spleen (n=54), liver (n=50), GAT 

(n=52), kidney (n=52), heart (n=52), muscle (n=52). j, mRNA expression change of Igj in 

human visceral fat (20s n=25; 50s n=124; 70s n=12) and subcutaneous fat (20s n=32; 50s 

n=149; 70s n=13) (data from GTEx consortium). Boxplot (median, 1st and 3rd quartiles). k, 

Number of Igjhigh B cells with successfully assembled B cell receptor locus, split by animal 

and immunoglobulin class. l, Clonally amplified Igjhigh B cells as detected in animal 1 and 

3, grouped by tissue of origin (color) and immunoglobulin class (shape).

Extended Data Figure 10. STRING analysis of top correlating plasma proteins.
a, The top 7 plasma proteins correlated with gene expression in muscle, colored by pathway. 

b, the top 25 plasma proteins correlated with gene expression in any organ.
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Figure 1. Pairwise differential expression across organs.
a, Experiment outline. 17 organ types from males 1–27mos old (n=4) and females 1–21mos 

old (n=2). Icons made by Freepik from www.flaticon.com. b, t-SNE visualization of all 

samples, based on the first 50 PCs. c, Diffusion maps of GAT, lung, and liver, colored by 

age. n=38 (GAT), n=37 (liver), n=38 (lung) independent samples. d, Smoothed lineplot 

displaying the number of DEGs for pairwise comparisons with a 3mo reference. Positive 

(negative) values represent up-regulated (down-regulated) genes. Grey lines represent non-

labeled tissues. e, Heatmap of (d). f, Scatterplot displaying gene-wise enrichment scores for 

tissue, age, and tissue/age (see methods: Specificity of gene expression for tissues and ages). 

g, Tissue-wise expression changes with age (column-wise from left to right) for the top 15 

genes exhibiting shifts in most tissues. h-j, Igj expression in marrow (h), spleen (i), and GAT 

(j). n=51, 54, 52 independent samples. LOESS regression indicated by black line. Means ± 

SEM. k, Z-transformed, smoothed gene expression trajectory of Igj, colored by tissue. n=53 

(BAT), 54 (bone), 52 (GAT), 50 (intestine), 52 (kidney), 50 (liver), 54 (lung), 51 (marrow), 

54 (MAT), 52 (muscle), 54 (spleen).
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Figure 2. Aging gene expression dynamics across organs.
a, Whole-organism gene expression trajectory clustering. The trajectory for each gene was 

averaged across all 17 organs, and those average trajectories grouped into 8 clusters. The 

number of genes and the top functionally enriched pathway for each cluster are reported. 

Within each cluster, the average trajectory for each individual organ is overlaid. Cluster 

trajectories +/− standard deviation (n=17 tissue trajectories) are indicated in black and grey. 

Enrichment was tested using Fisher’s exact test (GO) and the hypergeometric test (Reactome 

and KEGG). Q-values estimated with Benjamini-Hochberg for each database separately, and 

for GO classes (molecular function, cellular component, biological process) independently. 

b, Identification of stable and variable clusters between organs. For each cluster in (a), an 

amplitude and variability index were calculated. c, The 4 clusters changing the most in (b) 

are represented, and adipose tissues are indicated. d, Unsupervised hierarchical clustering 

was used to group genes with similar trajectories in GAT (n=15,000 most highly expressed 

genes). e, Clustering dendrogram and cut-off used to define 5 independent clusters in GAT. 

f, Gene trajectories of the 5 clusters in (e) are represented in grey. Purple lines surrounded by 

white represent the average trajectory for each cluster, +/− standard deviation (n genes 

indicated for each cluster). g, The top 5 pathways for each cluster in (e). n genes as in (e), 

with the 15,000 most highly expressed genes as background. Enrichment and q-values as in 

(a).
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Figure 3. Integration of bulk and single-cell transcriptomic data identifies cross-tissue 
infiltration of Igjhigh plasma B cells.
a, Aco1 and Ms4a7 kidney mRNA expression. LOESS regression indicated by black line. 

Spearman’s rank correlation coefficient ρ is indicated. Means ± SEM. b, A gene with 

‘disperse’ (Aco1) and ‘specific’ (Ms4a7) single-cell expression pattern in kidney. n=1,108 

cells. c, Single-cell dispersion scores (scRNA-seq) with Spearman’s rank correlation 

coefficient (≥ 0.6; bulk RNA-seq) for a given tissue. Color represents organ type. Dot size 

corresponds to % of cells per tissue expressing a given gene. d, t-SNE visualization of 

scRNA-seq data (FACS) from GAT, colored by age. A cluster of B cells present only in aged 

GAT is circled. e, GAT B and T cells as a percentage of all analyzed cells. n=4 independent 

animals. T-test, means ± SEM. f, Expression of B cell marker Cd79a and plasma B cell 

marker Igj. g, t-SNE visualization of scRNA-seq data (droplet) of all Cd79a-expressing cells 

present in the Tabula Muris Senis dataset (17 tissues), colored by the plasma B cell markers 

Igj and Xbp1. h, GO terms enriched among the top 300 marker genes of Igjhigh (n=1,198 

cells) versus B cells (n=22,598 cells), with 1,886 genes passing filtering as background. q-

values estimated with Benjamini-Hochberg for each database separately, and for GO classes 

(molecular function, cellular component, biological process) independently. i, Distribution 

of IgJhigh as percentages of Cd79a expressing cells per tissue. j, Representative FACS 

scatterplots from 2 independent experiments showing increased plasma cell abundance in 

aged bone marrow. Cd138, plasma cell marker. B220, B cell marker. k, FACS quantification 

for kidney and marrow. n=4 independent animals. T-test, means ± SEM l, Representative 

images from 2 independent experiments of Igj RNAscope of 3mo and 24mo kidney. 

Virtually no Igj signal was present in young kidneys. 100μm scale bar.
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Figure 4. Plasma protein correlation with organ-specific gene expression.
a, Spearman correlation coefficient (≥ 0.6) between plasma proteins and corresponding 

organ-specific gene expression. * indicates q<0.05; Benjamini-Hochberg correction per 

tissue. Dot size corresponds to average gene expression across tissues. Top right: number of 

proteins correlated with gene expression in the top 6 organs. Analysis details in methods. b, 

Heatmap showing correlation coefficients for the top 25 plasma proteins in (a) across all 

organs. c, log-transformed plasma protein abundance of Vcam1. n=77 independent samples. 

Boxplot (mean, 1st & 3rd quartiles, min & max). d, e, Vcam1 mRNA expression in kidney 

(n=52) (d) and heart (n=52) (e). Black line: LOESS regression. Means ± SEM. f, Z-

transformed, smoothed gene expression trajectory of Vcam1 in the kidney (n=52) and heart 

(n=52). g, log-transformed plasma protein abundance of Postn. n=77 independent samples. 

Box and whisker plots centered on mean. h, i, Postn mRNA expression in BAT (n=53) (h) 

and GAT (n=51). (i). Black line: LOESS regression. Means ± SEM. j, Z-transformed, 

smoothed gene expression trajectory of Postn in BAT (n=53), GAT (n=51), MAT (n=54), 

Lung (n=54), Muscle (n=52), SCAT (n=55). Means ± SEM.
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