
BRIEF COMMUNICATION OPEN

The Brazilian Initiative on Precision Medicine (BIPMed):
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The development of precision medicine strategies requires prior knowledge of the genetic background of the target population.
However, despite the availability of data from admixed Americans within large reference population databases, we cannot use
these data as a surrogate for that of the Brazilian population. This lack of transferability is mainly due to differences between
ancestry proportions of Brazilian and other admixed American populations. To address the issue, a coalition of research centres
created the Brazilian Initiative on Precision Medicine (BIPMed). In this study, we aim to characterise two datasets obtained from 358
individuals from the BIPMed using two different platforms: whole-exome sequencing (WES) and a single nucleotide polymorphism
(SNP) array. We estimated allele frequencies and variant pathogenicity values from the two datasets and compared our results
using the BIPMed dataset with other public databases. Here, we show that the BIPMed WES dataset contains variants not included
in dbSNP, including 6480 variants that have alternative allele frequencies (AAFs) >1%. Furthermore, after merging BIPMed WES and
SNP array data, we identified 809,589 variants (47.5%) not present within the 1000 Genomes dataset. Our results demonstrate that,
through the incorporation of Brazilian individuals into public genomic databases, BIPMed not only was able to provide valuable
knowledge needed for the implementation of precision medicine but may also enhance our understanding of human genome
variability and the relationship between genetic variation and disease predisposition.
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INTRODUCTION
Precision medicine combines molecular and clinical information to
improve healthcare delivery. Since precision medicine uses
individualised information from patients, such as genomic
signatures, it allows for more accurate diagnoses and tailored
treatment options1,2. This approach is a significant improvement
over the current paradigm in which physicians prescribe
therapeutics designed to most effectively treat the average
patient. However, precision medicine cannot be implemented
without understanding the contribution of human genomic
diversity to health and disease3. Therefore, the development of
strategies used in precision medicine requires detailed knowledge
of the genetic background of the population throughout which it
will be applied. This approach is particularly important because
the distribution of rare and common variants may differ
depending on the population considered4–8. This issue is more
challenging for admixed American populations since their
genomes present a mosaic of chromosomal tracts derived from
different ancestral populations9–11.
Large-scale genomic studies conducted using subjects not

selected based on disease-related phenotypes (defined here as
the reference population) have been performed to characterise
the genetic architecture of specific populations. These studies
include the HapMap project12, 1000 Genomes Project4, Simons
Genome Diversity Project13, and Genome Aggregation Database
(gnomAD)14. More recently, national initiatives devoted to the
development and improvement of precision medicine have been
conducted in several countries, including the United States15, the
United Kingdom16, the Netherlands17, Qatar18, Japan19, Australia20,

and some African countries21. Several of the projects relied on the
findings of previous large-scale genomic studies to guide
experimental design and analytical protocols, highlighting the
importance of acquiring genomic information at the population
level to facilitate the implementation of precision medicine.
However, despite the availability of reference genomes from

some admixed American populations, this population group
remains underrepresented in all large reference population
databases, and especially in publicly available datasets22. For
instance, we found that of the 2504 individuals who participated
in the 1000 Genome Project and 141,456 individuals included in
the gnomAD v2.1 dataset, only 20.13% and 12.53% were admixed
Americans, respectively. Even though Brazil has the largest
population among all countries in Latin America and the
Caribbean (32.57% in 2015) and is the fifth-largest population
worldwide (https://population.un.org/wpp/Download/Standard/
Population/), the Brazilian population is underrepresented in both
public genomic reference databases and genome-wide associa-
tion studies (GWAS). This observation remains true even if one
includes Latin American populations represented in worldwide
collaborative studies, such as the 1000 Genomes Project and
gnomAD, which involved Colombian, Peruvian, Puerto Rican, and
Mexican populations4,14,22. Indeed, among the 3529 studies
published in the GWAS catalogue3, only 75 studies contain data
from Brazilian individuals, and only three are exclusively
comprised of Brazilian populations23–25.
Similar to other admixed American populations, the Brazilian

population is derived from sub-Saharan African, European, and
Native American populations25–28. However, we cannot use
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other admixed American populations as a reference for
Brazilians due to differences in the proportions of ancestral
populations from which the current Brazilian and other admixed
Americans are derived9–11,28,29. In this specific case, genomic
markers detected in other admixed American populations have
the potential to mischaracterise the genomic landscape of
interest because the allele frequencies of some genetic markers
are population-specific. In addition, due to the size and
heterogeneous background of the Brazilian population, different
ancestral proportions are likely to occur in different geographic
regions of the country as a result of evolutionary and
demographic events26,27. Although previous reports have
included genomic information from Brazilian populations, the
limited quantity of variant information across the genome27 and
the restricted set of subpopulations evaluated are insuffi-
cient25,26, and a greater volume of genomic data will be needed
for the adequate implementation of precision medicine in Brazil.
Importantly, data generated in the majority of previous studies

that have examined the Brazilian population are not publicly
available. To address the issue mentioned above, a coalition of five
research, dissemination, and innovation centres supported by the
São Paulo Research Foundation (http://www.fapesp.br/) created
the Brazilian Initiative on Precision Medicine (BIPMed; http://www.
bipmed.org) in November of 2015. The main objective of the
BIPMed project is to facilitate the implementation of precision
medicine in Brazil by acting as a catalytic element used to foster
collaboration among stakeholders, which include physicians,
scientists, health authorities, policymakers, and society. In this
context, we aim to investigate the distribution of rare and
common variants present in two BIPMed datasets and assess the
composition of a sample of the Brazilian population from a large
metropolitan area in São Paulo, the most populated state of Brazil,
located in the southeast region of the country. In the current
manuscript, we present evidence highlighting the importance of
compiling and analysing genomic datasets from underrepre-
sented populations in the context of genomic and precision
medicine. We initially describe the two datasets available in
BIPMed: a whole-exome sequence (WES) dataset and a single
nucleotide polymorphism (SNP) array genotyping dataset. Second,
we present a comparison of variants identified from each dataset
against those of publicly available databases. Finally, we
compared the population genomic structure provide by informa-
tion derived from WES and SNP array data.

RESULTS
WES dataset
Overall, we found 851,109 different variants within 18,202 genes
in the dataset, which included single nucleotide variants and small
insertions and deletions. After removing variants containing >20%
missing data, 823,481 variants remained. Among these, 522,290
(63.4%) had alternative allele frequency values (AAF) < 1%, and
96,971 (11.8%) were not present in the dbSNP database. Among
the variants absent from the dbSNP, 6480 had AAF values >1%
(Supplementary Data). Interestingly, nine variants absent from the
dbSNP occurred at a high frequency within the BIPMed dataset
(>90%).
A comparison between the WES dataset and the Clinvar

database revealed that 727 variants were classified as pathogenic
and 41 were likely to be pathogenic. Among these, we identified
509 (70.0%) pathogenic variants and 33 (80.5%) variants that were
likely to be pathogenic that were rare (AAF < 1%) in the BIPMed
WES dataset. The AAF values of most of the common variants
(AAF ≥ 1%) found in the WES dataset were similar to those
identified using gnomAD and TOPMed from the dbSNP dataset.
Interestingly, we did not find variants classified as pathogenic in

the BIPMed WES data that overlapped with the 1000 Genome
dataset.

SNP array dataset
After performing quality control procedures, the SNP array data
contained 902,939 variants; 25,492 of which overlapped with WES
data, and 897,990 (99.44%) were also determined to be present in
the 1000 Genomes datasets. We identified 65,519 variants with
AAF values between 1 and 5%, and 831,266 with AAF values >5%.

Comparing genomic population structure between WES and SNP
array datasets
The PCA used to assess the two BIPMed datasets revealed that
both WES and SNP array datasets produced similar results, which
are in accordance with previous reports25–28. PC1 shows variant
frequencies similar to European populations, and PC2 indicates
characteristics of both European and sub-Saharan African popula-
tions (Fig. 1a, b). In addition, the similarity between both PCA
performed in the two BIPMed datasets reflected in high
correlation estimations of WES and SNP array data for PC1 (ρ ≥
0.90; Fig. 1c) and PC2 (ρ ≥ 0.95; Fig. 1d). According to Euclidean
distance estimations, both WES (Fig. 2a) and the SNP array (Fig.
2b) were closest to the European population, followed by admixed
American populations.

Comparing the BIPMed dataset with the 1000 Genomes dataset
To compare the allele frequency of variants found within the
BIPMed dataset with the 1000 Genomes dataset, we first merged
the WES and SNP array to produce a single, large dataset, which
provided 1,626,829 unique autosomal variants from both the SNP
array and WES. Allele frequencies were estimated, based on
merged WES and SNP array data. The estimation revealed
1,136,454 (69.9%) common variants with a minimum allele
frequency (MAF) ≥ 1% and 490,375 (30.1%) rare variants with a
MAF < 1%. After applying genotype and individual filtering30,
817,240 (52.5%) autosomal variants could be found in the 1000
Genomes database. These results indicated that 809,589 variants
(47.5%) present in the BIPMed reference population were not
present in the 1000 Genomes datasets.
After performing a comparison of BIPMed data with the 1000

Genomes datasets, we found that rare variants in European
(75,584; 9.2%), sub-Saharan African (67,109; 8.2%), and admixed
American populations (34,360; 4.2%) were common in the BIPMed
database. In contrast, 7493 (1.0%) common variants in European
populations, 65,565 (8.0%) in sub-Saharan African, and 12,132
(1.5%) in admixed American populations were determined to be
rare in the BIPMed reference datasets (Table 1). Assuming the null
hypothesis that there is a similarity between the frequency of
variants in the BIPMed and the 1000 Genomes datasets, our results
provide evidence that data are not compatible with the null
hypothesis (Fisher’s exact test p value= 2.2e−16). It is important to
point out that the BIPMed sample (N= 358), was similar in size to
the other datasets used for the comparative analyses performed in
the present work, which contained European (N= 404), African (N
= 504), and Admixed American (N= 347) populations.

DISCUSSION
The application of precision medicine in admixed American
populations requires a refined knowledge of the environmental
exposure, lifestyle, biological susceptibility, and genomic structure
of their admixed genomes15,31. Indeed, studies have shown that
risk-associated allele frequencies of different populations vary, a
phenomenon which implies that risk-associated alleles identified
in one population are not necessarily informative when predicting
disease prevalence of all human groups7,8. If physicians do not
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take this information into account when implementing precision
medicine, they are likely to provide incorrect diagnoses of
patients, and correspondingly, provide inadequate treatments32.
This scenario is especially likely to occur in Brazilian admixed

populations, which are remarkably underrepresented in public
genomic databases28.
Here we aimed to highlight the importance of compiling,

analysing, and sharing genomic data obtained from an

Fig. 2 Comparison of Euclidean distance estimations between the BIPMed datasets and continental populations from the 1000 Genome
project (1 KGP). Estimates were based on minor allele frequency (MAF) from BIPMed WES (a) and SNP array data (b). The red and blue colours
in the legend indicate positive and negative correlations between two populations, respectively. Values closer to 1.0 indicate a more
significant correlation between the two populations. AFR Sub-Saharan Africans, AMR Admixed Americans, EAS East Asians, EUR Europeans,
SAS South Asians.

Fig. 1 Comparison between principal components (PCs) of WES and SNP array data. a, b Scatterplots indicate the two first principal
components identified using WES and SNP array datasets (black) and 1000 Genome populations, including Europeans (EUR= blue), sub-
Saharan Africans (AFR= red), admixed Americans (AMR= green), East Asians (EAS= orange), and South Asians (SAS= purple). c, d Correlation
plots assessing the relationship between the WES and SNP array for PC1 (a) and PC2 (b). Each point represents one individual. Solid lines
indicate the best fit of the data via local regression (LOESS) with a 95% confidence interval shown by the grey area.

C.S. Rocha et al.

3

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2020)    42 



underrepresented population to enhance the application of
precision medicine. Also, we have shown that, even when limited
datasets are available, they can be of value in this scenario, since
small datasets are better than no information at all. This point is
particularly relevant for scientists and physicians in mid-low-
income countries, which often believe that new developments in
precision medicine may not be of use to the populations
they serve.
The sample studied was representative of the target population;

patients followed at the University of Campinas (UNICAMP)
hospital, which was the population from the geographic region
delimited by our study. However, based on the limited public data
available in the Brazilian population25–28, it is very likely that
multiple datasets from different geographic regions will be
needed to generate data for the application of precision medicine
in the different areas of Brazil. This observation is a very relevant
point, which is probably valid for many other regions, if not all the
Americas, given the remarkable differences observed between
population histories. These differences are based on the various
origins of founder populations, migration waves, and other
population genetics phenomena. Therefore, we strongly believe
in the value of presenting BIPMed data, which contributes to this
type of discussion, which is relevant to any country with diverse
and admixed populations.
In the BIPMed WES dataset, we identified 768 variants classified

as pathogenic or likely pathogenic, according to Clinvar. This
result could have a significant impact on disease risk estimates for
the Brazilian population. In addition, we observed that 47.5%% of
the variants present in the BIPMed dataset were not present in the
1000 Genomes database, including 6480 variants with AAF values
that were higher than 1% in BIPMed. Indeed, these novel variants
have the potential to reveal new insights regarding genetic
variation and the effects of complex traits in admixed Brazilians.
However, we are aware that validation by other techniques, such
as Sanger sequencing, will be needed to confirm the presence of
the identified variants and exclude the possibility that they are
false positives generated by the WES technique. Validation is
especially important for the nine variants that are absent from
dbSNP but appeared at a high frequency in BIPMed (>90%).
Other potential causes for the divergence observed in allele

frequencies reported here should also be considered, such as the
technical differences between WES (BIPMed) and whole-genome
sequencing (WGS) platforms (1000 Genomes project). In this case,
bias and variability may be affected by the use of different
sequencing equipment and libraries for exome capture, which
covers different genomic regions.
Given the fact that the BIPMed reference databases provide two

different types of genomic information for 239 individuals, we
could also compare whether the two datasets produced similar
estimates of population structure. Our results showed that, based

on the first two principal components (which possessed the
highest proportion of variability observed), WES and SNP array
datasets provided similar information regarding the genomic
structure (Fig. 1). The concordance between the two datasets was
important since results obtained with the SNP array could have
had a European bias33. However, since the data generated by WES
covered all coding regions, and therefore was not at risk of bias,
the concordance of results produced independently using the
different platforms validates our results. Previous studies also
compared WES and SNP array datasets from individuals that were
predominantly from the Middle East, North Africa, Western
Europe, and five admixed American individuals from Brazil,
Colombia, and Mexico. They demonstrated that WES could
provide population structure adjustments that were similar to
those produced using SNP array data34. Interestingly, Euclidean
distances determined only reflected the structure observed in PC1,
in which BIPMed data was closer to that of European and admixed
American/Asian, rather than African populations. In this case, we
suggest that the Euclidean distance estimates are less robust than
eigenvector and eigenvalue estimations from the PCA, and thus,
provide limited information regarding genomic structure.
The value of describing the BIPMed datasets can be further

highlighted, since they provide a complete genomic map of
variants within admixed Brazilian individuals, as BIPMed contains
data that is rich in variant information found within the coding
regions from WES, and additional information from the noncoding
genomic regions provided by SNP array genotyping. By assessing
the similarity between the frequencies of all variants identified by
WES and SNP arrays in BIPMed and 1000 Genomes datasets, we
found that they differ significantly. This result indicates that none
of the admixed American populations present in the 1000
Genomes dataset can be used as a surrogate for studies of the
Brazilian population since the 1000 Genomes datasets produced
significantly different allele frequencies for both common and rare
variants than the BIPMed datasets. Nevertheless, we acknowledge
that the 1000 Genome dataset was built from WGS, which
includes all variants within the genome. Indeed, differences in
NGS platforms may influence our results because we did not
evaluate all variants available in the 1000 Genome database.
Similar to BIPMed, other Brazilian initiatives have aimed to make

genomic data more transparent and reproducible35. However,
BIPMed is the first to provide the public with easy access to raw
data (https://bipmed.org/datasharing/). Additionally, the data-
sharing process in BIPMed has been facilitated by the federated
model of genomic databases proposed and provided by the
Global Alliance for Genomics and Health36.
However, we are aware of the limitations of the data currently

available in BIPMed. First, although we analysed individuals born
in all five geographic regions of Brazil (Table 2), BIPMed samples
were predominantly from the Southeast region (49.44%),

Table 1. Distribution of minimum allele frequencies (MAF) among variants.

MAF distribution Common in BIPMed Rare in BIPMed Total overlap P value

Common in EUR 595,874 (72.9%) 7493 (1.0%) 817,240 (100%) 2.2e−16

Rare in EUR 75,584 (9.2%) 138,289 (16.9%)

Common in AFR 604,349 (74.0%) 65,565 (8.0%) 817,240 (100%) 2.2e−16

Rare in AFR 67,109 (8.2%) 80,217 (9.8%)

Common in AMR 637,098 (78.0%) 12,132 (1.5%) 817,240 (100%) 2.2e−16

Rare in AMR 34,360 (4.2%) 133,650 (16.3%)

The 817,240 variants are classified by their population of origin and include Europeans (EUR), Africans (AFR), and admixed Americans (AMR), according to the
1000 Genomes Project. We defined common variants as those with a MAF higher than or equal to 0.01, and rare variants otherwise. We counted total variants
produced using high-density SNP genotyping and whole-genome sequencing and removed high-density SNP genotypes with MAF values less than 0.01 to
avoid bias from genotyping errors. P values were calculated using Fisher’s exact test.
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followed by the Northeast (5.59%), and the South (2.79%).
Therefore, we can only provide reliable genomic estimates of
population structure for three of the five Brazilian geographic
regions. Second, the BIPMed dataset does not contain all
genome variations, and likely missed rare variants located
outside coding regions and structural variants. However, the
latter can be assessed based on the SNP array data provided.
Both limitations are currently being addressed by expanding the
geographic reach of BIPMed samples and by including whole-
genome data from the Brazilian reference individuals. We also
encourage other Brazilian research groups to help improve the
BIPMed database by depositing data generated from individuals
from different geographic regions of Brazil (https://bipmed.org/
docs/2_DepositDataBIPMed.docx).
To date, BIPMed includes eight public databases, which contain

information from 884 Brazilian admixed individuals distributed
among six disease-specific datasets, and the two reference
datasets included in this report. Though the disease-specific
datasets in BIPMed do not include WES or SNP array data, BIPMed
has provided valuable information for the application of precision
medicine within the Brazilian admixed population.
One additional challenge in the implementation of precision

medicine is related to the integration and sharing of genomic and
clinical data generated by different groups and interested
parties36,37. The worldwide community, including the research
community, would benefit significantly from increased coopera-
tion. It will enhance the expansion and improve the availability of
datasets, facilitating the detection of smaller genetic effects in
complex disorders. It is well understood that the ability to access
increased quantities of shared genomic and clinical data improves
our understanding of the mechanisms underlying the diseases
that affect individuals worldwide, and these diseases may have
population-specific features. Through networking, clinicians will
have access to improved information for performing risk
assessment, prevention, and the delivery of optimised treatment
regimens. Thus, in addition to its local importance for the full
implementation of precision medicine in Brazil, we expect that
BIPMed will catalyse similar initiatives within other underrepre-
sented populations worldwide.
In conclusion, we showed that by studying two BIPMed datasets

that included information from reference admixed Brazilian
individuals from a specific geographic area, we detected a diverse
population background, even when compared with other
admixed American populations. The population structure estima-
tions provided by WES and SNP array data were concordant. By
incorporating admixed Brazilian individuals in public genomic
databases, BIPMed not only contributes important knowledge for
the proper implementation of precision medicine in Brazil, but it
also enhances information regarding the variability of the human
genome and the relationship between genetic variation and
predisposition to diseases.

METHODS
Subjects
We examined 358 individuals, predominantly from Southeast Brazil
(49.44%; Table 2), at the University of Campinas (UNICAMP, Campinas,
Brazil). BIPMed participants were identified among people who were
accompanying patients in the out-patient clinic of our hospital and were
mainly unrelated spouses of patients. We also applied a structured
questionnaire regarding serious health issues and excluded individuals
that were known to have major health problems.
Genomic DNA was obtained from peripheral blood via the

phenol–chloroform procedure38. DNA samples were evaluated using a
Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) and an Epoch 2
microplate spectrophotometer (BioTek Instruments Inc., Winooski, VT,
USA). The present study was approved by the Research Ethics Committee
at UNICAMP, and all participants signed consent forms before participating
in the study.

WES dataset
DNA samples from 257 of the 358 individuals were fragmented using
Covaris® sonicator equipment (Covaris Company, Woburn, MA, USA).
Fragmented DNA was end-repaired, and adapters were added using the
SurSelect Human All Exon V5 target enrichment technique (Agilent
Technologies, Santa Clara, CA, USA). Exome libraries were prepared
following the standard Illumina protocol for paired-end sequencing
(Illumina Inc., San Diego, CA, USA). Library quality was evaluated using
Bioanalyzer DNA High Sensitivity chips (Agilent Technologies, Santa Clara,
CA). Sequencing was performed on the Illumina HiSeq2500 platform with
100 base-pair reads. We aligned paired reads using BWA-MEM v0.7.1239.
Picard Tools v2.5.0 (http://broadinstitute.github.io/picard) was used for
marking duplicates and indexing. Local realignment, quality base re-
calibration, and variant calling were performed with the Genome Analysis
Toolkit v4.040.

SNP array dataset
Genotype calling from 340 of 358 individuals was performed using the
Genome-Wide Human SNP Array 6.0 platform (Affymetrix Inc, Santa Clara,
CA) in the Multiuser Equipment Facility at UNICAMP. The genotype was
called from fluorescent signals observed using the CRLMM package41 in R
software (https://www.r-project.org/) and converted to the variant calling
format file by in-house Perl scripts.

Data analysis
We removed genotypes in which more than 20% of genomic data were
missing (missing data >20%) from the WES dataset. Since the genotype call
rate from CRLMM was 100%, we did not need to filter the SNP array as a
result of missing data. We calculated the AAF and minor allele frequency
(MAF) of variants from both WES and SNP array data. Variants from the SNP
array with a MAF < 0.01 were removed to avoid bias due to genotyping
errors from the array technique30. We defined rare variants as those with
allele frequencies <1% and common variants were defined as those that
occurred at frequencies ≥1%4. To investigate the presence of pathogenic
variants in WES, we compared WES data with Clinvar version 2019021142.
Additionally, we compared the distribution of rare and common
pathogenic/likely pathogenic variants within WES data with distributions
determined using the 1000 Genome Project, gnomAD, and TOPMed
databases4,14,43,44. These data analyses were performed using VariantAn-
notation45, vcfR46, and ggplot247 packages from Bioconductor, and in-
house scripts in R software.

Genomic structure estimates using different datasets
To evaluate the estimates of the genomic structure of the BIPMed samples
obtained with WES and SNP array data, we compared the two first
principal components (PCs) produced from assessing the 239 individuals
with available WES and SNP array data. First, we filtered each dataset via
Hardy–Weinberg disequilibrium (p value < 0.01) and merged each
separately with the 1000 Genome dataset. After dataset merging, we
pruned variants that had linkage disequilibrium values (window size= 50
SNPs, shift step= 5 SNPs, and r2= 0.5) and estimated PCs via PCA. We also
calculated Euclidean distances based on MAF between the populations of
the datasets and 1000 Genome Project to investigate genomic structure
using a different estimation method. All filtering, dataset merging, and PCA

Table 2. Distribution of birth location of BIPMed reference individuals
within five Brazilian geographic regions.

Brazilian region Number of individuals

North 1 (0.24%)

Northeast 20 (5.59%)

Centre West 3 (0.84%)

Southeast 177 (49.44%)

South 10 (2.29%)

Unknown 147 (41.06%)
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were performed using PLINK v1.9 software48. We estimated the Pearson’s
correlation between WES and SNP array data based on the two first
principal components using the R software.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated during and/or analysed during the current study are available
in the GEO repository (SNP-array dataset: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE156652) and at the EVA repository (WES-dataset) under the
following accessions: Project: PRJEB39251 Analyses: ERZ1463065, as well as in the
BIPMed repository, http://bipmed.iqm.unicamp.br/genes and http://bipmed.iqm.
unicamp.br/snparray/genes.

CODE AVAILABILITY
All Custom codes used in the generation or processing of datasets are available at
https://github.com/crirocha/BIPMed/ and https://github.com/labbcb/bipmed-analysis/
blob/master/BIPMed_analysis.md.
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