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Defining Cell Identity with Single-Cell Omics
Laura Mincarelli, Ashleigh Lister, James Lipscombe, and Iain C. Macaulay*

Cells are a fundamental unit of life, and the ability to study the phenotypes
and behaviors of individual cells is crucial to understanding the workings of
complex biological systems. Cell phenotypes (epigenomic, transcriptomic,
proteomic, and metabolomic) exhibit dramatic heterogeneity between and
within the different cell types and states underlying cellular functional
diversity. Cell genotypes can also display heterogeneity throughout an
organism, in the form of somatic genetic variation—most notably in the
emergence and evolution of tumors. Recent technical advances in single-cell
isolation and the development of omics approaches sensitive enough to
reveal these aspects of cell identity have enabled a revolution in the study of
multicellular systems. In this review, we discuss the technologies available to
resolve the genomes, epigenomes, transcriptomes, proteomes, and
metabolomes of single cells from a wide variety of living systems.

1. Introduction

All living systems, from bacterial populations to complex multi-
cellular organisms, are composed of communities of individual
cells. The cell is thus a fundamental unit of biology, and the ca-
pacity to analyze the behavior of organs and organisms at the
single-cell level is critical to developing and understanding of the
emergent behaviors of these communities of cells.
Increased biological complexity is enabled by the ability of cells

to differentiate and attain distinct “identities” within a system—
reflecting a divergence in form or function from precursor cells.
This identity has largely been defined in terms of cell type and cell
state. Precise definitions for these terms remain elusive: cell type
has historically been described by observing reproducible func-
tional distinctions in vivo or in vitro (often coupled with expres-
sion of a set of marker genes), while cell state refers to dynamic,
responsive changes that alter the phenotype and function of the
cell, but not so significantly that a new cell type is acquired.
As an example, the murine hematopoietic system (Figure 1)

consists of a number of well-defined cell types, characterized by
functional behavior in standardized assays. The hematopoietic
stem cell (HSC), the cell type which resides at the apex of the
hematopoietic hierarchy, has widely accepted functional and phe-
notypic definitions. Functionally, this cell type is defined by the

Dr. L. Mincarelli, A. Lister, J. Lipscombe, Dr. I. C. Macaulay
Earlham Institute
Norwich Research Park
Norwich, NR4 7UZ, United Kingdom
E-mail: iain.macaulay@earlham.ac.uk

C© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim. This is an open access article under the terms of
the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work
is properly cited.

DOI: 10.1002/pmic.201700312

ability to reconstitute all mature blood
cell lineages after transplantation (multi-
lineage potential) and to do so for long
periods, including after serial transplan-
tation, through the generation of new
HSCs (self-renewal).[1] A variety of cell
surface markers have been used to de-
fine stem cell phenotypes with increas-
ingly high functional purity, and in some
cases with the potential to further classify
functional subtypes of HSCs.[2,3]

HSCs must enter into different states
to fulfil their functional roles. The
hematopoietic system is highly dynamic
and responsive, and at all levels, changes
in cell state are possible—and indeed
essential—HSCs are typically quiescent,
but must enter a cell cycle “state” to

produce new progeny to maintain the blood supply and the stem
cell pool. Since this pool is maintained, cell type is based on cell-
intrinsic properties that can be passed on to daughter cells during
mitosis; however, sinceHSCs are pluripotent, cell types can enter
into intermediate states as they transition into committed and
mature cell lineages.
Cell type and state, as defined in this example, are a product

of the cell’s molecular profile—including genomic, epigenomic,
transcriptomic, proteomic, and metabolomic aspects—which in
turn emerge from cell intrinsic and extrinsic factors. The re-
cent development of approaches sensitive enough to assess the
molecular profiles of individual cells offers the opportunity to
gain a new perspective on our definitions of cell identity, and to
more clearly delineate the processes by which a single stem cell
can generate an entire hematopoietic system, or indeed how a
complex multicellular organism can arise from a single zygotic
cell.

2. Concepts and Methods for Single-Cell Isolation
and Profiling

Key to the study of single cells is the capacity to effectively
isolate them to enable analysis of the cell’s unique molecu-
lar identity, and there are numerous methods for doing so
(Figure 2). While manual isolation of cells, using micropipettes
or micromanipulation is feasible; the throughput is too low to
permit broad studies of cellular heterogeneity. However, these
remain the only methods by which the biopsy of daughter cells
from a single-cell division[4] can be performed. Flow cytome-
try has enabled analysis of small panels of proteins/markers
in individual single cells, and fluorescence-activated cell sort-
ing (FACS)–based isolation has long been employed for
the functional and molecular profiling of heterogeneous cell
populations.
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Figure 1. Definitions of cell type and state. A) In the hematopoietic system, cell types have been typically defined by a combination of cell surface marker
expression and functional output in in vitro and in vivo assays. B) Within cell types, multiple cell states are possible, including quiescence, active cycling,
senescence, and in some cases, resting and activated states. C) Population-level characterization enables molecular definition of the differences between
cell types, in this hypothetical example using principal components analysis (PCA) of RNA-seq data. This, however, does not reveal heterogeneity within
these phenotypically defined populations. Through (D) single-cell analysis, it is possible to explore this heterogeneity, even in rare cell populations
such as HSCs, revealing novel cell phenotypes—cell types and states—within a “homogeneous” population of cells. Abbreviations: LT-HSC, long-term
reconstituting HSC; FSR-HSC, finite self-renewal HSC; LMPP, lymphoid-primed multipotential progenitors; CMP, common myeloid progenitor; MK,
megakaryocyte; E, eryrthroid; My, Myeloid; T, T-cell; B, B-cell; PC, principal component.

Demand for higher throughput—from hundreds to millions
of cells—has driven the development of microfluidic approaches
for cell isolation (reviewed in detail in ref. 5), in which cells are
captured in individual droplets or nanowells for processing, thus
maximizing throughput and minimizing the reagent cost per
cell. Where the isolation of single cells from tissues has proved
challenging, for example in primary tissue, nuclear isolation has
also been demonstrated to be a successful approach for the anal-
ysis of cellular genomes[6,7] and transcriptomes,[8–10] compatible
with both FACS-based and droplet-based approaches.
Most recently, combinatorial indexing strategies have

been employed to generate genomic,[11] epigenomic,[12] and

transcriptomic[13] libraries from mammalian single cells, in
experiments which analyze greater than 10 000 cells in parallel.
Combinatorial indexing involves barcoding pools of single
cells with one of 384 barcodes using either a barcoded reverse
transcription primer for RNA libraries or transposase mediated
barcoding for DNA libraries (Figure 2). These 384 reactions
are then pooled and 15–25 single cells from the pool are
FACS-sorted into each well of a new 96-well plate and a second
barcode is added by PCR. Each well will then contain a pool
of virtually uniquely barcoded libraries, having received one
barcode in the first pool and subsequently a second in the second
pool.
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Figure 2. Methods for isolation and sequencing of single cells. A) FACS-based cell isolation enables selective deposition of single cells into multiwell
plates for downstream molecular processing. Index sorting allows some information about each cell’s phenotype to be recorded as it is deposited into
the well. Once the cells have been deposited, a number of molecular processes are possible. B) Droplet-based cell isolation involves the partitioning of
single cells into individual droplets with uniquely barcoded oligonucleotides. In the case of single-cell mRNA-seq these barcoded oligos prime first strand
synthesis of cDNA from the poly-A tail. Reverse transcription is then performed in a droplet emulsion, resulting in each cDNA molecule being uniquely
tagged based on its cell of origin. Unique molecular identifiers (UMIs) are also incorporated to enable unequivocal counting of the number of detected
molecules. C) Nanowell-based approaches use a similar approach, but rather than partitioning cells into droplets, cells are captured in minute wells
with uniquely barcoded beads. D) Combinatorial indexing strategies have used a two-step barcoding strategy for DNA or cDNA molecules to increase
throughput without the need for microfluidics. First, a primary barcode is added to small pools of FACS isolated cells/nuclei (in the case of cDNA, this is
added during reverse transcription, in the case of DNA this is added through tagmentation with barcoded adaptors) which are then re-pooled with other
distinctly barcoded cells and again sorted into small pools, where they received a second barcode. Thus, each cell receives a unique pairing of barcoded
molecules, enabling each sequencing read to be assigned to an individual cell.

All current Next Generation Sequencing (NGS) platforms re-
quire that the minute amounts of DNA or RNA present within
a single cell be amplified to generate sufficient material to se-
quence. Due to the accessibility of approaches to replicate nu-
cleic acids in vitro, a multitude of methods have emerged to
perform this amplification on single-cell genomes, epigenomes,
and transcriptomes, while the embryonic field of single-cell pro-
teomics relies on the development ofmethodswhich either trans-
late protein abundance into amplifiable nucleic acid signatures or
the direct measurement of protein abundance by sensitive mass
spectrometry (Figure 3).

2.1. Single-Cell Genomics

It is widely thought that the genome is relatively stable through-
out life and remains the same independently of cell type—with
the exception of post-meiotic germ cells, vertebrate immune
cells, and in pathological conditions such as cancer. However,
during the generation of maintenance of the extraordinary num-
ber of cells that comprise a complex multicellular organism—in
adult humans, the total cell number is estimated to be
38 trillion[14] at any given time, with a substantial ongo-
ing turnover of particular cell lineages. There is therefore
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Figure 3. Methods for the analysis of single-cell identity. An overview of the methods currently available to study the genome, epigenome, transcriptome
and proteomes of single cells, some of which have been combined into multi-omic single-cell assays.

considerable opportunity for the acquisition of somatic
variation—mutations that will be distinct between cells from the
same organism, only a fraction of which will be pathogenic.
Genomic heterogeneity between individual cells of the same

organism can occur on multiple scales, including single nu-
cleotide variants (SNVs), indels, inter- and intra-chromosomal fu-
sions, copy number variants (CNVs) and aneuploidies of whole
chromosomes, as well as insertion sites of viruses or mobile el-
ements (e.g., L1 retrotransposition events). By sequencing the
genomes of single cells, each of these phenomena can be stud-
ied with greater resolution than by sequencing a “bulk” DNA
specimen. Since these events are acquired through cell division
and errors in DNA replication, it is possible to use patterns of
somatic variation to reveal cell lineages in both normal and dis-
eased tissues, by examining the sequential acquisition of partic-
ular mutations,[7] which will have particular implications in the
study of clonal evolution of cell lineages in pre-cancerous condi-
tions and cancer.
Several approaches to amplify single-cell DNA have been ap-

plied, each with advantages and disadvantages (Table 1). The
technical limitations and advantages of these methods have been
described in detail elsewhere;[15] however, it is important to note
that none of these methods are perfect, and obtaining base-level
resolution with broad-coverage of single-cell genomes remains

a challenge. Common challenges include allele and/or locus
dropout, biased amplification of GC-rich sequences[16] and the
generation of chimeric products,[17] all which can confound effort
to accurately sequence and assemble single-cell genomes. Base-
level analysis of a single-cell’s genome is also costly, as achieving
accurate base calling requires significant coverage per cell, thus
much of the current literature focusses on the analysis of CNVs
in mammalian cells.
Multiple displacement amplification (MDA)–based methods

remain the most applicable where base-level events (e.g., SNVs)
are to be investigated, as the phi29 enzyme utilized in the am-
plification has an extremely low error rate.[18] However, these
methods are less appropriate for CNV analysis as the coverage
of the genome is generally uneven and thus generate “noisy”
copy number profiles, although there is evidence that when
performed in microfluidic chambers or nanowells,[19] this ef-
fect can be mitigated. Nevertheless, when CNVs are of inter-
est, degenerate oligonucleotide PCR (DOP-PCR[20])–based quasi-
linear approaches such as PicoPlex (Rubicon Genomics) and
MALBAC[21]—which more accurately preserve copy number—
are generally preferable.
The vast majority of single-cell genome sequencing has ex-

plored only tens to hundreds of cells, but recent developments
have applied combinatorial indexing[11] and microfluidic droplet

Proteomics 2018, 18, 1700312 1700312 (4 of 17) C© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

http://www.advancedsciencenews.com
http://www.proteomics-journal.com


www.advancedsciencenews.com www.proteomics-journal.com

Ta
bl
e
1.
M
et
ho
ds

fo
r
w
ho
le
-g
en
om

e
am

pl
ifi
ca
tio
n
an
d
se
qu
en
ci
ng

of
D
N
A
fr
om

si
ng
le
ce
lls
.

M
et
ho
d

Pl
at
fo
rm

N
um

be
r
of
Ce
lls

(t
yp
ic
al
)

D
es
cr
ip
tio
n

A
dv
an
ta
ge
s

D
is
ad
va
nt
ag
es

A
pp
lic
at
io
ns

M
ul
tip

le
di
sp
la
ce
m
en
t

am
pl
ifi
ca
tio
n

(M
D
A
)[1

7,
18
]

M
ic
ro
w
el
lp
la
te
/t
ub
es

10
s–
10
0s

R
an
do
m
ly
pr
im

ed
is
ot
he
rm

al
am

pl
ifi
ca
tio
n
of
D
N
A
by

Ph
i2
9

po
ly
m
er
as
e

B
ro
ad

ge
no
m
e
co
ve
ra
ge

H
ig
h
fid
el
ity

am
pl
ifi
ca
tio
n
(E
rr
or

ra
te

1.
2

×
10
–5
)

Po
te
nt
ia
lf
or

in
ac
cu
ra
te

id
en
tifi
ca
tio
n
of
C
N
Vs

du
e
to

al
le
lic

dr
op

ou
t,
G
C
bi
as

an
d

un
ev
en

am
pl
ifi
ca
tio
n

G
en
er
at
io
n
of
ch
im

er
ic
m
ol
ec
ul
es

G
en
om

e-
w
id
e
or

ta
rg
et
ed

SN
V

an
d
st
ru
ct
ur
al
va
ri
an
ta
na
ly
si
s

W
G
A
-X

us
es

a
th
er
m
os
ta
bl
e

ve
rs
io
n
of
ph
i2
9
ca
lle
d
Eq
ui
ph
i

2
fo
r
th
e
am

pl
ifi
ca
tio
n
of
D
N
A

fr
om

m
ic
ro
bi
al
ce
lls

or
ce
lls

fr
om

en
vi
ro
nm

en
ta
ls
am

pl
es

[1
15
]

eM
D
A
(e
m
ul
si
on

m
ul
tip

le
di
sp
la
ce
m
en
ta
m
pl
ifi
ca
tio
n)

ca
n

be
us
ed

to
ca
ll
SN

Vs
[1
18
]

Pi
co
PL
EX

(R
ub
ic
on

G
en
om

ic
s)

M
ic
ro
w
el
lp
la
te
/t
ub
es

10
s–
10
0s

Tw
o-
st
ag
e
(l
in
ea
r
an
d
ex
po
ne
nt
ia
l)

am
pl
ifi
ca
tio
n
of
D
N
A

A
cc
ur
at
e
re
pr
es
en
ta
tio
ns

of
C
N
Vs

H
ig
he
r
er
ro
r
ra
te
th
an

M
D
A
,

po
te
nt
ia
lf
or

in
ac
cu
ra
te
SN

V
ca
lli
ng

G
en
om

e-
w
id
e
C
N
V
an
al
ys
is

M
A
LB
A
C

[2
1]
(Y
ik
on

G
en
om

ic
s)

M
ic
ro
w
el
lp
la
te
/t
ub
es

10
s–
10
0s

Tw
o-
st
ag
e
(l
in
ea
r
an
d
ex
po
ne
nt
ia
l)

am
pl
ifi
ca
tio
n
of
D
N
A

B
ro
ad

ge
no
m
e
co
ve
ra
ge

(8
5–
93
%
)

A
cc
ur
at
e
re
pr
es
en
ta
tio
ns

of
C
N
Vs

Lo
w
er
al
le
lic

dr
op
ou
tt
ha
n
M
D
A
or

Pi
co
PL
EX

H
ig
he
r
er
ro
r
ra
te
th
an

M
D
A

G
en
om

e-
w
id
e
C
N
V
an
al
ys
is

Pr
e-
im

pl
an
ta
tio
n
ge
ne
tic

sc
re
en
in
g
of
ge
no
m
ic
or

m
ito
ch
on
dr
ia
lD

N
A
(S
ha
ng

et
al
.,
20
17
)

A
M
PL
I1
(S
ili
co
n

B
io
sy
st
em

s)
M
ic
ro
w
el
lp
la
te
/t
ub
es

10
s–
10
0s

D
N
A
di
ge
st
io
n
an
d
ad
ap
to
r

lig
at
io
n,
PC

R
am

pl
ifi
ca
tio
n

B
ro
ad

ge
no
m
e
co
ve
ra
ge

Lo
w
er
al
le
lic

dr
op
ou
tt
ha
n
M
D
A
,

Pi
co
PL
EX

an
d
M
A
LB
A
C

Le
ss

effi
ci
en
te
nr
ic
hm

en
ti
n

ta
rg
et
ed

ge
no
m
e
se
qu
en
ci
ng

th
an

ot
he
r
m
et
ho
ds

G
en
om

e-
w
id
e
C
N
V
or

SN
V

de
te
ct
io
n

St
ra
nd

se
q[
11
9]

M
ic
ro
w
el
lp
la
te
/t
ub
es

10
s–
10
0s

Ta
gg
in
g
of
in
di
vi
du
al
D
N
A
st
ra
nd
s

du
ri
ng

re
pl
ic
at
io
n
us
in
g
B
rd
U

fo
llo
w
ed

by
se
le
ct
iv
e
de
pl
et
io
n

of
ta
gg
ed

st
ra
nd
s

D
ir
ec
tl
ib
ra
ry
pr
ep
ar
at
io
n
fr
om

B
rd
U
-s
tr
an
ds

G
en
er
at
es

se
qu
en
ce
s
fr
om

ho
m
ol
og
ou
s
ch
ro
m
os
om

es
D
ir
ec
tl
ib
ra
ry
co
ns
tr
uc
tio
n
w
ith

ou
t

W
G
A
,r
ed
uc
ed

se
qu
en
ce

bi
as

an
d

al
le
lic

dr
op
-o
ut

R
eq
ui
re
s
th
at
th
e
sa
m
pl
e
ca
n
be

tr
ea
te
d
w
ith

B
rd
U
fo
r
on
e
ro
un
d

of
ce
ll
di
vi
si
on
—
di
ffi
cu
lt
to

ap
pl
y
in
vi
vo

D
et
ec
tio
n
of
co
py

ne
ut
ra
lg
en
om

ic
re
ar
ra
ng
em

en
ts

St
ud
yi
ng

m
ei
ot
ic
re
co
m
bi
na
tio
n

St
ud
yi
ng

in
he
ri
ta
nc
e-
by

ha
pl
ot
yp
in
g/

ph
as
in
g

SC
I-s
eq

[1
1]

Co
m
bi
na
to
ri
al
in
de
xi
ng

10
00
s–
10

00
0s

D
ua
li
nd
ex
in
g
of
in
di
vi
du
al

nu
cl
eo
so
m
e
de
pl
et
ed

ge
no
m
es

In
de
x
1
is
ad
de
d
by

ta
gm

en
ta
tio
n

of
96

po
ol
s
of
20
00

nu
cl
ei
ea
ch

Ta
gg
ed

ce
lls

ar
e
po
ol
ed

an
d

re
-s
or
te
d,
w
ith

In
de
x
2
ad
de
d
by

PC
R
am

pl
ifi
ca
tio
n
of
po
ol
s
of
22

ce
lls

H
ig
h
th
ro
ug
hp
ut

N
o
cu
st
om

eq
ui
pm

en
tr
eq
ui
re
d,
us
es

FA
C
S
fo
r
is
ol
at
io
n
an
d
po
ol
in
g
of

nu
cl
ei

Sh
al
lo
w
se
qu
en
ci
ng

of
in
di
vi
du
al

ce
lls

th
er
ef
or
e
on
ly
la
rg
e
C
N
Vs

ca
n
be

an
al
yz
ed

C
N
V
an
al
ys
is
in
la
rg
e
nu
m
be
rs
of

si
ng
le
ce
lls

(C
on
tin

ue
d)

Proteomics 2018, 18, 1700312 1700312 (5 of 17) C© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

http://www.advancedsciencenews.com
http://www.proteomics-journal.com


www.advancedsciencenews.com www.proteomics-journal.com
Ta
bl
e
1.
Co

nt
in
ue
d.

M
et
ho
d

Pl
at
fo
rm

N
um

be
r
of
Ce
lls

(t
yp
ic
al
)

D
es
cr
ip
tio
n

A
dv
an
ta
ge
s

D
is
ad
va
nt
ag
es

A
pp
lic
at
io
ns

Si
C
-s
eq

[2
2]

C
us
to
m

m
ic
ro
flu
id
ic
s

10
00
s–
10
,0
00
s

Si
ng
le
-c
el
le
nc
ap
su
la
tio
n
in

dr
op
le
ts
w
ith

un
iq
ue
ly
ba
rc
od
ed

ad
ap
to
rs

H
ig
h
th
ro
ug
hp
ut

Sh
al
lo
w
se
qu
en
ci
ng

of
in
di
vi
du
al

ce
lls
,o
nl
y
sm

al
l(
m
ic
ro
bi
al
)

ge
no
m
es

ha
ve

be
en

an
al
yz
ed

to
da
te

C
us
to
m

m
ic
ro
flu
id
ic
s
re
qu
ir
ed

A
na
ly
si
s
of
m
ic
ro
bi
al
po
pu
la
tio
ns

at
si
ng
le
-c
el
lr
es
ol
ut
io
n

In
th
eo
ry
ca
n
be

ap
pl
ie
d
to

eu
ka
ry
ot
ic
ce
lls

fo
r
C
N
V
an
al
ys
is

SI
SS
O
R
(s
in
gl
e-
st
ra
nd
ed

se
qu
en
ci
ng

us
in
g

m
ic
ro
flu
id
ic
re
ac
to
rs

[1
20
]

C
us
to
m

m
ic
ro
flu
id
ic
s

10
s

Se
pa
ra
te
th
e
W
at
so
n
an
d
Cr
ic
k

D
N
A
st
ra
nd
s;
ra
nd
om

ly
pa
rt
iti
on

m
eg
ab
as
e-
si
ze

fr
ag
m
en
ts
in
to

m
ul
tip

le
na
no
lit
er
co
m
pa
rt
m
en
ts

fo
r
am

pl
ifi
ca
tio
n
an
d
co
ns
tr
uc
tio
n

of
ba
rc
od
ed

lib
ra
ri
es

fo
r

se
qu
en
ci
ng

Lo
w
er
ro
r
ra
te
(1

×
10
–8
)

A
bi
lit
y
to

as
se
m
bl
e
la
rg
e
fr
ag
m
en
ts
of

si
ng
le
-c
el
lg
en
om

es
(N

50
>
7
M
b,

la
rg
es
tc
on
tig

9
M
b)

Lo
w
th
ro
ug
hp
ut
—
on
ly
te
st
ed

on
th
re
e
hu
m
an

ce
lls
,t
ho
ug
h
ha
s

po
te
nt
ia
lf
or

hi
gh
-t
hr
ou
gh
pu
t

m
od
ifi
ca
tio
ns

SN
V
ca
lli
ng

in
si
ng
le
ce
lls

Si
ng
le
-c
el
lg
en
om

e
as
se
m
bl
y
an
d

lo
ng

re
ad
,h
ap
lo
ty
pi
ng

in
fo
rm

at
io
n
su
ch

as
H
LA

ha
pl
ot
yp
in
g
fo
r
do
no
r-
pa
tie
nt

m
at
ch
in
g

M
ID
A
S
(m

ic
ro
w
el
l

di
sp
la
ce
m
en
t

am
pl
ifi
ca
tio
n

sy
st
em

)[1
9]

C
us
to
m

na
no
w
el
la
rr
ay

10
0s
–1
00
0s

Ce
lls

ar
e
ca
pt
ur
ed

in
na
no
w
el
ls

an
d
M
D
A
pe
rf
or
m
ed

in
�
12

nL
vo
lu
m
es

Su
cc
es
sf
ul
re
ac
tio
ns

ar
e

th
en

pi
ck
ed

fo
r
se
qu
en
ci
ng

Le
ss

am
pl
ifi
ca
tio
n
bi
as

co
m
pa
re
d
to

co
nv
en
tio
na
lM

D
A

M
or
e
ev
en

co
ve
ra
ge

th
an

M
D
A

Lo
w
er
re
ac
tio
n
vo
lu
m
es

re
du
ce

co
st

D
em

on
st
ra
te
d
to

w
or
k
w
ith

m
ic
ro
bi
al

an
d
hu
m
an

ce
lls

N
o
co
m
m
er
ci
al
av
ai
la
bi
lit
y
of
th
e

m
ic
ro
w
el
la
rr
ay
s

Lo
w
ce
ll
lo
ad
in
g
nu
m
be
rs

M
ic
ro
m
an
ip
ul
at
io
n
us
ed

to
as
pi
ra
te
am

pl
ifi
ed

D
N
A
fr
om

m
ic
ro
w
el
ls

C
N
V
an
al
ys
is
in
si
ng
le
ce
lls

barcoding[22] to enable 10 000s of cells to be processed in paral-
lel. Current NGS capabilities do not extend to base-level analysis
of these numbers of mammalian cells, and these approaches are
best applied to CNV analysis in organisms with larger genomes.
These approaches are particularly important for the analysis of
microbial communities, where the small genome size will enable
affordable sequencing of large numbers of individual cells.

2.2. Single-Cell Epigenomics

Epigenomic aspects of cell identity, including DNA methylation,
histone modification, chromatin accessibility, and chromosome
conformation, are dynamic, regulatory mechanisms that enable
cells with identical genotypes to have distinct gene expression
profiles. Thus, by representing the “functionalization” of the
genome, these different mechanisms are key aspects of how cell
type and state should be defined. Epigenomic diversity is also of-
ten heritable through cell division, and as such, offers a mech-
anism by which cells within a specific type can proliferate and
maintain their identity. There has been a substantial proliferation
in the diversity of epigenetic techniques aimed to study single
cells (reviewed in detail in ref. 23)—it is now possible to survey a
majority of known epigenetic aspects of a single cell with varying
degrees of resolution and throughput (Table 2).
Modifications of DNA, including cytosine methylation (5mC),

hydroxymethylation (5hmC) and formylcytosine (5fC) can regu-
late gene expression in the short and long term, with 5mC asso-
ciated with transcriptional repression, while 5hmC and 5fC are
associated with transcriptional activation. Assays to detect each
of these modifications across the genomes of single-cells have
been developed, though they still present several technical chal-
lenges. Single-cell bisulfite sequencing (scBS-seq),[24,25] which de-
tects 5mC, is powerful because it allows assessment of a large
fraction of promoters with relatively low sequencing costs, but
its limitation is poor coverage—only 20–40% of the genome, in-
cluding many important regulatory regions, are sequenced due
to the destructive nature of bisulfite treatment. Other potential
drawbacks are low mapability (about 30%) and high level of PCR
duplicates.[24]

Overall, this sparseness of data limits the analysis of cellu-
lar variation and thus it is necessary to use methylation fre-
quency data from single-cell populations[26] or approaches to im-
pute missing values.[27] The recently described single-cell 5hmC
sequencing (scAba-seq),[28] which uses the restriction endonu-
clease AbaSI to induce double-strand breaks in modified DNA
sequences, followed by adaptor ligation, amplification, and li-
brary prep and single-cell 5fC sequencing (chemical-labeling-
enabled C-to-T conversion sequencing, CLEVER-seq)[29] have
been applied to generate low-coverage modification profiling
of single-cell genomes. Similar to scBS-seq approaches, these
low-coverage approaches have not yet demonstrated genome-
wide base-level modification, although single-base resolution
with incomplete genome coverage was demonstrated with
CLEVER-seq.[29]

Chromatin accessibility, which is a regional marker of “ac-
tivity” within the genome, can be assessed through treat-
ment of permeabilized cells or nuclei with enzymes which
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Table 2.Methods for epigenomic analysis of single cells.

Modification Method Platform Number of
Cells (typical)

Description

DNA methylation ScBS-seq[24] Microwell plate/tubes 10–100s Bisulfite conversion of unmodified C to T, 5mC
remains unconverted

scRRBS[121] Microwell plate/tubes 10–100s Reduced representation bisulfite sequencing,
enables single-base resolution DNA methylation

scAba-seq[28] Microwell plate/tubes 10–100s Hydroxymethylation (5hmC) profiling.
Glucosylation of 5hmc position generates
recognition sites for restriction endonuclease
AbaSI

CLEVER-seq[29] Microwell plate/tubes 10–100s Formylcytosine (5fC) detection by direct chemical
labeling with malonitrile. Subsequent conversion
C-T at 5fC labeled sites during amplification and
sequencing

Chromatin accessibility NOME-seq[34] Microwell plate/tubes 10–100s Methyltransferase (methylase) enzyme is used to
label accessible (or nucleosome depleted) DNA
prior to bisulfite sequencing which distinguishes
between methylated and unmethylated
chromatin states

scDNAse-seq[31] Microwell plate/tubes <1000 Method of detecting genome-wide DHSs, DNase I
hypersensitive sites. This technique enables
genome-wide mapping of hypersensitive site,
therefore of active regulatory elements of
transcription

scATAC-seq[32,33] Fluidigm C1 platform 10–100s Individual cells are captured and assayed on
Fluidigm platform. Tn5 transposase tags
regulatory regions by inserting sequencing
adapters into accessible regions of the genome,
allowing measurement of open chromatin sites

scATAC-seq[12] Combinatorial indexing 10 000s Integration of combinatorial cellular indexing and
ATAC-seq to measure chromatin accessibility in
large numbers of single cells

Histone modifications scChiP-seq
(drop-Chip)[35]

Custom microfluidics
platform

1000s–10 000s Droplet-based microfluidic system process single
cell to indexed chromatin fragments. Indexed
chromatin from multiple cells can then be
combined and subsequently
immunoprecipitation can be performed

Chromosome organization scDam-ID[37] Microwell plate/tubes 100 Enables mapping of genome-wide nuclear lamina
interactions domains in single human cell. Dam
adenosine transferase methyltransferase is fused
with lamin B1 (constituent of nuclear lamina) and
expressed in cells so that sites interactions are
mapped from sequence tags after DpnI digestion

scHi-C[40] Microwell plate/tubes 10–100s Identifies DNA sequences in close spatial proximity
in the nucleus after restriction enzyme digestion
and DNA ligation

scHi-C[39] Microwell plate/tubes 10–100s Improved Hi-C protocol able to determine
whole-genome structures of single G1-phase
haploid cells and define 3D models of
chromosome organization

cleave at sites where DNA is not protected by chromatin.
Single-cell DNAse-seq[30,31] digests open DNAse I hypersen-
sitive sites (DHS) throughout the genome and single-cell
transposase-accessible chromatin sequencing (scATAC-seq) uses
the Tn5 transposase to directly insert sequencing library adap-
tors into open chromatin regions prior to PCR-based amplifi-
cation of the tagmented regions.[12,32,33] Single-cell nucleosome

occupancy and methylome-sequencing (scNOMe-seq)[34] uses a
GpC methyltransferase (MTase) step, followed by bisulfite treat-
ment and NGS to simultaneously measure chromatin accessibil-
ity (through GpC methylation) and endogenous CpG methyla-
tion. Combinatorial indexing approaches have also been applied
to scATAC-seq, enabling high-throughput shallow profiling of the
chromatin states of thousands of single cells.[12]
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Single-cell droplet–based chromatin immunoprecipitation
(drop-ChIP) has been demonstrated, although using extremely
sparse data (1000 reads per cell) to generate population dis-
tributions of histone 3 lysine 4 trimethylation (H3K4me3),
enabling detection of discrete epigenetic states in popula-
tions of mouse ES cells, fibroblasts, and a hematopoietic cell
line.[35] As such, genome-wide DNA-protein interactions in sin-
gle cells has yet to be demonstrated, though this would offer
a powerful tool to assess heterogeneity in regulation of gene
expression.
DNA/laminin associations can be probed using the Dam-ID

protocol[36] which has been adapted to work with single cells. Us-
ing a haploid cell line (KBM7) engineered to express a DNA ade-
nine methyltransferase (Dam)/Lamin B1 (LmnB1) fusion pro-
tein to modify adenine bases that are in physical proximity to
laminin proteins in nuclear membrane, enabling mapping of
lamina-associated domains (LADs), which may offer an insight
into cell state and the regulation of gene expression, as most
genes in LADs are expressed at low levels.[37] However, as this
method currently requires genetic manipulation, and is ideally
performed in a haploid cell line to enable unambiguous chromo-
somal identification, this method is unlikely to immediately ap-
plicable to more complex systems. Single-cell Hi-C, which mea-
sures the spatial proximity of regions of DNA, has also been
demonstrated in haploid cells.[38–40]

As with single-cell genome analysis, each of these epige-
netic methods tend to generate sparse data which preclude true
“genome-wide” identification of DNA modifications, open chro-
matin sites, and chromatin conformation, and while imputation
approaches are available to complete missing information,[25,32]

it is important to note that no method exists for robust base-
level resolution genome-wide epigenomic profiling of a single
cell. Consideration of the biological sources of variation is also
essential in single-cell epigenomics experiments as some cel-
lular features, such as cell cycle, are dominant drivers of gene
expression[41] and chromatin accessibility variation[38] in single
cells.

2.3. Single-Cell Transcriptomics

The transcriptome is highly dynamic, reflecting cell type and cell
state. Cells committed to particular type would be expected to ex-
press selections of marker genes which differentiate them from
other cells within the population, and within each type, variation
in gene expressionmay be indicative of cell state transitions—for
example, specific gene expression profiles can be associated with
cell cycle status.[41,42]

Perhaps the greatest technical and experimental advances us-
ing single-cell techniques have been in the study of the tran-
scriptome. This is largely due to the accessibility of the transcrip-
tome, which in contrast to the genome is present at relatively high
copy number per cells—transcript copy numbers can range from
1–100 000 copies per transcript per cell, although the majority
are estimated to be present at less than 100 copies per cell.[43]

In eukaryotic systems, naturally occurring polyadenylation of
the 3′ tail of mRNA molecules offers a near-universal priming
site to generate first-strand cDNA, which through ligation or

incorporation of adaptor sequences can act as a template for lin-
ear amplification using a multitude of methods (Table 3) includ-
ing specially adapted in vitro transcription (IVT) protocols[44] or
PCR-based protocols.[45–47]

While many single-cell transcriptomics approaches can read-
ily be applied in medium throughput on FACS-sorted cells
isolated into multi-well plates, the scale and ease with which
single-cell transcriptomics experiments can be undertaken has
benefited considerably from the introduction of combinatorial
indexing,[13] microfluidic[48–50] and nanowell[51,52] approaches to
partition and/or barcode individual cells.
Smart-seq/Smart-seq2, which enables full-length amplifica-

tion of single-cell cDNA can readily be applied to FACS iso-
lated cells in multi-well plates[53,54] or cells isolated on Flu-
idigm’s C1microfluidic instrument.[55] By combining full-length,
PCR-based cDNA amplification with tagmentation-based NGS li-
brary preparation, it is possible to enumerate transcript abun-
dance within the cell, but also to explore sequence variation
(SNVs, UTRs, and alternative splicing) within the transcrip-
tome. This method has also been demonstrated to work suc-
cessfully on nuclei from tissues where single-cell isolation is
challenging.[9] We and others have also demonstrated that single-
cell libraries generated using this approach are compatible
with long-read sequencers (e.g., Pacific Biosciences and Oxford
Nanopore technology),[4,56] enabling unequivocal identification of
splice variants.
CEL-seq/CEL-seq2, which relies on IVT-based amplification

and 3′ enrichment, generates 3′-end cDNA libraries, incorpo-
rating unique molecular identifiers (UMIs)—random barcodes
added to the sequence during the first reverse transcription
step.[44] These subsequently enable quantification of unique
mRNA molecules within the cell with higher accuracy than
Smart-seq2, which does not currently include UMIs and requires
normalization by gene length to generate corrected expression
values. Other tag-sequencing methods have been developed, in-
cluding 5′ STRT[45,52] and similarly incorporate UMIs for tran-
script counting.
High-throughput single-cell gene expression profiling has

been revolutionized by the introduction of microfluidics ap-
proaches which enable 3′ transcript counting from thousands
of cells in parallel. The Drop-seq[49] and Indrop[50] methods in-
troduced this approach, in which individual cells or nuclei[10]

are co-encapsulated in droplets with uniquely barcoded oligo-
dT primers, enabling cDNA to be pooled and sequenced in
parallel, with reads assigned to individual cells based on their
barcode. Droplet-based methods have also been integrated
with pooled CRISPR screening approaches to identify gene
targets in thousands of single-cells, using panels of guide
RNAs.[57]

Nanowell approaches, such as Seq-Well[51] in which cells are
partitioned into individual nanowells with uniquely barcoded
oligo-dT sequences offer similar levels of throughput but with-
out the need to for microfluidics, reducing the overall cost and
increasing the portability of the system. These advances, and the
availability of commercial variations of these approaches have
become mainstream, enabling single-cell transcriptomics stud-
ies to be performed in a diverse array of organs and organisms,
at a scale where “whole-organism” single-cell sequencing has
become feasible.[58] Indeed, a combinatorial indexing approach
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Table 3.Methods for transcriptomic analysis of single cells.

Method Platform Number of
Cells (typical)

Description UMI Applications Typical number of
sequencing reads per
cell

Smart-seq/Smart-
seq2[46]

Microwell
plate/tubes/Fluidigm
C1 platform

100s–1000s Template-switching
PCR-based full-length
transcript amplification.
Can be applied to cells or
nuclei (scNuc-seq)

No Transcript enumeration
Analysis of alternative
splicing

allelic expression

500 000–4 000 000

CEL-Seq/CEL-Seq2[44] Microwell plate/tubes 100s–1000s In vitro transcription-based
3′ transcript
amplification

Yes Transcript quantification 100 000–1 000 000

STRT[45,52] Microwell plate/tubes
(also modified for ICell8
Nanogrid[52]

100s–1000s Template-switching
PCR-based full-length
transcript amplification
followed by 5′ selection

Yes Transcript quantification 100 000–1 000 000

sci-RNA[13] Combinatorial indexing 1000s–10 000s Combinatorial indexing
approach in which
transcripts are first
indexed during first
strand synthesis and
subsequently during PCR
of 3′ sequencing tags

Yes Transcript quantification 20 000–200 000

Droplet-based
approaches

Microfluidic platforms:
Drop-seq[49]

InDrops[48]

Commercial Platforms:
10X Genomics
Chromium

Dolomite Nadia

1000s–10 000s Cells are partitioned into
individual droplets and
cDNA molecules are
uniquely barcoded during
reverse transcription

Yes Transcript quantification 20 000–200 000

Nanowell approaches Custom Nanowell Chip
SeqWell[51]

Commercial Platforms:
Nanogrid (ICell8)
BD Rhapsody

1000s–10 000s Cells are partitioned into
individual wells of a
custom built nanowell
chip and cDNA
molecules are uniquely
barcoded during reverse
transcription

Yes Transcript quantification 20 000–200 000

for transcriptomic analysis (sci-RNA-seq) has been applied to se-
quence over 40 000 cells from L2 Caenorhabditis elegans larvae,
representing over 50-fold coverage of all of the cells in a single
organism.[13]

Throughput in single-cell transcriptomics experiments has
reached astonishing levels, with experiments now detailing
thousands to millions of cells now becoming routine. How-
ever, there is minimal change in the total amount of sequenc-
ing performed in a single experiment, and thus the transcrip-
tional profiling of these large numbers of cells focusses on
enumeration of 3′ tag sequences and shallow coverage of the
whole transcriptome. The majority of single-cell transcriptomics
analysis uses 3′ tag sequencing approaches and assigns cell
types as a result of clustering—for example, using principle
components analysis (PCA) or t-distributed stochastic neighbor
embedding (t-SNE) plots.[59] Fortunately, cell type heterogene-
ity can readily be detected from as few as 50 000–100 000 se-
quencing reads per cell, thus, minimal sequencing of a sin-
gle cell’s transcriptome allows categorization of cell identity—

and many thousands of cells can be profiled and classified in
parallel.
The transcriptomes generated at this throughput are currently

necessarily superficial, and nuanced changes in lower expressed
genes cannot be detected. Furthermore, due to the 3′ selec-
tivity of these methods, UTR sequences, alternative splicing,
RNA editing, mutations, and allelic expression can only frac-
tionally be considered. Similarly, small RNA molecules, includ-
ing microRNAs will not be detected using these approaches,
although protocols for plate-based small RNA-sequencing have
been described.[60] It is clear that these aspects of cellular iden-
tity are essential for the functioning of the cell and indeed the
organism—thus,methodswhich explore the full diversity of tran-
script heterogeneity, albeit at much lower throughput, remain
highly relevant. A hybrid approach between broad, shallow se-
quencing of a population of cells and focused lower-throughput
sequencing of a target population perhaps offers the best means
to globally explore cellular heterogeneity while maintaining the
ability to focus on specific cellular regulatory phenomena.
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2.4. Single-Cell Proteomics

The functional identity of a cell is largely a product of its
proteome—it is through proteins and post-translational modi-
fications that cells sense and respond to virtually all extrinsic
and intrinsic stimuli. A comprehensive overview of a cell’s pro-
teome would perhaps give the most detailed definition of cell
type and state possible by molecular means, but the limitations
of current approaches make such observations impossible. Nei-
ther antibody nor mass spectrometric–based detection or quan-
tification of proteins has the throughput or sensitivity required
for proteome-wide screening. However, advances in antibody la-
beling and detection, microfluidics, and recently, sensitive mass
spectrometry approaches, are beginning to show the potential
of proteomic analysis of single cells, and protein level detection
remains an important tool for validation of single-cell RNA-seq
results.
Western blotting approaches sensitive enough to detect pro-

teins from single cells have been developed.[61] Such approaches
may offer a unique specificity due to reporting of protein size
as well as quantitation, which additionally may allow protein
isoform and modification detection. Using micropatterned poly-
acrylamide arrays, this approach enables capture, lysis, and elec-
trophoresis of �3000 individual cells in parallel, followed by
cross-linking to immobilize the protein and detection using pri-
mary and secondary antibodies. By stripping and reprobing the
gel, detection of ten proteins in the same single cell was demon-
strated. Advances in this method have even enabled subcellu-
lar fractionation of single cells to enable parallel analysis of
protein expression in the nucleus and cytoplasm of the same
cell.[62]

High-throughput, multiplexed analysis of protein expression
in single cells has been carried out by FACS analysis for sev-
eral decades. The detection of immunofluorescently tagged pro-
teins in thousands of single cells is routine for FACS anal-
ysis, with modern high parameter instruments capable of
analyzing up to 50 parameters in parallel. This is, however, tech-
nically challenging due to the potential for overlap between fluo-
rescent spectra and these high parameter applications likely rep-
resent the upper limit of the capability of FACS. The CyTOF
approach is a variant of FACS in which antibodies are labeled
with heavy metal ion tags rather than fluorophores; the abun-
dance of each metal ion labeling the cell is read out using time-
of-flight mass spectrometry.[63] These instruments have over 100
non-overlapping detection channels and thus high levels of mul-
tiplexing (>40 proteins in parallel) are possible. Both FACS
and CyTOF have potential to measure extracellular and intra-
cellular parameters, including phosphorylation events in fixed
and permeabilized cells. Increases in multiplexing may be pos-
sible through the use of DNA barcode–tagged antibodies and
reading out levels of protein abundance using NGS technol-
ogy. The Abseq approach has demonstrated DNA-barcoded an-
tibodies, in parallel with a custom microfluidics platform, can
be used to screen surface protein abundance in single cells
with high-throughput and a theoretically unlimited capacity for
multiplexing.[64]

However, antibody-based methods will always be dependent
on the specificity and availability of the antibody. Unbiased

proteomic analysis of single cells is challenging due to limita-
tions on the sensitivity of mass spectrometry techniques, and the
lack of a PCR-like method to amplify protein signals. The phase-
enhanced sample preparation (SP3) method was described[65] in
which paramagnetic beads are used to enrich proteins or pep-
tides from low-input samples, including single human oocytes,
generating input material for liquid chromatography coupled
to tandem mass spectrometry (LC-MSMS). From individual
oocytes, which are atypically large cells (diameter >100 μm),
as many as 450 proteins were detected. Work in single Xeno-
pus blastomeres combining high-resolution mass spectrome-
try with capillary electrophoresis and electrospray ionization[66]

or single-cell reverse-phased liquid chromatography-electrospray
ionization tandem mass spectrometry[67] have further been able
to identify several hundred proteins; though again, these cells are
atypically large.
Recently, Single-Cell ProtEomics by Mass Spectrometry

(SCoPE-MS)[68] was developed and applied to cancer cell lines
and differentiating ES cells, bringing the sensitivity of single-
cell proteomics down to a level where normal-sized cells can
be analyzed. The method, which utilizes tandem mass tagging
(TMT) to enable peptides from up to eight single cells to be
digested, individually labeled and pooled with 200 carrier cells
to provide sufficient ions for peptide sequence identification.
This enabled detection and quantification of over 500 proteins
in Jurkat and U937 cells (diameter �11 μm) and over 1000 pro-
teins in mouse embryonic stem (ES) cells. These data were suf-
ficient to perform differential clustering of individual cells, and
to identify differential protein expression signatures between cell
types.
Microfluidics technologies constitute another class of tools

available to collect highly multiplexed measurements of pro-
teins from single cells. Microchip-based proteomics analysis
enable simultaneous quantification of up to 40 nuclear, cyto-
plasmic, membrane and secreted proteins across thousands of
single cells, with the sensitivity threshold of as low as a few
hundred protein copies per cell.[69] In particular, and in con-
trast to CyTOF, these tools allow measurement of secreted pro-
teins from viable cells and offer control over the cell’s microen-
vironment before analysis, allowing functional screens to be
performed.[70]

A “microengraving” approach using small volume microw-
ells in an array format can be used to isolate and culture single
cells. Using an antibody-coated substrate to cap the microwell ar-
ray and capture secreted proteins, an ELISA immunoassay can
be performed to enable protein quantification.[71] A different ap-
proach used immobilized lipid bilayers and tethered ligands on
the surface arrays of subnanoliter wells. These single-cell lipid
bilayer-tethered ligands on arrays have enabled functional single-
cell analysis of T-cell activation characterizing cytokines secreted
from activated human T cell clones.[72]

A related approach is the single-cell barcode chips (SCBCs)
that patterns a capture antibody array in a single-cell microwell so
that different proteins can be detected at designated array spots.
Cells are lysed on-chip, and the levels of released proteins are as-
sayed using the antibody arrays. SCBC data have been used to
examine altered signal transduction networks in tumor and im-
mune cells.[73]
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2.5. Single-Cell Metabolomics

The metabolome, defined as the full collection of all low-
molecular-weight metabolites that are produced by a cell, could
be a key indicator of cell state—reflecting the precise metabolic
activity and condition within the cell. However, the metabolome
is challenging tomeasure at the single-cell level, largely due to the
diversity and rapid dynamics of the system, coupled with the lack
tagging and/or amplification approaches for small molecules.[74]

Advances in optical tools (such as genetically encoded optical
nanosensors) together with improved expression systems and in
vivo imaging have made possible the measurement of metabo-
lites in real time and in single cells.[74,75] Single-cell mass spec-
trometry has empowered, as well, metabolomic investigations
to the size of individual cells and subcellular structures. Using
single-cell capillary electrophoresis coupled to electrospray ion-
ization time-of-flight MS, metabolites quantification has been
performed on individual isolated neurons,[76] and analytical vali-
dation of a single-cell metabolite analysis using the microarrays
for mass spectrometry (MAMS) platform has also been applied
to monitor cellular responses upon environmental and genetic
perturbation.[77]

Given these developments, and the significance of cell
metabolism in the definition cell state and function, it is antic-
ipated that further technical advances will lead to more complete
coverage of the metabolome, accurate and fast metabolites iden-
tification, and nondestructive measurement in single cells.

2.6. Multi-omic Profiling of Single Cells

Cellular identity does not materialize from the isolated activi-
ties of the genome, epigenome, transcriptome, or proteome, but
rather as a property of the interaction of each of these aspects
with each other and other aspects of cell biology. As such, there is
a considerable interest in capturing as much information from a
single cell as possible—which has led to the emergence of single-
cell “multi-omics” approaches (reviewed in detail in ref. 78).
Methods such as G&T-seq[4] and DR-seq[79] demonstrated the

potential of parallel screening of the genomes and transcrip-
tomes of single cells, by linking genomic diversity—aneuploidy,
inter-chromosomal fusions and SNVs—with transcriptional het-
erogeneity and the detection of expressed fusion transcripts and
SNVs. Both methods demonstrated a correlation between chro-
mosomal copy number and gene expression, while the scal-
able nature of the G&T-seq protocol enabled focused analysis
of a parallel inter-chromosomal fusion and its resultant fusion
transcript, as well as integration of SNV information between
genomes and transcriptomes.[4] We and others are now apply-
ing these techniques in the study of primary cancer cells, as
well as rare circulating tumor cells, with the aim of extracting
a more complete molecular profile of cellular evolution and its
functional/phenotypic consequences in cancer.
Linking epigenomic and transcriptomic measurements of the

same single cell allows exploration of the regulatory mechanisms
underlying transcriptional heterogeneity. Further development
of the G&T-seq protocol has enabled parallel methylation profil-
ing and transcriptional analysis of single cells (scM&T-seq[26]).

Similarly, scTrio-Seq integrates parallel transcriptome analysis
and bisulfite sequencing DNA copy number analysis to perform
genome, epigenome, and transcriptome analysis of the same
cell.[80] Recently, the G&T-seq method has further been adapted
to incorporate NOME-seq[34] analysis of the same single cell, giv-
ing a triple readout of chromatin accessibility, DNAmethylation,
and gene expression.[81]

Perhaps most interesting for understanding dynamic, rapid
cell type, and state transitions is the integration of transcriptomic
and proteomic information. Several methods allowing such ob-
servations have emerged, though all are currently dependent on
antibodies which “translate” the protein signal into a nucleic acid
signature which can be read out by qPCR[82] or sequencing.[83]

Proximity extension assays (PEA) and proximity ligation assays
(PLA) involve the conjugation of nucleic acid “barcodes” to anti-
body pairs which recognize different epitopes of the same protein
(or protein complex) and protein abundance can subsequently be
measured by qPCR-based detection,[82] in parallel with transcrip-
tomic measurements from the same single cell.
Recently, microfluidics approaches for single-cell mRNA-seq

have been coupled with oligonucleotide tagged antibodies to en-
able highly multiplexed protein analysis and parallel transcrip-
tome analysis. The cellular indexing of transcriptomes and epi-
topes (CITE-seq) approach labels cells with antibodies tagged
with barcode sequences flanked by polyadenine and PCR handle
sequences compatible with transcriptome-wide amplification.[83]

Thus, when standard whole transcriptome amplification is per-
formed using a drop-seq or 10X Chromium platform, the an-
tibody barcodes are simultaneously amplified, enabling parallel
transcript and protein quantification. Such approaches have the
potential for high levels of multiplexing as, unlike fluorescence
or mass cytometry-based detection, there is a virtually unlimited
number of barcodes or tags that can be used in parallel.
Integration of metabolite assays with proteomics assays might

directly resolve connections between protein signaling networks
and functional smallmoleculemetabolites within the cell, reflect-
ing the cell’s state and type. The single-cell barcode chip (SCBC)
platform described above can be used to integrate quantitative
measurements for intracellular metabolites with functional pro-
tein immunoassays into a microarray format.[84]

Approaches for multi-omic analysis of single cells continue
to develop at pace, and as methods improve and sequencing
throughput increases, it seems likely that methods to capture as
much as possible of a single cell’s identity will become increas-
ingly important in focused studies of cellular heterogeneity.

3. Applications of Single-Cell Technology in
Biomedical Research and Basic Biology

Single-cell transcriptomic studies have beenwidely applied to “at-
lassing” studies of tissues, organs, and even whole organisms.[13]

Indeed, the Human Cell Atlas, which aims to characterize ev-
ery cell type and state in the human body, has emerged as one
of the most ambitious, large-scale projects in biology since the
Human Genome Project.[85,86] Such studies will inevitably have
profound impact on our understanding of cellular heterogene-
ity and the role it plays in the division of labor within the hu-
man body, during normal development and disease. However,
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single-cell technologies are also highly applicable in focused ar-
eas of research, and are set to become commonplace tools in a di-
verse array of fields, notably in clinical and biomedical research,
but also in studies of plant and microbial biology.

3.1. Single-Cell Analysis in Stem Cell Biology

Stem cells are characterized by both being capable of unlimited
self-renewal and having the potential to differentiate into spe-
cialized types of cells,[87] and understanding how they establish
their molecular identity has profound implications for develop-
mental biology and regenerative medicine. Both embryonic and
adult tissue stem cells represent a rare but heterogenous pop-
ulation, being composed by a mixture of intermediate and dif-
ferentiated cell types, subtypes, and states. Performing omics
analysis on bulk stem cell populations will hide this intrin-
sic heterogeneity, and single-cell approaches are uniquely able
to identify cell-specific phenotypes and cell-to-cell variation in
state. Single-cell RNA-seq analysis has revealed that transcrip-
tional regulators and genes associated with pluripotency have
variable expression among individual cell from human and
mouse embryos[88] and embryonic stem cell (ESCs)[89] and has
identified ESC subpopulations showing distinct transcriptional
profiles.[48,90] Single-cell RNA-seq methods have also been ap-
plied to investigate tissue-specific stem cell populations, and as
a result, novel stem cell types have been identified and a deeper
understanding of the transcriptome dynamics of developmental
process under physiological and perturbed conditions has been
provided.[91,92]

Application of single-cell methods to investigate the
hematopoietic system has led to paradigm shifts in our un-
derstanding of cellular heterogeneity in hematopoiesis and how
this is disrupted in disease.[3,53,92,93] Observations from single-cell
functional assays, and gene expression profile analysis have
provided evidence of considerable functional heterogeneity,
self-renewal, and lineage potentials, even within the most
stringently defined HSC populations.[3,94] Another exciting
single-cell analysis approaches applied to hematopoiesis is the
ability to measure multiple proteins expressed by single cells
through mass cytometry. This technique can also be combined
with transcriptional measurements, and can be used as a highly
multiplexed imaging platform that could be applied to study
the HSC niche.[95] Finally, single-cell epigenetic analysis is
likely to become of particular interest in the study of HSCs
as epigenetic regulation appears to play a major role in the
functional lineage biases of HSCs. Single-cell technologies,
including transcriptomic, proteomics, and epigenomic analysis,
will enable molecular dissection of this heterogeneity and the
regulation and maintenance of hematopoiesis in health and
disease.

3.2. Single-Cell Analysis in Cancer

Cancer is one of the most common manifestations of ge-
nomic mosaicism in humans. The study of tumor heterogene-
ity is further complicated by their often polyclonal nature, with

single-cell derived clones harboring genetic and epigenetic alter-
ations that differ from the host genome and from other cells
within the tumor. Although the genetic heterogeneity and the
evolutionary principles governing resistance are actively being
discovered, tools enabling the study of molecular processes that
govern tumor progression are lacking. The single cell is the fun-
damental substrate upon which mutational mechanisms and the
principles of selection act to evolve the complex structure that
is a tumor mass.[96] Thus, understanding single cancer cells at
their individual level and as an interacting, dynamic system, will
undoubtedly advance our understanding of all facets of tumor
biology and eventually therapeutic resistance.[97]

Single-cell technologies able to characterize a single-cell
genome, transcriptome, epigenome, and proteome could provide
a clearer picture of tumor biology complexity at every phase of tu-
mor development, with potential applications in new therapeutic
approaches, cancer treatment, and clinical management. The ap-
plication of bulk exome sequencing, targeted deep-sequencing,
and parallel single-cell DNA sequencing to study clonal evo-
lution during metastatic dissemination in two colon cancer
patients, demonstrated that, in contrast to bulk sequencingmeth-
ods, single-cell analysis was able to distinguish between a tu-
mor self-seeding later dissemination and an early dissemination
models of metastasis. Moreover, single-cell sequencing identi-
fied a rare ancestral subpopulation, composed of three diploid
cells carrying a mutation in the APC gene that initiated the tu-
morigenesis and subsequently gave rise to the primary tumor
and liver metastasis.[98] Using a nanogrid-based single-nucleus
RNA-seq system, Gao et al. compared transcriptional profiles of
cancer nuclei and cancer cells and to study phenotypic diver-
sity and subpopulations in breast cancer frozen samples.[99] They
showed that nuclear transcriptomes are representative of whole
cellular transcriptomes and were able to identify co-existence
of multiple breast cancer subtypes and a minor subpopulation
of highly proliferative cancer cells within the same patient’s
tumor.
Single-cell sequencing can also be applied to the molecular

phenotyping of circulating tumor cells (CTCs),[100,101] circulating
rare cancer cells heralding tumormetastasis. As CTCs can be col-
lected in a minimally invasive procedure through a conventional
blood sample single-cell genome sequencing of CTCs could pro-
vide an attractive surrogate biopsy of primary or metastatic tu-
mors. The single-cell molecular analysis of circulating tumor
cells has already confirmed the high degree of heterogeneity
of intracellular population within the same patients and across
different patients, and has identified the coexistence of differ-
ent drug-resistance mechanisms in refractory tumors.[101] Single
CTCs from lung cancer patients displayed characteristic cancer-
associated SNVs and indel profiles in exomes of CTCs that were
varying from cell to cell,[102] demonstrating the feasibility of an
approach that could be widely applied in the study of cancer
metastasis.

3.3. Single-Cell Analysis in Reproductive Medicine

Novel preimplantation genetic screening (PGS) for chromo-
somal abnormalities has recently been developed to improve
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clinical outcomes in patients undergoing in vitro fertiliza-
tion (IVF) as aneuploidy in one of the most prevalent ge-
netic abnormality in human embryos. Fluorescence in situ
hybridization (FISH)–based screening is unable to provide a
comprehensive analysis of all chromosomes, while the de-
velopment of WGA technologies has enabled the analysis of
whole chromosomes aneuploidies in single cells. Perform-
ing WGA on oocytes, one of the blastomeric cells from
day-3 embryos, or from trophectoderm cells from day-5 blasto-
cyst embryos, enables comprehensive chromosome analyses on
various genome analytical platforms, such as a comparative ge-
nomic hybridization array[103] single-nucleotide polymorphism
array[104] or multiplex quantitative PCR analysis.[105] The rapid de-
velopment of NGS and advancement of WGA techniques will
enable use of this technologies in clinical practice, as demon-
strated by the chromosomal and mitochondrial genome copy
number profiling in human IVF embryos using the MALBAC
WGA approach.[106]

3.4. Applications of Single-Cell Technology in Plant Research

Examples of plant single-cell analysis are relatively uncommon,
although the technology has a number of exciting potential ap-
plications. As with animal and human samples, genotyping, de-
velopmental studies, and cell-typing using single-cell approaches
are all highly relevant, as is the use of these approaches for the
analysis of biomolecule synthesis and interactions.[107] A major
challenge in plant single-cell analysis is the presence of a cell
wall, and protocols for rapid tissue dissociation and a common
cell wall lysis method are lacking. Indeed, with the exception of
pollen, few cell types in multicellular plants can be readily disso-
ciated without enzymatic treatment, and removal of the cell wall
has consequences for the stability of the remaining cell proto-
plast, as well as potential repercussions for gene expression in the
cell due to the level of stress caused by enzymatic or mechanical
cell wall digestion.[108] However, single-cell transcriptome ampli-
fication approaches are compatible with protoplast amplification,
and studies of cell identity in Arabidopsis thaliana have been suc-
cessfully performed.[109]

Single-cell genome sequencing may have immediate and
highly beneficial application in pollen typing, applicable in both
basic molecular genetics and agricultural breeding. During the
meiotic cycle, chromatids recombine resulting genetic differ-
ences in each of the daughter cells. The frequency of segregation
of different alleles into different pollen grains then determines
the genetic diversity and distribution of beneficial traits (e.g., crop
yield) of the offspring plants. Currently, studies of plant popula-
tion genomics are performed using low-throughput cytological
assessment of the pollen grains and conventional breeding, with
large numbers of offspring plants needed per study. Often these
plants have long generational times, for example, wheat can take
up to 9 months to mature in the field, making the process slow
and costly.
By sequencing the genomes of single pollen grains, it may

be possible to haplotype the parental chromosomal contri-
bution and understand factors regulating the frequency of

crossing-over, and thus population genetic diversity. Pollen-
typing has advantages which work to help with some of these is-
sues. It is high-throughput, often using FACS, and only one plant
is needed for studies such as those looking at quantitative-trait
loci (QTL) association or mapping which usually require thou-
sands of replicates.[110] Dreissig et al. studied barley (Hordeum vul-
gare) pollen in order to assess the number and location of recom-
bination sites along the length of each chromosome, testing the
cytological hypothesis that the majority of the sites are located at
the distal ends despite the “peri-centromeric” regions.[111] Single-
cell multi-omic approaches may further enable researchers to
link this whole genome sequencing with other “omic” data
such as those from the transcriptome, methylome or proteome
to further understand the biology of plant meiosis and pollen
formation.

3.5. Single-Cell Analysis of Microbial Communities

Since microbial populations are often complex and consist of a
community of multiple species, single-cell analysis may be vital
in dissecting molecular heterogeneity between cells.[112] The ap-
plications are wide-ranging from deciphering phylogenetic trees
and evolutionary mechanisms, to discovering novel metabolic
features within amicrobiome,[113] monitoring and optimizing the
productivity in industrial bioprocesses,[114] showing the diversity
of symbiotic interactions as well as viral integrations, to elucidat-
ing “rare biospheres.”[112] Currently, microbiomes are predom-
inantly categorized by sequencing of the small ribosomal 16S
subunit using targeted primers. This targeted technique only am-
plifies a small proportion of the entire genomic content within a
microbial cell, often misses less efficiently amplified rare cells
within a population and cannot amplify certain members of the
Actinobacteria andCrenarchaeota.[112] Adapting existing eukaryote
single-cell approaches for prokaryotes is technically challenging,
due to difficulties in sorting single microbial cells, the lack of a
cell lysis method which can be applied across all taxa, WGA bi-
ases and variability in genomes within a population, and single-
cell sequencing or analysis in general within the microbial field
is relatively uncommon. However, considerable effort is being
made to resolve these issues, and instruments specifically de-
signed for microbial sorting or microfluidic processing[22] are
emerging, as well as techniques to improve the already existing
tools. WGA-X, an improvement of the already existing genome
amplification enzyme phi29, helps with environmental and vi-
ral samples with high GC content.[115] Recently, a microfluidic
platform for single-cell compartmentalization and WGA of mi-
crobial communities (SiC-seq) was described, enabling genomic
processing of over 15 000 single cells, including those collected
from marine water samples.[22] Again, using shallow sequenc-
ing of each cell, the method allows screening of bacterial popula-
tions for anti-microbial resistance (AMR) genes, virulence factors
andmobile genetic elements (e.g., phage). The diversity inherent
in real-world bacterial communities make them a fertile ground
for the application of single-cell approaches, particularly in the
understanding of population evolution and the development of
traits such AMR.
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4. Future Perspectives/Outlook

Approaches for the study of the molecular identity of single cells
have emerged and been adapted at a rapid pace over the last
5 years. Through application in large scale, multi-center studies
of whole organism biology, such as the Human Cell Atlas,[86] and
more focused studies of discreet biological cell types and states,
these techniques—in particular, single-cell transcriptomics—are
becoming routine tools in cellular genomics. Continued techni-
cal improvement, adoption, and adaptation of techniques will see
further uptake of the methods in plant and microbial research.
However, continued technical development is essential tomax-

imize the amount of information that can be retrieved from a
single cell. Each of the methods described in this review has
limitations, particularly in the coverage they provide of the an-
alyte of interest, which is particularly important where base-level
events (e.g., SNVs or individual base modifications) are to be
considered. Improvements in molecular biology and microflu-
idics may resolve some of these issues, and computational ap-
proaches for imputation of missing data are also increasingly be-
ing applied.[116] As sequencing capacity increases, both in terms
of yield and read length, tools for high-throughput single-cell
splice variant analysis will emerge, and be further integrated with
genomic, epigenomic, and proteomic data from the same single
cell. Methods which retain spatial information about the arrange-
ment of cells within a tissue will be critical to resolving the contri-
bution of physical interactions to the formation and function of
biological structures.[95,117] Through the integration of spatiotem-
poral omics datasets from the same cells, it may be possible to
construct detailed models of how cells establish, maintain, and
change their identities throughout life.
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