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Abstract
Photoconvertible fluorescent proteins (pc-FPs) are a class of fluorescent proteins with "optical highlighter" capability, meaning that the color of
fluorescence can be changed by exposure to light of a specific wavelength. Optical highlighting allows noninvasive marking of a subpopulation of
fluorescent molecules, and is therefore ideal for tracking single cells or organelles.

Critical parameters for efficient photoconversion are the intensity and the exposure time of the photoconversion light. If the intensity is too low,
photoconversion will be slow or not occur at all. On the other hand, too much intensity or too long exposure can photobleach the protein and
thereby reduce the efficiency of photoconversion.

This protocol describes a general approach how to set up a confocal laser scanning microscope for pc-FP photoconversion applications. First, we
describe a procedure for preparing purified protein droplet samples. This sample format is very convenient for studying the photophysical behavior
of fluorescent proteins under the microscope. Second, we will use the protein droplet sample to show how to configure the microscope for
photoconversion. And finally, we will show how to perform optical highlighting in live cells, including dual-probe optical highlighting with mOrange2
and Dronpa.

Protocol

1. Preparation of fluorescent protein droplet samples

A fluorescent protein droplet sample consists of a 1-octanol/water emulsion with the fluorescent protein residing in the water phase. This emulsion
is sandwiched between a microscope slide and a 22 mm square cover glass for microscopy applications.

2. Setting up a photoconversion experiment

The following procedure is a general strategy for setting up a fluorescent protein photoconversion experiment. This procedure can be applied for
purified proteins as well as for live cells.
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1. Before making fluorescent protein droplet samples the microscope slides and cover glasses need to be cleaned and coated with a
hydrophobic agent.

2. Clean glassware by washing 5 minutes with acetone and leave to dry by air. (Optionally, after cleaning the glassware can be treated for 30
seconds in a plasma cleaner to obtain optimal coating results).

3. Prepare a 2% methyltrimethoxysilane solution in acetone and coat the glassware during a 2 minutes incubation in this solution. After coating
remove the glassware from the solution and leave to dry by air. Then rinse with 70% ethanol from a spray bottle and leave to dry again.
(Optionally, at this point the glassware can be baked for 1 hour at 80°C to covalently link the coating to the glassware). Coated glassware can
be stored for at least one month.

4. Fluorescent proteins are purified as His6-tagged protein from E. Coli 1. Measure the absorbance spectrum of the purified protein and prepare
a stock dilution with an optical density of ~0.1 in STE buffer (150 mM NaCl, 10 mM Tris-HCl pH 8, 1 mM EDTA), containing 0.1% bovine
serum albumin (BSA). In addition prepare 10 ml of a 1:1 mixture of 1-octanol and STE buffer in a 15 ml conical tube and mix vigorously. After
mixing leave until the phase separation is complete. The top phase is the 1-octanol. (Caution: Because 1-octanol has a strong smell it is
important to use a closed waste container for everything that comes in contact with 1-octanol.)

5. To make the emulsion pipette 45 μl 1-octanol and 5 μl fluorescent protein in an microfuge tube. Tap the tube a few times with your finger to
start formation of the emulsion and then sonicate the tube for 30 seconds in a sonication bath. In the meanwhile get a coated microscope
slide and cover glass ready. After sonication the emulsion should be completely cloudy. Immediately after sonication pipette 4 μl emulsion
from the middle of the tube onto a coated microscope slide and cover with a coated cover glass.

6. If the procedure is done correctly the emulsion should spread evenly between the microscope slide and the object glass. Within minutes the
sample should be stable, consisting of ~10 μm thick fluorescent droplets with varying diameter. The largest droplets are close to the center of
the sample and the smaller are located further towards the edges.

1. The following parameters provide a general starting point to set up your photoconversion experiment:
40x 1.3NA oil immersion objective
Image size = 512 x 512 pixels
Scan zoom = 4
Pixel dwell time = 6 μsec.
Z-resolution (pinhole size) = 3 μm
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3. Dual-probe optical highlighting with mOrange2 and Dronpa

Because of the red-shifted spectral properties, mOrange2 can be used in combination with the green photoswitchable fluorescent protein Dronpa
for dual-probe optical highlighting to allow selective highlighting of 4 individual cell(organelle) populations.

4. Representative Results

Figure 1. Droplet sample preparation. A) Correctly prepared droplet sample. B) Sample prepared without coating the microscope slide and
cover glass. C) Sample prepared without adding 0.1% BSA.

Figure 2. Effect of photoconversion laser power and duration on mOrange2 photoconversion. Single droplets containing mOrange2
protein were continuously photoconverted using different amounts of 488 nm laser power. Relative laser power used for photoconversion was
10% (solid), 25% (dashed), and 100% (dotted). A) Orange fluorescent species. B) Photoconverted red fluorescent species.
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2. Configure two detection channels for the initial and photoconverted fluorescence, as well as a "photoconversion channel". In this example we
will use purified mOrange2 protein, which is a orange-to-red photoconvertible fluorescent protein. The orange species is detected using 561
nm excitation and the fluorescence is collected between 570 nm and 630 nm. The photoconverted red species is detected using 633 nm
excitation and the fluorescence is collected between 640 nm and 700 nm. For the "photoconversion channel" select 488 nm excitation and
collect fluorescence between 490 nm and 540 nm. (Note: imaging the photoconversion channel is not strictly necessary.)

3. Use the channel for imaging the initial fluorescence with continuous scanning to adjust the laser power and detector gain for optimal image
quality.

4. Activate the photoconversion channel and select a low laser power. Start imaging a time lapse series and gradually increase the
photoconversion laser until significant bleaching of the initial fluorescence is observed. Continue scanning until the initial fluorescence is
approximately 75% bleached.

5. Deactivate the photoconversion channel and activate the detection channel for the photoconverted fluorescence. Start imaging with a high
detector gain and low laser power and gradually increase the laser power until the photoconverted fluorescence is detected. Once you detect
the photoconverted fluorescence you can adjust laser power and detector gain for optimal image quality.

6. Finally, the laser power used for photoconversion as well as the duration of photoconversion need to be optimized. Increasing the
photoconversion laser power will accelerate the rate of photoconversion, however too much laser power will photobleach the protein.

7. Once the optimal photoconversion laser power and duration have been determined, these parameters can be used to configure a standard
photobleaching or FRAP module and the "photoconversion channel" is no longer required.

1. Cells are grown in glass bottom MatTek dishes and transfected 24 hours prior to imaging using standard Lipofectamine2000 transfection1.
2. Set up the microscope for mOrange2 photoconversion as described in section 2.
3. Configure the microscope for Dronpa photoswitching. Dronpa fluorescence can be imaged using the mOrange2 "photoconversion channel"

(see step 2.2). (Note: Minimize the laser power used for imaging Dronpa, because too much laser power will cause inactivation of Dronpa.)
Add a channel for Dronpa photoactivation. We use 800 nm two-photon excitation for photoactivation, but alternatively this can be achieved
using 405 nm excitation. Determine the laser power required for imaging, photoactivation, and photoinactivation of Dronpa fluorescence.

4. Caution: Photoconversion of mOrange2 and inactivation of Dronpa both occur upon 488 nm excitation. Because of the high laser power
required for mOrange2 photoconversion this will also inactivate Dronpa fluorescence. On the other hand, Dronpa inactivation occurs already
at much lower laser power and can be performed without significant mOrange2 photoconversion.

5. Once the parameters for mOrange2 photoconversion and Dronpa photoswitching are set, dual probe optical highlighting is achieved through
the following steps. First, inactivate Dronpa fluorescence in the whole field of view with low power 488 nm excitation. Second, select a region
of interest and photoconvert mOrange2 with high power 488 nm excitation. Finally, select a region of interest to activate Dronpa fluorescence.
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Figure 3. Dual-probe optical highlighting with mOrange2 and Dronpa. A) Cell expressing mOrange2-Histone H2B and Dronpa-Mito before
photoconversion, showing orange fluorescence in the nucleus and green fluorescence in the mitochondria. B) Dronpa fluorescence was switched
off with low power 488 nm excitation, causing minimal photoconversion of mOrange2. C) mOrange2 was photoconverted to red with high power
488 nm excitation. D) Dronpa fluorescence was switched on again using 800 nm 2-photon excitation. The panels are overlays of the fluorescence
images together with the differential interference contrast image.

Discussion
The purified fluorescent protein droplet sample is a very convenient sample format for the photophysical characterization of fluorescent proteins,
for example to study photobleaching kinetics and photoconversion kinetics. The extremely small droplet volume (~20 picoliter) facilitates
photobleaching and photoconversion experiments, which can be difficult to perform in cuvette based systems. In addition, as shown here the
droplet sample is ideally suited for setting up a confocal microscope for photoconversion applications. The hydrophobic coating and the presence
of BSA are important for obtaining homogeneous droplets. Without coating the droplets tend to be squashed against one of the glass surfaces
and in the absence of BSA the fluorescent protein tend to accumulate at the 1-octanol/water interface, creating a halo of fluorescence (Figure 1).

Fluorescent protein photoconversion is often regarded as an alternative to fluorescence recovery after photobleaching (FRAP), with the
advantage that one can also follow the photoconverted species. However, it is important to consider that photoconversion is critically dependent
on the laser power used. Too much photoconversion laser power or too long exposure will cause photobleaching rather than photoconversion,
thereby reducing the amount of photoconverted fluorescence (Figure 2).

The red-shifted spectral properties of mOrange2 and its photoconverted species permit dual-probe optical highlighting with a green fluorescent
optical highlighter. This can either be a photoswitchable fluorescent protein (Dronpa), as demonstrated here, or alternatively a photoactivatable
fluorescent protein, for example PA-GFP. Dronpa has the advantage that one can check its presence at the start of the experiment. On the other
hand, the use of Dronpa complicates optical highlighting, because all Dronpa fluorescence has to be inactivated first, and the fact that Dronpa
fluorescence is gradually switched off during imaging. These complications are less profound when using PA-GFP, but checking for the presence
of PA-GFP before photoactivation can be more difficult.
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