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Current environmental monitoring efforts often focus on known, regulated contaminants
ignoring the potential effects of unmeasured compounds and/or environmental factors.
These specific, targeted approaches lack broader environmental information and under-
standing, hindering effective environmental management and policy. Switching to com-
prehensive, untargeted monitoring of contaminants, organism health, and environmental
factors, such as nutrients, temperature, and pH, would provide more effective monitoring
with a likely concomitant increase in environmental health. However, even this method
would not capture subtle biochemical changes in organisms induced by chronic toxicant
exposure. Ecosurveillance is the systematic collection, analysis, and interpretation of eco-
system health-related data that can address this knowledge gap and provide much-
needed additional lines of evidence to environmental monitoring programs. Its use would
therefore be of great benefit to environmental management and assessment.
Unfortunately, the science of ‘ecosurveillance’, especially omics-based ecosurveillance is
not well known. Here, we give an overview of this emerging area and show how it has
been beneficially applied in a range of systems. We anticipate this review to be a starting
point for further efforts to improve environmental monitoring via the integration of com-
prehensive chemical assessments and molecular biology-based approaches. Bringing
multiple levels of omics technology-based assessment together into a systems-wide eco-
surveillance approach will bring a greater understanding of the environment, particularly the
microbial communities upon which we ultimately rely to remediate perturbed ecosystems.

Introduction
Ecosurveillance, in the context of this review, is defined as the systematic collection, analysis, and
interpretation of information on ecosystem health. It synthesises numerous data sources to inform
environmental management and policy decisions. Environmental monitoring refers to the measure-
ment of specific parameters, such as nutrients, dissolved oxygen, specific contaminants, and indicator
organisms, usually concerning regulatory targets. Our ability to collect and interpret both ecosystem
data and the inorganic/organic contaminant information represents a powerful tool for managing
environmental health. Ecosurveillance can then also be used to measure the success or failure of inter-
ventions in a quantitative manner. This is graphically summarised in Figure 1.
The key point of differentiation between health/surveillance-based measurements of the ecosystem

and monitoring of discrete and individual parameters/specific contaminants is that monitoring is
more concerned with source-dictated (targeted) measurements (i.e. contaminants, nutrients, etc.) that
are present in an environment, whereas ecosystem health metrics are focused on system-wide per-
formance and characterisation (i.e. ecosystem service function/dysfunction due to biotic or abiotic
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perturbation). Omics-based technologies (i.e. genomics, transcriptomics, proteomics, lipidomics, and metabolo-
mics) may be deployed within the ecosurveillance monitoring framework to capture the biological response of
the system under perturbation.

Environmental monitoring
A common approach for environmental monitoring is to take a targeted risk-based approach that considers
known contaminant sources and associated industrial activities (both historical and current) in the catchment
to compile a list of possible contaminants and physical parameters for monitoring [1]. The risk of this
approach is that it can only monitor contaminants known to be present, it cannot identify unknown com-
pounds or contaminants of concern that were not known to present, nor consider the cumulative effects of
multiple sublethal stressors [2]. It is a static measurement of a fixed set of contaminants at a particular point in
time, with no real link to the surrounding system outside of the matrix that was measured. Such assessments,
therefore, do not indicate the bioavailability, stability, turnover, or distribution of the substances within the
system. This can be a particular problem for contaminants such as perfluoroalkyl substances (PFAS), which are
numerous (many undocumented), highly mobile, and are known to bioaccumulate in multiple trophic levels
[3,4]; for long-lived contaminants that can bind to and release from sediments (e.g. metals); or, for contami-
nants that are formed in the system itself (e.g. photochemically produced reactive oxygen species) [5].
Furthermore, understanding the complex interactions between biological systems and anthropogenic environ-
mental changes and the effects of natural variability in weather, season, and diurnal and biogeochemical cycles
remains a major research challenge [6–8].
Traditional environmental and organism health monitoring techniques (e.g. chemical monitoring and bioas-

says) are highly suited to assessing acute toxic effects. They struggle, however, to detect subtle shifts in ecosys-
tem function, species abundances, and animal physiology resulting from low-level and chronic exposures due
to changing environmental/climatic conditions and interactions thereof.
Policy decisions are thus often based not on the actual health of the ecosystem, but the quantification of spe-

cific contaminants or nutrients above or below an arbitrary legislative level. To some degree, the importance of
this gap between the measurement of a substance and the impact will vary with specific circumstances (e.g.

Figure 1. An overview of an ecosurveillance framework that encompasses omics-based technologies within a

monitoring and surveillance setting.

Note, PFAS, Perfluoroalkyl and Polyfluoroalkyl Substances; PCBs, Polychlorinated biphenyls.
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season), but if the goal is a healthy and sustainable environment then lack of such information may hinder
meaningful policy development and effective mitigation/harm reduction [9].
We suggest the data suitable for determining in situ risks of adverse effects or ecosystem perturbation are

currently lacking for most environmental contaminants, both for prospective and retrospective assessments.
Compounding this further is the uncertainty in ecological risk assessments of chemical mixtures (PFAS, phar-
maceuticals, pesticides, chlorinated paraffins, and antibiotics are all cases in point) [10,11]. There is a clear
need for better predictive tools for chemical mixture assessment, and the development of in vitro, and in vivo
methods to efficiently assess and predict biological effects [12–14]. Effects Directed Analysis (EDA) is one
approach to meeting this need, using metabolic sample fractionation, bioassay endpoints, and chemical con-
taminant analyses to identify key toxicants in the environment [15–17]. While EDA approaches are not the
focus of this review, it is acknowledged that they would complement functional omics assays (i.e. metabolomics,
lipidomics, and proteomics) used within the ecosurveillance framework proposed within that are aimed at cap-
turing biological information from a sample matrix, which could be further analysed via the EDA pipeline of
assays. Furthermore, novel non-targeted screening approaches that can capture contaminants outside of a risk-
based monitoring framework have the potential to improve biological contaminant impact assessments and
facilitate retrospective data mining for further insights into key contaminants of concern [18], if analysed with
appropriately matched omics data (e.g. genomics, transcriptomics, proteomics, or metabolomics).
Ecosurveillance has the potential to bridge the gap in current monitoring data, and link system performance

metrics that are tied to measured biotic and abiotic perturbations [19–21]. Omics-based approaches, either
applied individually or in combination, have successfully been applied to investigate (potential or measured)
function across the tree of life from microbial communities (i.e. microbiomes) through to larger metazoan taxa.
Coupling measurable metabolic endpoints to multiple (sometimes subacute) contaminant levels and sources
that are currently not identified using a conventional risk-based monitoring program has the potential to
provide a more detailed and holistic understanding of temporal, spatial, and multigenerational impacts of con-
taminants on a single organism or species through to a whole-of-system approach [2]. For example, if one
could measure metabolite levels and toxicant concentrations in the same analytical run there would be great
potential for directly correlating metabolic changes and the contaminant concentrations needed to cause such
changes. Even if contaminant levels were low, the presence of a contaminant, or more likely contaminants,
known to cause a particular physiological change before significant harm occurring might at least be used as a
trigger for further intensified monitoring and/or remediation before serious harm occurred.
The purpose of this review is to provide an overview of some of the salient applications of environmental

functional omics within an omics-based ecosurveillance framework. We also demonstrate how these methods
can be coupled with current monitoring data to better inform ecosystem health, function, and resilience.

Environmental DNA (eDNA) and nucleic acid-based approaches as a
monitoring tool
Environmental DNA (eDNA) methods focus on the detection and monitoring of sequenced nucleic acid data
extracted from environmental samples and can be classed as a form of environmental genomics. They have
been successfully used to survey fish biodiversity [22], invasive species [23], detect signature bacteria associated
with contaminants [24], assess environmental health and status using indicator organisms [25,26], for species
monitoring [23], exploring trophic interactions [27] through to investigating broad biogeographic patterns [28].
Principally, sequence-based eDNA data is a presence/absence or relative abundance measurement used for

detection of organisms or function-specific genes (e.g. measuring nitrogen cycle genes in soils to monitor the
effects of land-use changes [29]). The use of eDNA data for monitoring has largely focused on taxonomic
observations of indicator organisms [30,31]. In the majority of cases, health and function are inferred from the
presence/absence or relative abundance of these indicator organisms, with this data then used to inform a
response or intervention [32]. Nevertheless, taxonomic observations do not necessarily inform us of the func-
tional performance of an ecosystem. The function can be inferred from taxonomy where we have existing
knowledge of an organism’s functional capabilities or through bioinformatic functional inference approaches
[33]. However, this is not always straightforward; this is particularly true in the case of microbial indicators.
Microbiome metabolic capabilities can be decoupled from taxonomic identity (through gene loss, horizontal
gene transfer [34]) and a single organism can exhibit a range of metabolic capabilities depending on environ-
mental conditions [35].
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Microbial communities drive key ecosystem processes in natural, managed, and engineered environments
[36] and are intrinsically linked to the ecosystem state. Understanding microbiome processes that can mitigate
environmental pollutants is therefore critical to maintaining rich biodiversity and healthy ecosystems [37].
Currently, existent and developing knowledge of how microbial communities function naturally and in
response to perturbation is not well incorporated into environmental monitoring, surveillance, or management
practices [38]. To a large extent, this extends up through producers and consumer taxa — as the interactions
and levels of influence of ecosystem connectivity for many taxa are unknown.
Functional profiles of organisms or communities can be produced using DNA-based methods such as meta-

barcoding of functional genes in biochemical pathways or whole-metagenome sequencing (WMS) which has
emerged as a powerful tool to survey biological community structures and their predicted function [39].
Additional analysis that complements and expand traditional metagenomic profiling and targeted eDNA meta-
barcoding techniques, capturing species-specific and microbial community functional activities are however,
still needed [40].
DNA approaches, like those described above, target the genetic or functional potential of organisms or com-

munities, not the realised functional activity or response. Efforts have been made to link gene and transcript
abundances of genes associated with specific functions (e.g. ammonia oxidation, denitrification, etc.) with rates
of activity, but success has been variable [41,42]. Transcriptomes, sequences of RNA from transcribed genes,
take us a step closer to realised function by identifying active organisms and genetic pathways. The presence of
specific transcripts does not, however, indicate the associated function is taking place since regulation can occur
after expression [43]. Many enzymes also function to catalyse reactions in both directions, making it difficult to
know the outcome of activity from gene/expression alone. Therefore, both DNA and RNA approaches are
limited in that they do not represent the realised functional components of an environmental response. This is
determined by the proteins translated from the RNA, transcribed from the DNA. The metabolome (metabolite
content) is then the evidence of the protein activity. Proteomics and metabolomics used in an integrated eco-
surveillance framework have the potential to improve our understanding of the realised ecosystem functional
state, and with further development, mechanistic models of measurable health and function that can be used to
improve management outcomes [23]. However, while DNA and RNA approaches have been readily accessible
due to advances in technology for sequencing, quantifying, and comparing these data, until recently, proteo-
mics and metabolomics lacked the depth and sensitivity to be useful except in very targeted experimental
approaches. This is true of both more recently targeted organic metabolites (the focus of this review) and those
inorganic metabolites we often consider readily measurable (e.g. the intermediates and end products of oxida-
tive and reductive N processes), but which are very difficult to measure at appropriate temporal and spatial
scales in situ. With the development of new technology and computational tools, however, applications outside
of the laboratory setting are becoming more common.

Monitoring function (metaproteome and metabolome)
Recent advances in (meta)proteomics and (community) metabolomics have provided a link between genomic
expression and functional characterisation of ecosystem taxa [44]. This provides valuable insight into their in
situ metabolism and function, under a range of biotic and abiotic perturbations that genomics alone cannot
provide. Table 1 provides an overview of some recent omics-based ecosurveillance applications, which to date,
have been predominately microbiome-based.

Proteomics and metaproteomics applications
Proteomics has been applied to investigate and monitor the effect of abiotic factors in selected microbiomes,
wild species, and model organisms; however, its application to broader ecological monitoring remains under-
developed. Where a proteomic investigation has been applied to abiotic stress models, much focus has been
placed on contaminated microbiomes [67,68] and aquatic species such as fish, crustaceans, and molluscs [69].
As an example, the proteome of goldfish (Carassius auratus) was shown to produce significant changes to oxi-
dative stress and apoptosis inhibition, with no mortality, when subjected to herbicide and fungicide mixtures
(8.4 and 42 μg L−1, respectively) and high temperatures (22 and 32°C) [70]. Likewise, the exposure of mature
male and female White Sucker fish (Catostomus commersonii) to oil sands-related chemicals in the Athabasca
River in Canada showed altered lipid and endocrine metabolism perturbations [71]. The exposure to two differ-
ent doses of commercial herbicide led to growth impairment and perturbation of the hepatic proteome of
rainbow trout (Oncorhynchus mykiss) [72].
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Table 1 Applications of ecosurveillance research with integrated functional datasets intended for omics-based
ecosurveillance Part 1 of 3

Matrix Objective

Omics

ReferenceMetagenomics
(Meta)
transcriptomics

(Meta)
proteomics Metabolomics

Soil Measure the functional
and phylogenetic
responses of the
microbial community
impacted by drought.

• 16S rRNA gene
(bacteria)

• ITS (fungal)

• LC–MS/MS
(Orbitrap)

Bastida
et al. [45]

Soil Detect active DNA
viruses and RNA
viruses in a native
prairie soil and
determine their
responses to extremes
in soil moisture

• 16S rRNA gene
(bacteria)

• 16S rRNA gene • Viral
peptides
LC–MS/MS

Wu et al.
[46]

Soil Assess the
metaphenomic
responses of a native
prairie soil microbiome
impacted by drought

• 16S rRNA gene
(bacteria)

• 16S rRNA gene • GC–MSD
(Single
quadrupole)

Roy
Chowdhury
et al. [47]

Soil Assess microbial
community
compositions and
functions in response to
drought and rainfall
events

• LC–MS/MS
(Orbitrap)

Liu et al. [48]

Soil
(microcosm)

Assessing organic
matter decomposition
and nutrient cycling in
wetland soils

• 16S rRNA gene
(bacteria)

• LC–MS/MS
(Orbitrap)

•
1H NMR (600
MHz)

• LC–MS/MS
(Orbitrap)

McGivern
et al. [49]

Soil Assessing
contaminants on
agricultural microbiome
metabolism

• 16S rRNA gene
(bacteria) (after
Xu et al. [50])

• LC–MS/MS • LC–MS/MS Chen et al.
[51]

River Assessment of surface
water quality from
multiple non-point
source contaminants

• 16S rRNA gene
(bacteria)

• GC–MSD
(Single
quadrupole)

Beale et al.
[52]

Soil (-root
interface)

Investigated the
symbiotic associations
between plant roots
with rhizospheric
bacterial communities
under differing acid
mine drainage pollution

• 16S rDNA gene
(bacteria)

• LC-TQ-MS Kalu et al.
[53]

Soil Responses of soil
microorganisms to
polycyclic aromatic
hydrocarbon stress

• 16S rDNA gene
(bacteria) with
functional
prediction of
genes (PICRUSt)

• GC-QToF-MS Li et al. [54]

Sediment/
Water
(microcosm)

Response of
indigenous microbial
structure and functional
dynamics in different
marine environmental

• 16S rDNA gene
(bacteria) with
functional
prediction of
genes (PICRUSt)

• Predicted from
PICRUSt

Neethu et al.
[55]

Continued
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Table 1 Applications of ecosurveillance research with integrated functional datasets intended for omics-based
ecosurveillance Part 2 of 3

Matrix Objective

Omics

ReferenceMetagenomics
(Meta)
transcriptomics

(Meta)
proteomics Metabolomics

matrices after oil
exposure

Marine
Sediment

Measure the influence
of estuarine
macrophytes on
sediment microbial
function and metabolic
redundancy

• 16S rRNA gene
(bacteria) with
functional
prediction of
genes (PICRUSt)

• LC-TQ-MS
• LC-QToF-MS

Shah et al.
[56]

River
(flumes)

Impact of
sulfamethoxazole on a
riverine microbiome

• 16S rRNA gene
(bacteria)

• LC–MS/MS
(Orbitrap)

Borsetto
et al. [57]

Marine Microbial processing of
organic matter
throughout the water
column

• 16S rRNA gene
(bacteria)

• LC-TQ-MS Bergauer
et al. [58]

Soil Investigating
agroecosystem
microbial community
strategies during low
water availability

• 16S rDNA gene
(bacteria)

• LC–MS/MS Starke et al.
[59]

Marine
Sediment

Investigated microbial
methane oxidation at
the sediment–water
interface of a shallow
marine methane seep

• 16S rRNA gene
(bacteria)

• Stable
isotope
probing
(SIP)
LC–MS/MS
(Orbitrap)

Taubert
et al. [60]

Permafrost Reconstruction of fossil
and living
microorganisms in
ancient permafrost

• 16S rDNA gene
(bacteria)

• LC-TQ-MS Liang et al.
[61]

Sediment Measuring the kinetics
of biogeochemical
processes in natural
and engineered
environmental systems

• 16S rRNA gene
(bacteria and
archaea)

• LC-TQ-MS Li et al. [62]

Soil Investigated synergistic
interactions in a
bisphenol A
(BPA)-degrading
microbial community

• 16S rDNA gene
(bacteria)

• 16S rRNA-tag
pyrosequencing

Yu et al. [63]

Sediment
(microcosm)

Elucidate the
mechanisms driving the
rapid biodegradation of
Deepwater Horizon Oil
in intertidal sediments

• 16S rDNA gene
(bacteria)

• 16S rRNA Karthikeyan
et al. [64]

Soil Investigate soil fungi
and their relation to
edaphic and
environmental variables
across three
ecosystems

• 18S rRNA gene • LC–MS/MS
(Orbitrap)

Fernandes
et al. [65]

Continued
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Continuous exposure to environmental pollutants has been shown to damage the redox response and detoxi-
fication processes in crustaceans [73]. Bivalves exposed to metals such as cadmium, copper, lead, and zinc have
shown an increased abundance of proteins associated with stress responses, cytoskeletal activity, and protein
synthesis [74]. A recent multi-omics study from our group, investigating freshwater turtles exposed to PFAS,
identified signs of elevated immune activity and perturbed lipid transport and binding [3]. In addition to moni-
toring the aquatic environment, transcriptomic- and proteomic-based experiments have provided evidence that
herbicides can affect life cycle mechanisms including moulting and the reproduction process of the springtail
Folsomia candida [75]. Each of these studies presents excellent knowledge development in the assessment of
abiotic stress impact on environmental samples or models, but the transition of this knowledge to practical eco-
surveillance application remains unfulfilled.
The expansion of metaproteomic approaches that are targeted towards the study of how microbes contribute

to ecosystem services [76], capturing both phylogenetic and functional information would help address this.
Environmental microbiomes are highly diverse but are currently largely under-represented in public proteomics
databases. Furthermore, functional characterisation using metaproteomics is usually performed with the aid of
metagenomic sequences acquired for the same sample. Truly representative and diverse metagenomic datasets
are difficult to assemble, and therefore, the utility of existing high-quality theoretical proteome databases cover-
ing many known isolates eliminating the need for sequencing, is often preferred [77]. A recent proteome-wide
study conducted on the taxonomy of life has shown that even after using organism-specific genome and tran-
scriptome resources, ∼40% of the identified proteins did not have any functional annotation for their biological
processes [78]. Thus, the success of eco-omics-based studies will require improvement in proteome and meta-
proteome analysis which can reveal the over-representation of functional classes to obtain a global view of
environmental health rather than a species-specific view.
Analysis of complex environments is often hindered by the heterogeneity of the sample matrix and its

varying concentrations of interfering substances (i.e. salts, humic, fulvic, and tannic acids) [79] that can nega-
tively impact extraction and recovery efficiencies [44,80]. Commercial kits are currently available for the
co-extraction of DNA and RNA, but the inclusion of proteins and metabolites requires more research and
development [81,82].

Metabolomics and community metabolomics applications
Metabolomics is well suited to assess sublethal biological effects of contaminants and chemical mixtures; it
relates chemical processes, intermediates, and end-products of an organism’s metabolism and is closely linked
to an exposure-induced phenotype. Coupling quantitative and qualitative chemical analyses with environmental
metabolomics bioassays for a range of species/ages/sexes/developmental stages, as is currently underway, will be
particularly pertinent in establishing omics-based models to understand the contaminant exposure and impact
pathways. For example, metabolomics has recently been applied to zebrafish exposed to environmentally rele-
vant levels of climbazole, a topical antifungal agent, to elucidate the biochemical reasons for reproductive
abnormalities seen in female fish [83]. Metabolomics methods have been used to elucidate the sublethal effects
of toxicants on a large range of species [84–88].
Where environmental metabolomics comes to the forefront in ecosurveillance applications is with its appli-

cation to deep data science investigations, coupled with monitoring metadata and other omics datasets for

Table 1 Applications of ecosurveillance research with integrated functional datasets intended for omics-based
ecosurveillance Part 3 of 3

Matrix Objective

Omics

ReferenceMetagenomics
(Meta)
transcriptomics

(Meta)
proteomics Metabolomics

Sediment Measure the biological
impacts across multiple
trophic levels of
offshore oil and gas
drilling and production
operations

• 16S rDNA
(bacteria)

• 18S rDNA
(eukaryotes)

• 18S rDNA
(foraminifera)

• 16S rRNA
(bacteria)

• 18S rRNA
(eukaryotes)

• 18S rRNA
(foraminifera)

Laroche
et al. [66]
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investigating ecosystem homeostasis [89]. For example, metabolomics has been used to identify correlations
between the root microbiome and plant gene translocation in varying plant functions when perturbed by mine
drainage pollution that ultimately improved its adaptability and phytoremediation potential [53]. Integrative
analyses of transcriptomes and metabolomes in microalgae (Raphidocelis subcapitata) treated with the anti-
biotic clarithromycin [90] identified impacts to biosynthesis and photosynthesis, highlighting the inhibitory
effects of macrolide antibiotics.
Of particular interest is our current understanding of microbial function within environmental microbiomes,

which stems from conventional ecology-based surveys and the utility of more recent environmental genomics
approaches (eDNA). Attempts to harmonise these data with physicochemical parameters of biotic/abiotic eco-
system (dys)function arising from environmental metabolomics data have been limited and show varying levels
of success [9,21,52]. This is potentially biased towards a limited group of microbes (e.g. by the choice of
primers), a selection of discrete sampling points, and/or failure to link microbial diversity with functions
related to biogeochemical cycles or well-defined metabolic endpoints [48]. So, while resilience and redundancy
are theoretically assessed (via, for example, amplicon sequencing), an actual measurable function that is quanti-
fiable is often not. More recent research by Shah et al. [91] employed phylogenetic reconstruction methods to
infer genome content and predict functional (relative) abundances that can be matched to metabolite features
that are either expressed or consumed within the analysed microbiome.
Like metaproteomic approaches, community metabolomics (e.g. metabolomics of entire communities,

usually microbial) may provide functional information post enrichment without the need for 16S rRNA com-
munity diversity profiles. Currently, this method has been largely limited to use in soil [92,93] and some spe-
cific aquatic systems [52,94]. Just as eDNA can be amplified and used to give an idea of what organisms are
present in aquatic systems, so could an environment’s community metabolic profile be preconcentrated,
cleaned-up (e.g. via solid-phase extraction), and measured in large aquatic systems such as lakes and streams.
These data will generate information on the environmental metabolome and the impact of environmental per-
turbations on the community. It may also elucidate specific functions such as host-pathogen interactions and
plant signalling compounds, and associated responses that are aggregated over physicochemical cycles (i.e.
spring-neap tide cycles, etc.) [56,91].
One potential weakness of metabolomics is that results tend to represent the situation at a particular point in

time (when the samples were taken). Organisms, however, exist in time and changes are dependent on develop-
mental stage, and external factors, such as climate and health or symbiotic relationship, that can affect an
organism’s susceptibility to a pollutant (or pollutants) and thus its potential risk. For it to be a useful tool for
monitoring, we need environmental metabolomics to help us understand how differences in timing and dur-
ation of exposure (and subsequent depuration) influence metabolite profiles and organism health. This could
be achieved through long-term multi-generational studies, short-term diurnal flux sampling, or by combining
existing metabolomics data from model species in the literature and studies performed on the same organism
with the same pollutant, but at different life-history stages to give a more comprehensive overview of effects.
The integration of in vitro metabolomics with high-throughput screening platforms such as those recently
demonstrated by Malinowska et al. [95] may also help with this aim.

Integrating multi-omic datasets for ecosurveillance
The expansion of multi-omics research has driven the development of new tools and web-based applications
that facilitate their integration for deeper interpretations that extend beyond the correlation of biological
molecular features towards biological causality and response. Recent expansion, and a renewed focus on the
human gut microbiome, has also led to the development of microbiome-centric tools that pair microbiome
sequencing (16S rRNA gene amplicons, shotgun metagenomics, and metatranscriptomics) datasets with ana-
lysed metabolomes (mass spectrometry and nuclear magnetic resonance spectroscopy data) [96]. While some
of these tools have predominantly been driven by medical and clinical research (e.g. MIMOSA2), they have
proven utility when applied to environmental datasets and omics-based ecosurveillance.
Examples of these ‘clinical’ tools being applied within an environmental context are growing; Hua et al. [97]

applied MIMOSA2 to investigate the gastrointestinal microbiome of zebrafish (Danio rerio) exposed to the
organochlorine pesticide dieldrin, coupling sequence datasets with measure metabolite data. Shah et al. coupled
16S rRNA gene sequencing datasets with untargeted metabolomics data to assess the function of marine sedi-
ments in tropical estuaries [91] and differing macrophyte zones [56]. Table 2 provides a summary of the recent
tools that are freely available; a more expansive list is provided in the review by Pinu et al. [98].
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It is now viable to couple ecosurveillance and monitoring data within a multi-omics framework, with com-
putational methods to create novel and integrated ecosystem-scale data frames of system function, organism
health, and ecological productivity. This would highlight links between different taxonomic levels, pulling
together common metabolic features (harmonisation) into a unified predictive model of ecosystem service pro-
vision and system health/trajectory. Such an approach that harmonises conserved metabolic traits amongst taxa
with emergent properties of concern (i.e. chemicals and physical attributes), identified via non-target screening,
could be utilised in ecosystem predictive models to improve management intervention opportunities, thereby
enabling better management decisions and policies.

Concluding remarks and future perspectives
A critical mass in genomic resources, analytical technologies, and bioinformatics approaches has provided
unprecedented insights into the composition, structure, function, and control of the genome, transcriptome,
proteome, and metabolome, shedding light upon numerous known and unknown biological pathways and

Table 2 Tools and applications for integrating multi-omics datasets intended for omics-based ecosurveillance

Tool Source Description Data inputs Reference

Web of microbes http://webofmicrobes.
org

Web-based exometabolomics data
repository and visualization tool.

• None. Data mining
tool.

Kosina et al. [99]

MIMOSA2 http://elbo-spice.cs.
tau.ac.il/shiny/
MIMOSA2shiny/

Web-based and R-based metabolic
network tool for inferring
mechanism-supported relationships
in microbiome-metabolome
datasets.

• Taxonomic and/or
functional
abundances

• Metabolite data table
(KEGG or HMDB)

Noecker et al. [100]

MelonnPan http://huttenhower.
sph.harvard.edu/
melonnpan.

R-based tool for computational
framework modelling to predict
community metabolomes from
microbial community profiles.

• Taxonomic and/or
functional
abundances

• Metabolite data table

Mallick et al. [101]

MicrobiomeAnlayst https://www.
microbiomeanalyst.
ca/

Web-based tool for the
comprehensive analysis of common
data outputs generated from
microbiome studies. Provides a
prediction of function based on
species annotations.

• Taxonomic and/or
functional
abundances

Chong et al. [102]

Reactome https://reactome.org/ Web-based multi-omics data
visualization and metabolic mapping
tool of known biological processes
and pathways

• Multi-omics datasets
(multiple common
formats)

Griss et al. [103]

PaintOmics 3.0 http://www.
paintomics.org/

Web-based tool for the joint
visualization of genomics/
transcriptomics, proteomics, and
metabolomics data.

• Multi-omics datasets
(multiple common
formats)

Hernández-de-Diego
et al. [104]

mixOmics http://mixomics.org/ An R-based multivariate tool that is
suited to large ‘omics data sets
where the number of variables (e.g.
genes, proteins, metabolites) is
much larger than the number of
samples.

• Transcriptomics,
metabolomics,
proteomics,
microbiome/
metagenomics

Rohart et al. [105]

OmicsAnalyst https://www.
omicsanalyst.ca/

Web-based data-driven multi-omics
integration tool via intuitive visual
analytics

• Transcriptomics,
proteomics,
metabolomics, and
miRNA data

Zhou et al. [106]

OmicsNet 2.0 https://www.
omicsnet.ca/
OmicsNet/home.
xhtml

Web-based data-driven multi-omics
integration tool via
Knowledge-based networks

• Transcriptomics,
proteomics,
metabolomics, and
miRNA data

Zhou and Xia [107]
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phenotypes. Though omics technologies are constantly being adapted to ecological research, there are still lim-
itations and challenges that need to be considered to harness their full potential and acceptance by industry
and regulators. In particular, for the application of proteomics to ecological monitoring, the primary issues
such as sample and genetic heterogeneity, and limited genomic resources for non-model species complicate
data interpretation and limit the potential for integration with other ‘omes’ to obtain systems-level information [108].
Improvement of sampling techniques such as ‘single-pot’ sample extractions could be useful in ensuring the use
of a single sample (tube) for multiple omic measurements for a more resolved data interpretation. Additionally,
de novo genome sequencing and species-specific database construction would be valuable to identify and valid-
ate markers for monitoring purposes. The consideration of intra- and inter-species population diversity, genetic
polymorphism, phenotypic plasticity, and developmental stages (including the alternative splicing, polypeptide
cleavage, post-translational modification) should also be taken into account to inform proteome measurements
and other ‘omics-based outputs to better understand taxonomically similar species on a system level [109].
Another area that will likely advance in the future is metabolite identification [110]. At present, many of

what is labelled as ‘features’ in metabolomics datasets are not identified [111]. This limits our potential gain in
knowledge and understanding of environmental processes. However, collecting robust environmental metadata
around these unidentified features could allow them to be correlated and characterised into an environmental
context, even if we don’t know their specific function (e.g. metabolite feature X always occurs within Y environ-
ments with high metal loads, etc.).
There is currently a paucity of proteome sequence databases available for non-model species. The incom-

pleteness of sequence databases and their limited annotations are often considered a bottleneck for environ-
mental proteomics experiments. Thus, the precise assembly and annotation of genomic and transcriptomic
resources would be key to decoding and monitoring proteome level changes in non-model species and their
relationship to environmental health. Similar limitations occur in metabolomics. At this point, two main strat-
egies for dealing with metabolomics datasets (which tend to be very large) have involved (1) the establishment
of spectral databases to aid with individual feature identification, e.g. the Human Metabolome Database (www.
hmdb.ca) [112] and METLIN (https://metlin.scripps.edu/) [113], and (2) developing workflows and analytical
packages to facilitate multivariate statistics on individual experimental outcomes. The creation of interactive
and open-access databases of pollutants such as the toxic exposome database (http://www.t3db.ca) [114],
DrugBank (https://go.drugbank.com) [115], and the EPA’s non-targeted analysis (NTA) database [116] have
helped, but each lists data on contaminants/toxicants, not the metabolic response(s) to such compounds. What
would help in the future is a library of metabolite profiles for model species exposed to specific pollutants, or
mixtures of pollutants as a dedicated tool to facilitate environmental monitoring in complex aquatic environ-
ments. The knowledge and infrastructure from existing metabolomics databases could be used for data manage-
ment, interactive storage, and access to such a system, but it would be reliant on high-quality data from the
community to function. Such a database, that is publicly available and easily searchable would facilitate the use
of metabolomics in environmental science by allowing scientists to compare results of the analysis of a system,
to the metabolic response(s) of the organisms to known pollutants/toxicants (further building upon the ‘Web
of microbes’ exometabolomics database for linking chemistry and microbes [99]).
Once a comprehensive database is available, data acquisition techniques such as data-independent acquisition

(DIA)-based approaches could be applied to monitor continuous changes. These label-free proteome measure-
ment approaches bring the best of shotgun and targeted acquisition, allowing deep proteome analysis and
accurate and reproducible quantitation of proteomes [117], including meta-proteomes [118]. This has recently
been supported by advanced machine learning-based tools such as the DIA-NN software [119], which uses
neural networks to determine ‘real signals’ from the noise for quantitation and interference removal without
any retention time alignment and also makes use of the Prosit [120] ML predictor to prepare synthetic peptide
spectral libraries for quantifying thousands of proteins without a previous observation being required.
Multiple levels of omics-based data coupled within an ecosurveillance approach will bring a greater under-

standing of the natural and perturbed environment, particularly the microbial systems, upon which we ultim-
ately rely to remediate contaminants. This will be of great benefit to human and environmental health.
However, for these multi-omic studies to be conducted in parallel with current approaches to demonstrate their
value-add to the status-quo, regulators and funding models need to account for the perceived inherent risk of
trialling these new approaches (and allow for financial mechanisms that cover the additional analytical costs
and help to carry any regulatory risk of just an omics-only approach). Furthermore, agencies must allow for
open-ended studies that include (or rely on) nontargeted data but also encompass repeat non-target/omics
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measures over time (i.e. monthly and yearly) that can seem very open-ended to a regulator. It is only then that
multi-omics guided ecosurveillance could demonstrate a pathway for improved management intervention
opportunities, management decisions, and policies since there are currently limited practical examples of these
tools guiding these processes and decisions within the environmental regulatory framework.
In closing, we encourage all readers to explore the opportunities in this exciting area of omics-based research,

and as a community of researchers and practitioners, to demonstrate their value and keep pushing these
approaches until they become part of the regulatory framework and are embedded in ecosystems monitoring
programs.

Summary
• Current environmental monitoring efforts often focus on known, regulated contaminants ignor-

ing the effects of unmeasured compounds, environmental factors, and subtle biochemical
perturbations.

• Metabolomics- and proteomics-based approaches can be coupled with DNA/RNA sequence
technologies to provide measured functional outputs.

• Using multiple levels of omics technology-based assessments together into an ecosurveil-
lance approach will bring a greater understanding of the natural and perturbed environment
with great benefit to environmental health.
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