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Abstract: Vaccines and immunotherapies involve a variety of technologies and act through different
mechanisms to achieve a common goal, which is to optimize the immune response against an antigen.
The antigen could be a molecule expressed on a pathogen (e.g., a disease-causing bacterium, a virus
or another microorganism), abnormal or damaged host cells (e.g., cancer cells), environmental agent
(e.g., nicotine from a tobacco smoke), or an allergen (e.g., pollen or food protein). Immunogenic
vaccines and therapies optimize the immune response to improve the eradication of the pathogen or
damaged cells. In contrast, tolerogenic vaccines and therapies retrain or blunt the immune response to
antigens, which are recognized by the immune system as harmful to the host. To optimize the immune
response to either improve the immunogenicity or induce tolerance, researchers employ different
routes of administration, antigen-delivery systems, and adjuvants. Nanocarriers and adjuvants are of
particular interest to the fields of vaccines and immunotherapy as they allow for targeted delivery of
the antigens and direct the immune response against these antigens in desirable direction (i.e., to either
enhance immunogenicity or induce tolerance). Recently, nanoparticles gained particular attention as
antigen carriers and adjuvants. This review focuses on a particular subclass of nanoparticles, which
are made of nucleic acids, so-called nucleic acid nanoparticles or NANPs. Immunological properties
of these novel materials and considerations for their clinical translation are discussed.

Keywords: nanoparticles; safety; immunotoxicity; in vitro; in vivo; antigen-presenting cells; vaccines;
adjuvants; antibody; immunotherapy; nanotechnology; preclinical; translation

1. Introduction

The major physiological function of the immune system is the protection of the host from pathogens.
In some infections, the immune response to a pathogen is so robust that in the process of pathogen
elimination, it also causes damage to healthy tissues [1,2]. The purpose of vaccines, therefore, is to
stimulate immunity to pathogens without causing damage to the host. The immune system’s function,
however, extends beyond fighting pathogens and is involved in many processes and normal function
of non-immune tissues, and organs [3]. Healthy immune system operation is traditionally viewed
as a constant and well-controlled balance between activation and suppression [4]. When a tight control
over the balance is lost, and the function shifts toward the activation, the consequences to the host include
an inflammatory disease or autoimmunity. Likewise, when the balance shifts towards suppression,
it weakens the host’s resistance to malignant transformed cells and microbes resulting in cancer and
recurrent infections [4]. As such, traditional treatment of inflammatory and autoimmune diseases
involve anti-inflammatory and immunosuppressive drugs; while immune-stimulatory treatments
intend to improve the resistance to tumors and infections [5,6]. Newer data suggest that the imbalance
between positive and negative regulations of the immune effector and regulatory functions contribute
to immune dysfunction disorders such as autoimmunity, and warrant consideration of novel treatments
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that focus on controlling the activity of regulatory and effector cells [7]. The goal of the immunotherapy,
therefore, is to restore and maintain the immune homeostasis to provide adequate response of the host
to the dynamic internal and external environment.

The immune response against an antigen involves various cell types that interact via multiple
pathways culminating with the formation of the antigen-specific T-cell clone, an antibody-producing
plasma B-cell clone as well as T- and B-cell memory. The two key events required for this response to
occur are known as signal 1, which is antigen presentation by an antigen-presenting cell (APC) to a T-cell
via MHC I or MCH II pathway, and signal 2, which is the interaction between the APC’s co-stimulatory
molecules (CD80 and D86) and the T-cell positive stimulation receptor CD28. A T-cell, which received
both signal 1 and signal 2 from APC, becomes activated and proliferates to produce the antigen
(Ag) specific T-cell clone (Figure 1A). Antigen-presentation via MHCI and MHCII pathways results
in the activation of CD8+ (cytotoxic) and CD4+ (helper) antigen-specific T-cells, respectively. To provide
the negative regulation and prevent overt T-cell activation, PD-1 on the surface of the activated T-cells
and PD-L1 on the surface of APC, as well as CTLA4 on the surface of the activated T-cells and
co-stimulatory molecules (CD80 and D86) on the APC interact to stimulate inhibitory pathways that act
to quench the activation (Figure 1A). This model of the induction of the specific and controlled immune
response is also known as two-signal hypothesis [8]. However, PD-1, PD-L1, and CTLA4 are not
the only negative regulators of T-cell activation. Other inhibitory receptors (LAG-3, TIM-3, TIGIT) and
ligands (B7-H3, B7-H4, and B7-H5) have been recently described; the understanding of their mechanism
of action and opportunities for pharmacological intervention are currently underway [9]. It is also
well established that a variety of responses of the antigen-presenting cells and other components
of the innate immune system (e.g., complement system) to the presence of foreign antigens exist
and contribute to the development of the specific adaptive immunity. For example, the activation
and conditioning of APC to better perform their antigen-presenting function depends on so-called
Pathogen Associated Molecular Patterns (PAMPs) expressed by the microbes and Danger Associated
Molecular Patterns (DAMPs) produced as a result of host damage by either microbes or internal and
external stimuli [10]. These interactions between PAMPs, DAMPs, and APCs are often referred to as
Signal 0 (Figure 1A). Activated by PAMPs and DAMPs, APCs express higher levels of MHC II and
co-stimulatory molecules as well as secrete cytokines which promote the production of antibodies by
B-cells (e.g., IL-6), differentiation of naive CD4+ T-cells to Th1 (e.g., IL-12) or Th17 (e.g., IL-1, IL6 and
IL-23), and survival of CD8+ memory T-cells (e.g., IL-15) [8]. Activation of plasma complement proteins
contributes to the activation of APCs, improves B-cell and T-cell activation [8], while intra-cellular
complement activation controls CD4+ T-cell differentiation to Th1 lymphocytes and contributes to
the maintenance of tolerance to self-antigens [11]. The quality of immunity depends on the type of
T-helper and suppressor (T-regs) cells. The messenger molecules including but not limited to cytokines,
chemokines, and growth factors influence the quality of the immune response and are aften cited as
Signal 3 (Figure 1A). The imprinting of the immune cell homing is regulated by the chemokines and
their receptors such as CCR9, expressed in the gut, and CCR10, expressed in the skin [8]. These signals
are often called Signal 4 (Figure 1A).
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Figure 1. Key events during the induction of the immune response, and the role of nanoparticles in 
the immunity. (A) The two key events and other prerequisites of the optimal immune response are 
highlighted. The stimulation signal is provided through the interaction between co-stimulatory 
molecules (CD80, CD86) on the APC surface and CD28 on the T-cell surface; the inhibition occurs 
when PD-1 on the T-cell interacts with PD-L1 on the APC, or when CTLA4 on the T-cell interacts with 
CD80 and CD86 on the APC. (B) Nanoparticles can be perceived as either stranger or danger by the 
immune cells, depending on their physicochemical properties, cargo, and external environment (e.g., 
protein corona), which is also determined by the particle’s PCP. 

Adjuvants are substances that improve the immune response. Many known adjuvants (e.g., 
alum, Complete Freund Adjuvant or CFA, CpG DNA, and monophosphoryl lipid A) act as strangers 
or cause damage to induce danger signals. Adjuvants used in vaccines and immunotherapies have 
diverse molecular structures and are required to stimulate the immune cells at levels that are just 
enough to achieve the desired type of immune response but not too strong to avoid adverse effects 
[12]. It is very challenging to select and develop adjuvants because the magnitude of the immune 
cells’ response to molecules with the same molecular structure may vary dramatically between 
different individuals [13]. The polymorphism of genes encoding immune receptors, transcription 
factors and signaling molecules involved in the immune responses is responsible for the diversity of 
individual responses to adjuvants among humans.  

Figure 1. Key events during the induction of the immune response, and the role of nanoparticles
in the immunity. (A) The two key events and other prerequisites of the optimal immune response
are highlighted. The stimulation signal is provided through the interaction between co-stimulatory
molecules (CD80, CD86) on the APC surface and CD28 on the T-cell surface; the inhibition occurs when
PD-1 on the T-cell interacts with PD-L1 on the APC, or when CTLA4 on the T-cell interacts with CD80
and CD86 on the APC. (B) Nanoparticles can be perceived as either stranger or danger by the immune
cells, depending on their physicochemical properties, cargo, and external environment (e.g., protein
corona), which is also determined by the particle’s PCP.

Adjuvants are substances that improve the immune response. Many known adjuvants (e.g., alum,
Complete Freund Adjuvant or CFA, CpG DNA, and monophosphoryl lipid A) act as strangers or cause
damage to induce danger signals. Adjuvants used in vaccines and immunotherapies have diverse
molecular structures and are required to stimulate the immune cells at levels that are just enough to
achieve the desired type of immune response but not too strong to avoid adverse effects [12]. It is very
challenging to select and develop adjuvants because the magnitude of the immune cells’ response to
molecules with the same molecular structure may vary dramatically between different individuals [13].
The polymorphism of genes encoding immune receptors, transcription factors and signaling molecules
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involved in the immune responses is responsible for the diversity of individual responses to adjuvants
among humans.

Nanoparticles can be perceived as either stranger or danger by the immune cells. As such, they
serve as important components of Signal 0 (Figure 1B). The immune recognition of nanoparticles
depends on their physicochemical properties (PCP), cargo, and external environment (e.g., protein
corona), which is also influenced by the nanoparticle’s PCP [14,15]. The relationship between
nanoparticle structures and their effects on the immune system has been extensively discussed
elsewhere [14–17].

Most of the currently available vaccines induce humoral immunity, i.e., the production of
the antibody specific to the antigen. There is an increased interest in so-called therapeutic vaccines,
which aim at inducing the antigen-specific cytotoxic T-lymphocytes. These vaccines are of particular
importance to cancer therapy [18–20].

The efficacy of microbial vaccines depends on several properties of disease-causing microbes,
which include the microbe’s ability to establish latency, undergo antigenic genetic variability and impact
the host’s immune system. Some microbes, e.g., human immunodeficiency virus, are notoriously
difficult to vaccinate against because they tend to become latent, endure constant change in the surface
antigen repertoire and inhibit the function of T-helper lymphocytes, which are crucial for the effective
immune response [21]. Different types of vaccines are being developed and include the following
categories: attenuated and inactivated microbes, recombinant microbes, purified antigen or so-called
subunit vaccines, synthetic antigen vaccines, RNA and DNA vaccines [8,22,23]. All of these vaccines
typically require an adjuvant. The new generation vaccines, which include subunit, synthetic antigens,
RNA and DNA vaccines often also require a delivery carrier. Nanotechnology carriers are popular
in the vaccine field due to their ability to both deliver the antigens to the antigen-presenting cells
and act as adjuvants that activate APCs to express co-stimulatory molecules, upregulate their MHCII
expression and produce cytokines educating optimal T-cell responses [24–27].

While immunotherapy in general, refers to the therapy that restores normal function of the immune
system by providing either activation (e.g., in a disease caused by abnormally inhibited immune
system) or inhibition (e.g., in a disease caused by abnormal activation of the immune system), this term
is more used and gained its popularity in the field of cancer therapy, where the immunotherapy is used
to restore the activity of anergic T-cells and exhausted APCs [28–33]. The cancer immunotherapeutics
include check-point inhibitor blockade agents (e.g., anti-CTLA4, anti-PD-1, and anti-PD-L1), M2/M1
macrophage repolarizing agents (e.g., resiquimod), cancer antigen-specific chimeric antigen receptor
(CAR) T-cells, and adoptive transfer of tumor-infiltrating T-lymphocytes (TILs) to name the few [28–33].

The benefits of nanotechnology for the field of vaccine and immunotherapies have been
extensively discussed in the literature [28,32]. The recent advances in vaccines and immunotherapies
have also received broad attention in several recent publications [29,30]. Herein, I will focus
on the immunological properties of therapeutic nucleic acids and, particularly, nucleic acid nanoparticles
(NANPs) in the context of vaccines and immunotherapies.

2. Therapeutic Nucleic Acids

Therapeutic Nucleic acids (TNAs) is a large family of compounds that includes diverse nucleic-acid
based materials with different molecular weight (e.g., small and macromolecular TNAs), composition
(e.g., DNA, RNA, and their chemical analogs), and geometry (e.g., linear, planar and 3-D). Some of
these materials have been used in medicine for a long time. For example, small molecule nucleotide
and nucleoside analogs (NNA) are used for the therapy of viral infections and cancer due to their
ability to interfere with DNA replication and repair, transcription, and stability of DNA or RNA either
directly or by affecting the function of enzymes, receptors and structural proteins involved in these
processes [34].

The earlier versions of macromolecular TNAs, including aptamers, antisense oligonucleotides
(ASN), triplex-forming oligodeoxyribonucleotides, catalytic oligonucleotides, inhibitory RNA (RNAi)
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and DNA (DNAi), CpG oligonucleotides, and regulatory RNAs (miRNA) have also been used
in biomedical applications due to their ability to affect the expression of genes at DNA, RNA and
protein levels [35–37]. For the purposes of this review, I will refer to them as traditional TNAs,
wherein “traditional” implies a greater experience of research community and better knowledge about
these materials in comparison to other more recent constructs and relatively simple design principles.
The newer generations of the TNAs include larger nucleic acid constructs such as mRNA, CRISPR
sgRNA, which require a carrier for intracellular delivery, and rationally designed multistranded
assemblies of nucleic acids such as DNA origami and Nucleic Acid Nanoparticles (NANPs), which
may or may not require a carrier depending on their applications. For the purposes of this review, I will
refer to these materials as Nanotechnology TNA, where “nanotechnology” implies either delivery of
traditional or new TNAs using a nanoparticle carrier (nanotechnology-formulated TNA) or a nanosized
structure formed through the self-assembly of engineered oligonucleotides into complex 3D objects with
defined topologies and PCP (nano-TNA) (Figure 2). Both traditional and newer, nanotechnology-based
TNAs, are equally complex and sophisticated, have unique properties, and require thorough analysis
in the context of their intended biomedical use.Molecules 2018 6 of 19 
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Figure 2. Type of therapeutic nucleic acids. A wide variety of therapeutic nucleic acids (TNAs) is
described in the literature and include both short oligonucleotides made of DNA or RNA (e.g., ASN
ODN), and macromolecular complex structures (e.g., CRISPR gRNA and Cas9 mRNA). Nanotechnology
is either used for the delivery of some TNAs (nanoparticle-formulated TNAs) using carriers listed
in the top blue box or to program and fold nucleic acids into various geometric shapes (Nano-TNAs).
ASN = anti-sense; ODN = oligodeoxyribonucleotide; DNA = deoxyribonucleic acid; RNA = ribonucleic
acid; siRNA = small interfering RNA; RNAi = RNA interference; shRNA = short-hairpin RNA;
miRNA = microRNA; TFO = triplex-forming oligonucleotides; IMOs = immunomodulatory
oligonucleotide; CNT = carbon nanotubes; CRISPR = clustered regularly interspaced short palindromic
repeats; SLN = solid lipid nanoparticles.
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Many challenges regarding the pharmacokinetics, toxicology, and stability in biological matrices
of the traditional TNAs have been resolved by chemical modifications of nucleotides’ backbone and
sequences, as well as optimization of dosing regimen and the route of administration of traditional
TNAs [38–42]. Additional strategies have also been proposed [43]. These materials were tested as is and
after complexation with a delivery carrier. Commonly considered delivery carriers include liposomes,
lipoplexes, polyplexes, etc. (Figure 2). Many of these concepts entered clinical trials, and some received
regulatory approval. The approved for clinical use TNAs include fomivirsen (Vitravene®), an ASN
intended for therapy of HIV-related cytomegalovirus infection; mipomersen (KYNAMRO®), another
ASN for the treatment of homozygous familial hypercholesterolemia; pegaptanib (Macugen®), a DNA
aptamer for the treatment of age-related macular degeneration; patisiran (Onpattro®) and inotersen
(TEGSEDI®), an siRNA and ASN, respectively, for the treatment of polyneuropathy developed
as a consequence of hereditary disease, transthyretin-mediated amyloidosis; givasiran (GIVLAARI®),
a GalNAc formulated siRNA for the treatment of acute hepatic porphyria. These formulations are
administered to patients through either the non-systemic routes, i.e., intravitreous and subcutaneous,
or slow infusion to avoid the immediate interaction with and recognition by the innate immune
cells and complement proteins in the blood, which activation by these materials may lead to severe
immune-mediated adverse effects in sensitive individuals. Injection site reactions may occur in some
patients. In the case of s.c. administered givasiran, for example, the frequency of the injection site
reactions was as high as 25% [44]. One of the approved materials, i.e., patisiran (Onpattro®), employes
a nanoparticle carrier.

While nanoparticle-formulated mRNA and CRISPR sgRNA approached the stage of clinical
testing, none of these materials are approved for clinical use. The nano-TNA is a relatively new
technology. These sophisticated materials are still in the stage of discovery and preclinical development.
Many properties required to classify these materials as drug products are still unknown and may vary
tremendously from one nano-TNA to another. Yet, currently available data suggest that nano-TNA
may form a separate class of drug products distinct from traditional TNAs, small molecules, and
biologics [45].

3. Nucleic Acid Nanoparticles (NANPs)

3.1. General Overview

Individual DNAs, RNAs or their chemical analogs can be computationally designed to
assemble in a controlled fashion into NANPs with various composition, geometry, and functionality.
Available strategies for forming these complex nanostructures among others include the extensive
use of available RNA tertiary motifs, an approach called RNA architectonics, where all individual
RNA motifs are considered to be “Lego blocks” and can be recombined in a particular way to address
the required geometry of NANP [46–58]. Another powerful approach, called DNA origami, allows for
controlled formation of DNA nanostructures by using longer ssDNAs stapled by shorter oligos [59–64].
Besides other numerous benefits, such as precise control over their size, charge and composition, NANPs
have been shown to be stable under external conditions (e.g., radiation, temperature, nucleases), which
typically would degrade traditional oligonucleotides [65–69]. More importantly, NANPs technology is
flexible and allows adding functionalities and swap individual nucleotides without altering the entire
nanoparticle assembly [70]. As such, NANPs can be designed to form non-functional scaffolds,
which are typically made of DNA, RNA or DNA-RNA hybrid oligonucleotides not-specific to any
particular target gene, use these scaffolds to simultaneously deliver multiple different gene-specific
therapeutic oligonucleotides (e.g., siRNAs or miRNAs) and create more sophisticated materials with
conditionally activatable split functionalities [46,48,53,54,65–68,70–85]. A co-delivery of individual
non-functional scaffolds is required for applications involving NANPs with split functionalities and
have been demonstrated in biological systems both in vitro and in vivo [53,73,74,77,82].
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There is also an increasing trend in considering the NANP scaffolds for the controlled
immunomodulation, wherein control is provided by several means including but not limited to
modifications in the nanoparticle physicochemical properties (e.g., composition, size, shape, sequence
complementarity, connectivity), delivery vehicle, dose and route of administration [76,81,82,86,87].

3.2. Delivery and Distribution to and within Tissues and Cells

NANPs’ delivery routes described in the literature include both local and systemic administration.
For local administration, commonly used delivery methods include the injection of NANPs directly
into the tissue of interest (e.g., subconjunctival and intratumoral). When a systemic delivery is
preferred, NANPs are injected intravenousely [66,67,73,78,88]. NANPs stability in biological matrices
can be tuned by optimizing their structural complexity, and chemically modifying the backbone
and individual nucleotides similar to the modifications described for traditional nucleic acids [89].
Further optimization of stability, as well as targeted delivery to the cells or tissues of interest, can be
achieved by complexing these materials with delivery carriers [90]. Cationic lipids, bolaamphiphiles,
poly- and lipoplexes, and inorganic nanoparticles have been described in the literature, as most
common carriers used for NANPs [72,73,80,91–94], as seen in Figure 3.Molecules 2018 8 of 19 
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Figure 3. Nucleic Acid Nanoparticles. Nucleic Acid Nanoparticles (NANPs) are made of
DNA, RNA or hybrid DNA/RNA oligonucleotides, which assemble into nanostructures with
different sizes, geometric shapes, sequence complementarities, and other functional modalities.
Some examples of NANPs are shown above. The examples of platforms used to deliver NANPs
to cells and tissues are listed in the green box, while their applications in pharmaceutical
field are summarized in the blue box. DOTAP = 1,2-Dioleoyl-3-trimethylammonium propane;
DOTMA = N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride; PAMAM = polyamidoamine;
GLH = bolaamphiphiles.

To study tissue distribution, NANPs are commonly labeled with fluorescent probes. For example,
Guo’s lab reported that unlike many other nanoparticle platforms, systemically administered three-way
junction (3WJ) pRNA nanoparticles do not accumulate in healthy tissues (liver, spleen, lungs, and
kidney) and distribute to the target tissue within the first hour after an injection [66,95–97]. It was
hypothesized that due to the sizes under 10 nm pRNA nanoparticles would clear via renal route [97].
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Tetrahedron-forming NANPs used for the delivery of siRNA were demonstrated in another study to
have a short (~24.2 min) plasma half-life; these particles distributed to the tumor and were observed
in the kidney suggesting renal clearance [98]. These findings are in agreement with clinical data
reported with traditional TNA [99]. Afonin’s lab reported that hybrid NANPs accumulated in tumors
but were also detected in the heart, lungs, liver, spleen, kidney, brain, and bladder [73]. The findings
from this group also support renal clearance as the main route of NANPs elimination from the body.
The accumulation of NANPs in other tissues observed in this study may be explained by the higher
dose and greater stability of these NANPs, as opposed to the materials investigated in other studies.

Locally delivered NANPs distribute through the lymphatic system. Guo’s lab compared
the distribution of 3WJ and 4 WJ NANPs to sclera and retina after topical and subconjunctival
administration and found that only 4WJ NANPs reach retinal cells while other studied NANPs
distribute to cornea, sclera, and conjunctiva [78].

Targeted delivery of NANPs to cells of interest could be achieved by adding aptamers to their
structures or by providing delivery vehicles. For example, Shu et al. demonstrated the delivery of
3WJ nanoparticles into cancer cells overexpressing folate receptor by attaching the folate to these
NANPs [66]. In another study, an aptamer binding to the HIV gp120 protein was used to target
pRNA nanoparticles to the HIVgp120-expressing cells [100]. A recent study in healthy human
peripheral blood mononuclear cells (PBMCs) demonstrated that NANPs of various compositions and
geometric shapes are taken up by monocytes via endolysosomal pathway after the complexation with
lipofectamine, but remain in the extracellular space without such complexation [87]. Interestingly,
these data contrast NANPs to traditional TNAs that do not require a carrier and are internalized via
pino- and podocytosis pathways [40]. Respectively, the ODN2216, an oligonucleotide used in this
study as the positive control, did not require the carrier to enter the cells and elicit an inflammatory
response [87]. Another interesting finding from this study is that the uptake of NANPs-lipofectamine
complex is mediated by the scavenger receptor [87]. Scavenger receptors on mononuclear phagocytic
cells are known for their role in clearing up polyanionic materials, including self-DNA released from
dead cells and therapeutic oligonucleotides [101]. It is very interesting that NANPs are not captured by
these receptors until they are concentrated and presented by the lipid carrier. The secondary structure
of these materials may be responsible for this phenomenon. These findings also suggest that one can
control immunological recognition of NANPs by directing them to or bypassing the endolysosomal
pathway via complexation with different carriers. More research is obviously needed in this area.
Hybrid NANPs were also shown to accumulate in the endosomal compartment of cancer cells [73].
Similar to the PBMC study by Hong et al., [87] NANPs, in this case, were also complexed with
lipofectamine carrier prior to the addition to the cancer cells; the role of the receptor(s) involved
in the uptake, however, was not investigated [73].

3.3. Toxicity

Despite the documented fact that NANPs can distribute to the off-target organs (brain, kidney,
liver, and spleen), their toxicity to these organs is not fully understood [73]. The available data
suggest that NANPs are well tolerated by animals at the doses required to achieve desired therapeutic
effects [66,96,97]. However, dose range-finding studies to establish the maximum tolerated dose (MTD)
for individual NANPs have not been conducted. It would be interesting to see how MTD of the same
NANP depends on the route of administration, a carrier (if the carrier is used) and dosing regimen.
So far, all in vivo studies investigating NANPs general toxicity were conducted in mice. It would be
interesting to see how these materials are tolerated by other rodents (e.g., rats) and different animal
species (e.g., dogs and non-human primates). Potential developmental and reproductive toxicity as
well as genotoxicity of NANPs is a gray area and needs thorough investigation.
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3.4. Immunological Properties

Although some attempts were made to tap into the immunological properties of individual
NANPs [49,66,73,96,97,102,103], the systematic structure-activity relationship using primary human
immune cells and a library of NANPs with various structures, composition, method of production and
design, were unknown until recently [87]. The earlier studies identified several patterns of interest
to the immunological applications of NANPs. They demonstrated that a short exposure to 3WJ
pRNA nanoparticles does not induce inflammation in cultured cell lines [97]; the same 3WJ pRNA
do not activate expression of Toll-Like Receptors (TLR3, TLR7, and TLR9) in human monocytes [97];
DNA/RNA hybrid cubes induce some cytokines and type I interferons in human PBMCs depending
on the amount of RNA present in their structures [72]; planar RNA NANPs induce pro-inflammatory
cytokines in murine RAW264.7 cells in the shape-dependent manner [103]; when NANPs were designed
to deliver CpG DNA oligonucleotides or antisense oligonucleotides, their proinflammatory properties
appear to increase [82,103]. However, the main shortcomings of these studies that made it difficult to
compare between the results generated by the individual research groups were the use of different
models, different endpoints, different biomarkers of the immune response, and NANPs designed by
different algorithms and produced by different techniques. In order to advance the field of therapeutic
nucleic acid nanotechnology, a recent pioneering study investigated a library of 24 NANPs that had
different sizes, 3D conformation (planar, globular, and fibrous), connectivity, sequence complementarity,
and made of either RNA or DNA [87]. To make the study applicable to and representative of the entire
field of nucleic acid nanotechnology, the authors constructed a library using the design and technology
developed and published by different research groups. This approach allowed the comparison of
different NANPs side-by-side under equivalent experimental conditions and in the same model, using
the same end-points and biomarkers of immunostimulation. This comprehensive study identified that
the recognition of NANPs by human blood cells is determined by multiple physicochemical parameters
such as 3D structure, composition, size, connectivity, and lengths of the single-stranded moieties
present in their structures. It further supported the original conclusion of Afonin and his research team
that NANPs could serve as a molecular language to allow the researchers to communicate desirable
immunological responses to the immune cells. The recent study concluded that the immunological
effects of NANPS that are desirable for vaccines and immunotherapies can be enhanced by using RNA
as a building block and compacting it into complex structures with 3D shape. Alternatively, when
immunological stimulation is unwanted, it can be reduced by either using DNA as a building block or
by constructing NANPs that have planar and fibrous shapes. Additional fine-tuning can be achieved
by adjusting the connectivity and the overall lengths of the single-stranded regions.

Interestingly, in the case of NANPs created using 3WJ RNA technology, the structure-activity
relationship observed at both the scaffold level and in structures containing scaffold particles
functionalized with CpG DNA oligonucleotides [103]. However, structure activity relationship
effects were more pronounced after the attachment of the CpG oligonucleotides to their respective
scaffolds. In contrast to these findings, the structure-activity relationship of fibrous scaffold NANPs
produced using different technology was lost with addition of functional moieties made of siRNA; all
siRNA-functionalized fibers had similar pro-inflammatory properties [85]. The differences in the models,
study-end-points, type of functional moieties (CpG DNA oligonucleotides [103] vs. siRNA [85]),
sequence, materials (DNA vs. RNA), and technology used to prepare these 3WJ and fibrous NANPs
could have contributed to the observed differences in their pro-inflammatory response [85,103].

Importantly, in contrast to the traditional nucleic acids such as oligonucleotides, which trigger
inflammatory responses at the moment of their exposure, “naked” NANPs are invisible to the immune
cells and induce inflammatory cytokines only after the complexation with and delivery into the cells by
a vehicle [87]. Another unexpected finding is that TLR7, a protein traditionally cited as the receptor for
single-stranded RNA, was shown to control interferon response to both RNA and DNA cubes [87,104].
The open question at the moment is whether and how complexation with or formulation of NANPs
using different carriers influences their recognition by TLRs as well as the spectrum and the magnitude
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of the immunological responses to these particles. Since the immune receptors recognizing nucleic
acids are located in various compartments within a cell [35], it is plausible to expect that delivery to
a particular intracellular compartment achieved through specific nanocarriers would help to elicit
different immune responses to NANPs delivered by these carriers.

3.5. Properties Beneficial for Vaccines and Immunotherapy

NANPs have several properties that make them attractive for vaccines and immunotherapies.
They activate antigen-presenting cells to produce type I interferons. This property suggests that
NANPs can be used as vaccine adjuvants because interferons support dendritic cell maturation
and function [105–107]. Since inflammatory responses to adjuvant may vary dramatically between
individuals [13], by varying physicochemical properties of NANPs one may personalize a vaccine so
that the level and the type of the interferon response is optimal for the given patient. This personalization
would allow providing efficacy and avoid immune-mediated adverse effects. A thorough investigation
to link specific genomic, transcriptomic, metabolomic and microbiota profiles of a donor to the type and
the magnitude of the interferon response would enable personalized selection of optimal NANP-based
adjuvants. Type I interferons are proven to have therapeutic effects against viral infections and
cancer; they are also considered for the therapy of multiple sclerosis [108–110]. Recombinant
interferon-alpha, for example, is used in the clinic to treat hepatitis C infections [111] and is the first line
of treatment for chronic myeloid leukemia [112]. Despite unarguable benefit of this drug, its systemic
distribution is often accompanied by immune-mediated adverse effects such as fever and chills [113].
In addition, some patients develop an antibody to recombinant proteins [114]. Such anti-drug
antibodies have a variety of consequences including but not limited to neutralization of the drug
product. In the presence of the neutralizing antibodies the drug product loses its efficacy [115]. Protein
engineering and modification with polyethylene glycol (PEG) are common strategies to mitigate
the risk of immunogenicity of recombinant protein therapeutics [115]. Unlike the original expectations,
PEGylation is proven not to be a panacea from the immunogenicity of recombinant protein therapies.
There is an increasing number of reports about the immunogenicity of the PEG molecules and rising
prevalence of anti-PEG antibodies in the blood of healthy individuals [116–118]. These recent concerns
dictate the need for alternative solutions to overcome the problems associated with the immunogenicity
of recombinant interferon therapeutics. NANPs could potentially address these problems by bypassing
the use of recombinant interferons. Using different nanocarriers, NANPs can be delivered to liver
or myeloid cells in the blood, and induce hosts’ own type I interferons. For example, Hong et al.
demonstrated that DNA and RNA NANPs induce all members of the type I interferon family (interferon
alpha, interferon beta, interferon omega) [87]. Targeted delivery of these NANPs to the cells or tissue
of interest would enable local interferon induction and bypass systemic toxicity, while body’s own type
I interferons would not be immunogenic. More studies are needed to verify this attractive hypothesis.

Another interesting property is the ability of NANPs to induce type III interferons. Specifically,
Hong et al. found that DNA and RNA cubes, as well as other DNA and RNA NANPs, induce
interferon lambda [87]. This interferon is less potent than type I interferons and provides anti-viral
protection at the epithelial barrier with minimal damaging inflammation [119]. Therefore, it can be
used to control viral infections at the local level. Similar to the ideas discussed above for the type I
interferon, I, therefore, hypothesize that local administration of NANPs may induce the body’s natural
response against viral infections via the induction of type III interferons and without the complications
associated with recombinant protein therapies. Additionally, interferon lambda is thought to have
anti-cancer activity, and, therefore, is widely considered for cancer therapy [120]. Interestingly, despite
overlapping functions and unlike type I interferons, the expression of receptors to interferon lambda
is limited to specific tissues in that it is expressed at high levels in the liver, prostate, and lung [120].
It is also selectively expressed in keratinocytes and melanocyte, but not in other cell types present
in the skin [120]. Therefore, therapy for cancerous lesions in these organs would benefit from type III
interferon therapy. It would be interesting to understand whether the NANPs used in the studies by
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Hong et al., [87] could be engineered to exclusively induce type I or type III interferons. Such knowledge
would enable additional applications of NANPs in the prevention and treatment of infectious diseases
and cancer.

NANP’s scaffolds were proven to deliver therapeutic oligonucleotides [66,72,77,121]. This modality
may allow combining the beneficial immune response with additional therapeutic activities. One area
where such complex drugs may be beneficial is cancer, a systemic disorder with many immune
pathways dysfunction to form so-called cancer immunity cycle [122]. The combined properties of
NANPs’ scaffold to activate antigen-presenting cells and functional moieties to up- or downregulate
the expression of immune checkpoint proteins and homing cytokines may help restoring the normal
immune function in the affected host. By selecting a nanocarrier for the tumor-specific delivery of
NANPs or designing a NANP to deliver cytotoxic drugs, one could also contribute to the induction of
immunogenic cell death of cancer cells. Therefore, NANPs technology appears versatile and capable
of breaking the cancer immunity cycle at multiple points. More research is needed to verify the utility
of these promising modalities in the immunotherapy of cancer.

NANPs split functionality can be created when two individually non-functional NANPs are
co-delivered into the same cell where they re-associate to create a fully functional NANP [76,77,123].
This modality provides both off and on switches to NANP-mediated biological responses.
When individual NANPs get off-target, the lack of their functionality at the individual level would
prevent undesirable side effects. Afonin et al. proposed an interesting concept in which an individual
functional NANP is administered as a single therapeutic entity, then another NANP neutralizing
the effect of the functional NANP is administered to quench the biological response and thereby avoid
avert response [76,77,123]. This controlled “off” property is very attractive in immunotherapy, as it may
provide control over the activated immune cells to avoid auto-immunity. For example, a typical
shortcoming of the current checkpoint blockade inhibitors is that they unleash the tumor-specific T-cells
but do not provide control over what these T-cells do after tumor eradication and result in autoimmune
response. Therefore, applying NANPs to quench the activated T-cells after tumor eradication could
help to avoid such side effects. In another example of the controlled “off/on” activity, non-functional
individually delivered NANPs are combined inside the cell to create a functional material capable
of activating or inhibiting the function of cellular proteins. For example, fibers releasing NF-κB
decoy oligonucleotides were shown to inhibit NF-kB function only after co-delivery to the target
cell [82]. Abnormal NF-kB function is well documented in both solid tumors and hematological
malignancies [124–127], and its inhibition by functional NANPs would, therefore, contribute to
the anti-cancer efficacy. Likewise, this property may be found beneficial to control undesirably high
induction of TNFα by vaccine adjuvants and avoid necrosis at the site of vaccine administration.
Some proof of efficacy of NANPs targeting the activity of NF-κB has already been demonstrated [82].
The promising results observed by Ke et al., warrant more studies to further explore the application of
NANPs in this therapeutic area.

3.6. Translational Considerations

Translation of NANP-based therapeutics to clinical application requires filling many knowledge
gaps. Identifying the critical parameters to allow both efficacy and safety of NANPS would benefit
patients receiving NANPs-based therapies. Some of these challenges have been discussed before [45].
Stability in biological matrix, potency, pharmacokinetics (PK) and pharmacodynamics (PD) favorable
for the intended application, specificity to the target of interest, exaggerated pharmacology and
safety profiles are among the general requirement for drug product in the category of therapeutic
nucleic acids [128]. NANPs’ molecular weight and structure are different from those of the traditional
TNA. While NANPs versatility and strategies for design of functional NANPs have been studied
extensively [46–53,55,57,65–68,70–74,76–81,83,86,91,92,95–98,100,102,103,121,129–143], their off-target
toxicity, Absorption, Distribution, Metabolism and Excretion (ADME), PK and PD profiles, are largely
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unknown as are the abilities to induce anti-NANP immune response (immunogenicity) and break
the host tolerance to self-nucleic acids (autoimmune properties).

Unanswered questions also remain about NANPs local concentration at the injection site,
distribution to the systemic circulation after administration through alternative routes; rate and
routes of clearance; biodistribution and its dependence on the route of administration, size, secondary
structure, conformation, sequences and sequence complementarity, chemical modifications of both
the scaffold and functional moieties oligonucleotides; protein binding and MPS clearance; metabolism;
general toxicity, reproductive, immune and gene toxicities. All of these questions need to be answered
for NANPs alone and in the context of a carrier if a carrier is used. Biocompatibility and immunotoxicity
of nanoparticle carriers are determined by their physicochemical properties [14–17]. It is important
to understand how properties of carriers change after complexation with NANPs, and whether
or not such complexation creates new toxicities not observed when NANPs and carriers are used
separately. When both a NANP and a carrier exhibit overlapping toxicity (e.g., cytokine induction or
activation of complement), consideration should be given to the intended application. For example,
when the NANP-carrier with overlapping toxicity is used for the systemic administration and
non-immune indication, such overlap would likely create a safety issue; therefore, an alternative carrier
may be needed. In contrast, when a local administration and vaccine indication is considered, then
overlapping properties may be beneficial.

Another common translational hurdle of nanotechnology is the potential contamination with
endotoxin [144–146]. While challenges with the production of pyrogen-free NANPs have been
addressed on a small scale [102], scale-up of NANPs technology to volumes and quantities relevant to
clinical use may require further optimization.

Guo’s lab recently reported a scaled-up automated production of 3WJ RNA nanoparticles [137].
More work is this area is needed to assure the high quality and affordability of NANPs for clinical use.
There is an increasing concern regarding the high costs of many cutting-edge medicines, e.g., cellular
immunotherapies, that make them unaffordable to patients and affect the revenues of companies
producing these products [147,148]. In this context, developing procedures that would allow fast
and inexpensive production of pyrogen-free NANPs would further benefit the translation of these
materials to the clinic.

Since NANPs are considered for immunotherapy, detection, and quantification of other innate
immunity modulating impurities (IIMIs) (e.g., beta-glucans and flagellin) [149] may also be needed.
While these impurities are less potent than endotoxin, in the context of the immunotherapeutic
application of NANPs, they may both contribute to efficacy and create safety issues. Investigation
of the potential contamination of NANPs with IIMIs other than endotoxin and its contribution to
NANPs immunostimulatory properties opens another new area of future translational research on
these nanomaterials.

4. Outlook into the Future

In order to bring NANP technology to the clinic, studies investigating their adsorption, distribution,
metabolism, excretion, toxicities (general, gene, immune and reproductive) in two animal species
a rodent (e.g., rat) and non-rodent (e.g., non-human primate), and hybridization-dependent toxicities
in the context of exaggerated pharmacology are needed along with verification of the proposed efficacy.
Scale-up and optimization of manufacturing procedures to produce affordable, pyrogen-free NANPs
are also required. Understanding the potential long-term effects including autoimmunity is necessary.
The development of bioanalytical assays along with standardized methods for NANPs characterization
would further advance this technology toward clinical applications. Since NANPs synthesis is well
controlled, applying bioinformatics and artificial intelligence tools may speed up both the design and
prioritization of various NANPs structures for preclinical studies as well as assist with identifying
promising indications. Mechanistic studies uncovering NANPs interaction with various cell types,
mechanisms of NANPs immune recognition, and understanding the potential of this technology
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for diagnostics field are beneficial. As the production of these materials moves toward large-scale,
understanding their biodegradability and environmental effects would also be needed. These are just
a few ideas for what NANPs field would be facing in the upcoming decade.
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