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A B S T R A C T   

The bleomycin-induced pulmonary fibrosis mouse model is commonly used in idiopathic pul-
monary fibrosis research, but its cellular and molecular changes and efficiency as a model at the 
molecular level are not fully understood. In this study, we used spatial transcriptome technology 
to investigate the cellular and molecular changes in the lungs of bleomycin-induced pulmonary 
fibrosis mouse models. Our analyses revealed cell dynamics during fibrosis in epithelial cells, 
mesenchymal cells, immunocytes, and erythrocytes with their spatial distribution available. We 
confirmed the differentiation of the alveolar type II (AT2) cell type expressing Krt8, and we 
inferred their trajectories from both the AT2 cells and club cells. In addition to the fibrosis 
process, we also noticed evidence of self-resolving, especially to identify possible self-resolving 
related genes, including Prkca. Our findings provide insights into the cellular and molecular 
mechanisms underlying fibrosis resolution and represent the first spatiotemporal transcriptome 
dataset of the bleomycin-induced fibrosis mouse model.   

1. Introduction Background 

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with unknown etiology, affecting approximately five 
million people and has few treatment options, resulting in a low 5-year survival rate of about 20 % [1,2]. Although the histological 
features of IPF, such as honeycomb cysts, fibroblastic foci, and hyperplastic epithelial cells, as well as molecular changes such as 
excessive accumulation of extracellular matrix (ECM), are well-known, the detailed cellular and molecular level changes in lungs 
during IPF are still under investigation [3]. Recent studies have applied cutting-edge single-cell sequencing technologies to illustrate 
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the pathogenesis of IPF in human [4–6], but animal models are important for understanding the pathological process and for 
developing drugs and treatments [3]. Bleomycin-induced pulmonary fibrosis mouse model is a widely used experimental model for 
studying IPF. The model is induced by intratracheal instillation of bleomycin, a chemotherapeutic agent that causes lung injury and 
fibrosis [7]. The model has been used to investigate the cellular and molecular mechanisms underlying the pathogenesis of IPF [8–10], 
as well as to evaluate the efficacy of potential therapeutic agents [11–13]. Despite its acuteness and self-resolving nature, the bleo-
mycin injection mouse model has been comprehensively studied in different levels to reveal its pathogenic process [14,15]. Intra-
cellular hydroxyproline content was comprehensively studied in the bleomycin injection-induced mouse lung fibrosis model over time 
to reveal the contradictory changes in hydroxyproline content along fibrosis and self-resolving processes [14]. Single-cell studies on 
the mouse model revealed major cellular changes, particularly one transitional cell type between AT1 and AT2 cells expressing Krt8, to 
be critical for lung fibrosis [15]. Further studies on the bleomycin-induced mouse model should provide more details on the essential 
process of pulmonary fibrosis and, more importantly, prove its efficiency as an IPF model. 

Studies focusing on familial pulmonary fibrosis or genome-wide association studies have identified genetic factors related to 
idiopathic pulmonary fibrosis (IPF), including genes related to mucin production (MUC5B and MUC2) [16,17], surfactant proteins (e. 
g., SFTPC) [18], ER stress, and DNA repair. MUC5B has been identified as one of the marker genes for IPF in humans, with correlations 
to lung function, disease progression, and treatment responses [19,20]. Exploring the expression patterns of these known 
IPF-associated genes in the bleomycin-induced mouse model can improve our understanding of molecular-level changes during mouse 
lung fibrosis and reveal the efficiency of the model. Spatial transcriptome technology, such as SpaTial Enhanced REsolution 
Omics-sequencing (Stereo-seq), provides spatial information and a large view of massive cells, making it effective for studying cellular 
and molecular changes during pathogenic processes [21–24]. 

In this study, we applied Stereo-seq technology to study the lungs of bleomycin mouse models, generating the first spatial tran-
scriptome dataset of normal (control), acute fibrosis (7 days after bleomycin injection), and recovering from fibrosis (21 days after 
bleomycin injection) lungs. We analyzed the dataset to reveal changes in cell types and subtypes during fibrosis, reflecting the effi-
ciency of this animal model. We also identified and analyzed gene expression changes along fibrosis to confirm previously known key 
factors and identify possible genes related to the self-resolving feature. 

2. Materials and methods 

2.1. The bleomycin instillation induced mouse model 

WT C57BL/6 mice were anesthetized with 1 % pentobarbital sodium (60 mg/kg) and then intratracheally administered BLM (1.8U/ 
kg, Cat#HY-17565A/CS-0131163) in 50 μl of normal saline. Mice administered with same volume of normal saline served as controls. 
The mice were euthanized on day 7 and 21 following BLM challenge to analyze PF. All mice were housed in a specific pathogen-free 
(SPF) facility at the Tongji Medical College with a 12-h light/12-h dark cycle. 

2.2. Sample preparation and sequencing 

Mice were collected, and their lungs were excised for cryosectioning. The lungs were positioned correctly using a blunt metal 
needle, and once the OCT compound solidified on a flat surface of a dry ice block, cryosections were obtained at a thickness of 15 μm 
using a Leica CM1950 cryostat. 

The STOmics Gene Expression kit S1 (BGI, 1000028493) was utilized according to the standard protocol V1.1 with minor modi-
fication [21]. Tissue sections were adhered to the Stereo-seq chip, and incubated in − 20 ◦C methanol for 30 min fixation, followed by 
nucleic acid dye staining (Thermo fisher, Q10212) and imaging (Ti-7 Nikon Eclipse microscope). For permeabilization, tissue sections 
were permeabilized at 37 ◦C for 5 min. The cDNA was purified using AMPure XP beads (Vazyme, N411-03). The indexed single-cell 
RNA-seq libraries were constructed according to the manufacturer’s protocol. The sequencing libraries were quantified by Qubit 
ssDNA Assay Kit (Thermo Fisher Scientific, Q10212). DNA nanoballs (DNBs) were loaded into the patterned Nano arrays and 
sequenced on MGI DNBSEQ-Tx sequencer (50 bp for read 1, 100 bp for read 2). 

2.3. Binning data of spatial stereo-seq data 

Raw data were processed according to a publicly available pipeline SAW available at https://github.com/BGIResearch/SAW. 
Transcripts obtained from 50 × 50 DNBs were merged as one bin 50 (~25 μm). In order to ensure each unit has a sufficient number of 
genes to respond to its molecular characteristics, we considered a single bin 50 as the fundamental analysis unit, according to previous 
work [21]. Bin IDs were synthesized based on their spatial coordinates (spatial_x and spatial_y) on the capture chip. Specifically, we 
selected the DNB located at the bottom-left corner of bin 50 to represent the location of the entire bin. To ensure data quality, we chose 
201 genes, 251 genes, and 351 genes as the filtering thresholds for 0d, 7d, and 21d samples, respectively, and excluded any bin50 with 
a lower gene count than this value. The filtering thresholds were determined based on the gene count distribution curve of per bin 50; 
low-quality bin 50 would be clustered into a small peak, and we chose the lowest value to the right of the small peak as the filtering 
threshold. 
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2.4. Cell clustering and annotation 

Data normalization, scaling, and bins clustering were processed using the R package Seurat (version 4.3.0) [25]. The function 
‘SCTransform’ was used to normalize, scale, and merge different data sets for each time point. We identified the 3000 high variable 
features using ‘VariableFeatures’ function for each time point and then use them to perform dimensionality reduction by PCA and 
UMAP embedding. The cells were clustered using ‘FindNeighbors’ function using the first 30 principal components, followed by 
‘FindClusters’ function. Marker genes of different clusters were found by ‘FindAllMarkers’ of Seurat R package, with parameter (min. 
pct = 0.1, logfc.threshold = 0.25) and filtered by pvalue.adj <0.05. Cell identities of clusters were annotated using marker genes. All 
cell clusters were identified by using known cell type–specific markers for each cluster. To get more detailed cell types, bins belonging 
to a specific cell type, or groups of relevant cell types were further clustered and annotated. The process of subcluster annotation for 
one cell type just like above description of cell type. 

2.5. Cell chat (Ligand-receptor analysis) 

We perform inference, analysis and visualization of cell-cell communication network for spatial imaging dataset using CellChat 
(version 1.6.1) [26] package. Initially, we created a new CellChat object from our Seurat object for each time point, utilizing the 
CellChatDB.mouse database, which contains 2021 validated molecular interactions, including 60 % secreted autocrine/paracrine 
signaling interactions, 21 % extracellular matrix-receptor interactions, and 19 % cell-cell contact interactions. 

We preprocessed the expression data by identifying over-expressed genes and interactions, and then used the ‘compute-
CommunProb’ and ‘filterCommunication’ functions to infer the cellular communication network and compute the communication 
probability. The ‘computeCommunProbPathway’ function was then used to calculate the communication probability on a signaling 
pathway level by summarizing the communication probabilities of all ligands-receptors interactions associated with each signaling 
pathway. 

To obtain an aggregated view of the cell-cell communication network, we utilized the ‘aggregateNet’ function, which counted the 
number of links or summarized the communication probability for each communication pair. Finally, we merged the three CellChat 
objects of each time point by utilizing the ‘mergeCellChat’ function for downstream analysis. 

2.6. Cell differentiation inference 

The pseudotime trajectories were performed using Monocle2 (version 2.2.41) [27] package with default settings.The differential 
gene expression test along the cell trajectory was conducted using differentialGeneTest with the ‘fullModelFormulaStr’ was set to cell 
type and time point. To identify genes associated with trajectory differentiation, we filtered for genes with a q-value <0.01. 

Afterwards, we performed lineage inference between AT and club using Monocle3 [28] package. Pseudotime heatmap showing the 
differentiation direction across different cell lineages, plotted using plot_cells function. To screen for genes driving epithelial cell 
differentiation, we utilized the Moran’s I statistic in Monocle3. Briefly, we first performed dimensionality reduction and trajectory 
inference on the stereo-seq data using Monocle3’s built-in functions. We then identified the genes that were significantly (qval <0.01) 
spatially autocorrelated along the trajectory using the Moran’s I statistic, which measures the degree of similarity in gene expression 
between neighboring cells in the trajectory. The genes with a Moran’s I value greater than 0 were retained as potential drivers of 
epithelial cell differentiation. Besides, we test genes for differential expression in club_Bpifa1 based on the low dimensional embedding 
and the principal graph using graph_test function. In addition, we assessed gene co-expression in clubBpifa1+ by utilizing the graph_test 
function on the low-dimensional embedding and principal graph of the stereo-seq data. 

2.7. Differential gene expression (DEG) analysis and GO enrichment 

DEG of the same cell type between two time points were performed using ‘FindMarkers’ functions in Seurat packages, filtering 
significant DEGs with an adjusted p-value <0.05 and an absolute average log2 fold change >1. To further analyze the functional 
implications of these genes, we performed GO enrichment analysis of the Biological Process category using the clusterProfiler (version 
4.4.4) [29] software package, with gene annotations provided by the org.Mm.eg.db [30] annotation database for mouse loci. 

2.8. Protein-protein interaction (PPI) network analysis of spatial modules 

We used the Retrieval of Interacting Genes (STRING) database (version 11.0, https://string-db.org/) to explore potential protein- 
protein interactions. Our analysis consisted of all protein-protein interactions in the “Mus musculus” species, with active interaction 
sources based on co-expression analysis. We utilized STRING confidence scores, considering a score of at least 0.7 as significant, to 
assess reliability of the interactions. In these networks, the nodes correspond to the proteins and the line between two nodes represent 
the relative connectivity in each network. 

2.9. Single-cell reference mapping 

Single-cell reference mapping was performed using the ’TransferData’ function from the R package Seurat [25]. A previously 
published single-cell dataset was utilized as the reference dataset to classify the query cells. FindTransferAnchors was applied as an 
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initial step in integrating single-cell data and spatial data, enabling the identification of shared gene expression patterns between two 
distinct datasets. Anchor points were created by identifying commonly expressed genes and used to eliminate differences between the 
datasets in subsequent integration analyses. Once a set of anchors was found between the reference and query object, the TransferData 
object was utilized to transfer data from the reference to the query object. The spatial dataset was used as the query object, and each 
cell was labeled with the predicted cell type with the highest prediction score. 

2.10. Gene set enrichment analysis (GSEA) 

Gene expression data were analyzed using the ssgsea algorithm, which calculates enrichment scores for predefined gene sets. 
Specifically, we employed the irGSEA (version 1.1.3) R package to estimate the changes in expression levels of known genes involved 
in pulmonary fibrosis. And show the expression and distribution of risk score in ssgsea among cell clusters using boxplot. 

Fig. 1. Establishing a spatiotemporal transcriptome atlas of lungs from bleomycin induced pulmonary fibrosis mouse model. A, Schematic 
diagram of the experimental procedure and the whole study. B, Quality control of the cell bins to show their boxplots of nFeature (representing 
genes captured), nCount (RNA molecular captured) and percent.mt (percentage of the mitochondria) in the control lung (Con), the 7d lung (D7, 7 
days after bleomycin instillation) and the 21d lung (D21, 21 days after bleomycin instillation). C, Uniform Manifold Approximation and Projection 
(UMAP) plot to show all the thirteen cells and their cell type annotation. D, Spatiotemporal distribution of the thirteen cell types. We showed one 
slice of each lung here and here after. E, Spatiotemporal distribution of PVM cells. 
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3. Results 

3.1. Establish a spatial transcriptome atlas of lungs along fibrosis 

To construct a spatiotemporal transcriptome atlas of the bleomycin instillation induced lung fibrosis mouse model, we obtained the 
spatial transcriptomes of lungs from 0 day (control), 7 days (D7) and 21 days (D21) after the bleomycin instillation (Fig. 1A). We 
obtained transcriptome data from five sections in total (two sections for control and 21d lungs and one section for 7d lung), with the 
total data amount of 699 Gbp. We followed previous described method [21], to define bins on the sections to represent cells (cell bins) 
and we set the bin size to be 50 nanoballs square (the nanoballs were the capture sites, and the actual size of these squares was ~25 μm). 
Filtering cell bins with insufficient number of genes captured (201 genes for control, 251 genes for 7d, and 351 genes for 21d), we 
obtained 77,687 cell bins in total, with 21,726, 13,439, and 42,522 cell bins for control, 7d and 21d lungs, respectively. The average 
number of genes in these defined cell bins was 713 and the average number of transcripts per cell bin was 1629 with maximum 
mitochondrial percentage to be 5.1 %, reflecting good gene expression capture efficiency (Fig. 1B). 

Then, for all cell bins after normalization and standardization, we clustered and annotated them (Table 1). We first used previously 
reported marker genes, to annotate all these cell bins into four categories (epithelium, mesenchyme, immunocyte and red blood cells) 
and thirteen cell types, including alveolar type I (AT1) cells, alveolar type II (AT2) cells, club 1 cells, club 2 cells, fibroblast (FB), 
mesothelial cells (Meso), pulmonary vein myocardium (PVM), smooth muscle (SM) cells, B cells, macrophages (MP), neutrophil 
(Neut), plasma and red blood cells (RBC) (Fig. 1C). We further categorized twenty-eight clusters into thirteen cell types (Table 1), with 
marker genes to be identified and indicated. Our cell type annotation is comparable to recent single-cell studies, to have revealed major 
cell types in lungs [15,31], reflecting the effectiveness of the generated dataset. 

Comparing to single cell sequencing data, the spatial transcriptomes also contain the cell location information, thus we were able to 
locate the cells on the slides with their spatial distributions shown (Fig. 1D). Using the spatial distribution information, we investigated 
one of the cell types we identified, PVMs, to reflect the advantage of spatial transcriptome data. PVMs were not commonly found and 
reported in previous single cell sequencing studies on lungs, probably because of limited capture efficiency or biased cell capturing, 
except one previous study [31], in which large amount of single cells were obtained and sequenced with Pericytes to be annotated. In 
our dataset, we found these cells to be in low proportion (1.22 %), and they distributed in concentrated regions in the upper lobe 
(Fig. 1E), which should be the vascular regions. The capture and annotation of PVMs in our dataset, again indicated high efficiency of 
our experiments in in situ capture and sequencing, as well as good quality of our dataset. To our knowledge, this is also the first 
spatiotemporal transcriptome atlas of mouse lungs, related to bleomycin injection and pulmonary fibrosis. 

Table 1 
Summary of the established spatiotemporal atlas.  

Cluster Marker gene Cell type Category Cell number Control 7d 21d 

0 Inmt, Sftpc, Hopx, Ager AT2 Epithelium 7544 5676 785 1083 
1 Timp1, Fn1 Fibroblast Mesenchyme 7135 100 2068 4967 
2 Cyp2f2, Scgb3a2 Club1 Epithelium 6399 3008 1162 2229 
3 Hbb-bs, Hbb-a1, Hbb-a2, Hbb-bt Erythrocyte RBC 6335 3377 1157 1801 
4 Col1a1, Col3a1, Timp1 Fibroblast Mesenchyme 5817 114 648 5055 
5 Sftpd, Sftpc, Lcn2, Lamp3 AT2 Epithelium 5266 34 935 4297 
6 Pdpn AT1 Epithelium 4849 31 518 4300 
7 Retnla, Cyp2f2, Scgb3a2 Club1 Epithelium 3377 63 1077 2237 
8 Spp1 Macrophage Immunocyte 2994 453 764 1777 
9 Chil3 Macrophage Immunocyte 2723 184 350 2189 
10 Hpox, Inmt AT2 Epithelium 2575 2052 136 387 
11 Mmp12 Macrophage Immunocyte 2185 110 1213 862 
12 Hbb-bs, Hbb-a1, Hbb-a2, Hbb-bt Erythrocyte RBC 2018 877 345 796 
13 Scgb3a1, Bpifa1, Bpifa2, Scgb3a2 Club2 Epithelium 1993 707 189 1097 
14 Malat1 AT1 Epithelium 1929 814 223 892 
15 Upk3b, Msln, Col3a1 Mesothelial Mesenchyme 1662 580 107 975 
16 Jchain, Igkc Plasma Immunocyte 1658 221 279 1158 
17 Ighm B cell Immunocyte 1604 134 416 1054 
18 Cyp2f2, Scgb3a2 Club1 Epithelium 1553 1495 7 51 
19 Retnla, Cyp2f2, Scgb3a2, Trim71 Club1 Epithelium 1536 NA NA 1536 
20 Sftpb, Sftpd AT2 Epithelium 1529 12 214 1303 
21 S100a4 Macrophage Immunocyte 1279 244 338 697 
22 S100a8, S100a9, Ngp, Camp Neutrophil Immunocyte 1114 381 188 545 
23 Myh6, Myl7 Pulmonary vein myocardium Mesenchyme 951 349 137 465 
24 Acta2, Actc1, Myl9, Myh11 Smooth muscle Mesenchyme 939 484 99 356 
25 lglc1, Jchain Plasma Immunocyte 333 49 44 240 
26 Abcb10 Erythrocyte RBC 311 98 40 173 
27 lghm B cell Immunocyte 79 79 NA NA 
Total    77687 21726 13439 42522  
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3.2. The atlas is consistent with known cell dynamics and gene expression profiles 

We compared our spatiotemporal transcriptome data to the recently published single cell sequencing data of the bleomycin 
instillation model [15] (Fig. 2A and B). We found good consistency both between the epithelial single cells and the whole lung single 
cells, with major cell types identified in single cell data also presented in our spatial transcriptome data, even though we used different 

Fig. 2. Investigating known features during fibrosis in the spatiotemporal atlas. A, Mapping a published single-cell dataset of entire mouse 
lungs onto our spatiotemporal atlas. B, Mapping another published single-cell dataset of mouse lung epithelial cells onto our spatiotemporal atlas. C, 
Spatiotemporal distribution of AT2 cells expressing Krt8 in our spatiotemporal atlas. D, Enrichment scores of genes known to have been associated 
with fibrosis in cell subtypes of our spatiotemporal atlas. E, GO enrichment analysis of the highly expressed genes in clubBpifa1+. F, GO enrichment 
analysis of genes co-expressed with MUC5B in clubBpifa1+. 
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marker genes, and the final cell type nominations were not the same. In this previous single cell sequencing study, a novel intermediate 
cell type differentiated from AT2 cells (expressing the gene Krt8), was found, and proved to be involved in AT1 cell regeneration and 
fibrogenesis. In our dataset, we also observed this cell type (Fig. 2C), and we found AT2Krt8+ in the lungs after bleomycin instillation 
but not in the control lung, which was also consistent with the previous findings. Overall, our dataset was comparable to the single cell 
sequencing data, but with spatial information available, it is unique for exploring in situ gene expression patterns and cell level 
dynamics. 

With the spatiotemporal transcriptome dataset available, we then explored expression patterns of genes previously known to be 
related with fibrosis [3]. We calculated the enrichment scores of 33 known pulmonary fibrosis-related genes across all the cell sub-
types, and interestingly, we found the enrichment scores of known genes in one subtype of club2 cells (club2Bpifa1+) were significantly 
different during fibrosis (Fig. 2D). For example, MUC5B encodes a mucin protein, which would be the major contributor to the 
lubricating and viscoelastic properties of normal lung mucus. Previous genome-wide association study [16] identified the strongest 
risk polymorphism in promotor region of this gene, of which the risk allele would result in increased expression of MUC5B in terminal 
bronchi and honeycombed cysts of IPF affected lungs [32]. In our dataset, we observed increased gene expression of MUC5B in 
club2Bpifa1+ cells in the 7d lung comparing to control lung, and its expression was downregulated in the 21d lung. This is consistent 
with the previous described regulatory mechanism of this gene in fibrosis. Furthermore, we checked the spatial distribution of these 
club2Bpifa1+ cells to find them to be primarily distributed around the bronchial region and show quite high spatial specificity (Fig. 2B). 
The highly differentiated expression pattern of known fibrosis related genes during fibrosis in club2Bpifa1+ cells reflected possible 

Fig. 3. Cell dynamics after bleomycin instillation and during fibrosis. A, Pie chart to show the number and proportion of each cell type. B, 
Histogram to show the proportions of cell types after bleomycin instillation (control, 7d and 21d). C, Proportional changes, and spatiotemporal 
distribution of epithelial subtypes during fibrosis. D, Proportional changes and spatiotemporal distribution of fibroblast subtypes during fibrosis. E, 
Proportional changes and spatiotemporal distribution of Macrophage subtypes during fibrosis. F, Proportional changes, and spatiotemporal dis-
tribution of red blood cells during fibrosis. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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Fig. 4. Cell-cell interaction changes during fibrosis. A, Number, and strength of cell-cell interactions among all cells. B, Information flows 
fulfilled by different pathways during fibrosis. C, Input, and output signal strengths of cell types during fibrosis. D, Strength of various signaling 
pathways for cell types during fibrosis. 
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involvement of this cell type in pulmonary fibrosis. We finally explored the gene expression network within club2Bpifa1+ cells to find 
possible fibrosis related genes. Differentially expressed genes with significantly higher expression compared to other cells and the 
genes co-expressed with MUC5B were found to be enriched in GO terms related to epithelial cell differentiation (Fig. 2E and F, 
Fig. S1A). For the known risk genes other than MUC5B, some also show cell type or even subtype specific expression and changed the 
expression along fibrosis, including Abca3, Cdnk1a, Atp11a and Akap13, while some were widely expressed in multiple cell types, 
including Sftpc and Sftpa1. Sftpc and Sftpa1 showed differential gene expression during fibrosis across multiple cell types, reflecting 
complex roles they played during fibrosis (Fig. S1B). Taking together, using our dataset, we were able to elucidate the gene expression 
changes in different cell types or subtypes, which would aid exploring the molecular mechanisms of fibrosis. 

3.3. The cell dynamics during fibrosis 

The spatial transcriptome data represented large number of cells on sections, thus it provides the cell number and cell proportion 
information. Despite possible bias or differences resulted from section positions and angles, each section contains thousands of cells, 
therefore it could reflect overall cell proportions. We first summarized the total cell proportion based on the cell bins we obtained 
(Fig. 3A and B). We found AT2 cells, fibroblasts, club1 cells, MPs, RBCs and AT1 cells to be the major cell types, comprising more than 
86 % of all cells. Among these major cell types, we found notable cell proportion changes during fibrosis, except club1 cells, which 
gradually reduced after bleomycin instillation. For AT2 cells, we found them to dramatically reduced after bleomycin instillation, 
contrasting to the obvious increase of AT1 cells and relatively subtle changes of club1 and club2 cells (Fig. 3C). Meanwhile, we found 
widely distributed AT2 cells were reduced and restrained to some areas during fibrosis (Fig. 3C), while AT1 cells were increased 
especially in lower lobe (Fig. 3C). 

For fibroblasts, we found them to substantially increase (Fig. 3D) and fill the non-epithelial regions during the fibrosis (Fig. 3D). We 
then investigated the changes of fibroblast subtypes, to find increasing of originally existed fibroblast subtypes including FBAger+, 
FBCd44+, matrix fibroblast (MFB) and myofibroblasts (MyoFB). We noticed subtle reduction of FBCd44+ and MFB in the 21d lung 
comparing to the 7d lung, indicating possible recover or progression of fibrosis in the 21d lung. MFBs are responsible for the synthesis 
and maintenance of the extracellular matrix (ECM) in tissues [33], thus their subtle decrease probably indicated fibrosis resolution. 
Meanwhile, MFBs can be differentiated into MyoFBs in response to mechanical stresses [34], and in our dataset we found MFBs to have 
probably triggered the increasing of MyoFB, which were steadily and substantially increased during the whole process. Finally, we 
found a fibroblast subtype, FBSaa3+, to have been emerged and increased during fibrosis, of which the roles played during fibrosis 
awaits further investigations. 

For macrophages, we found them to substantially increase in the 7d lung and then subtly decrease in the 21d lung, with almost all 
subtypes changed similarly (Fig. 3E). We also found the macrophages to increase in non-epithelial regions (Fig. 3E), like fibroblasts, 
indicating involvement of immune reactions in fibrosis. Lastly, we analyzed red blood cells (RBCs) in our dataset, which were usually 
not profiled in single cell sequencing studies. We observed a decrease in RBCs over time (Fig. 3F), which may be a result of fibrosis and 
could potentially exacerbate disease progression due to the ischemia and anoxia resulting from the reduction of RBCs. Overall, we 
comprehensively depicted the cell dynamics in the bleomycin induced mouse pulmonary fibrosis model, adding to our understanding 
of this IPF model. 

3.4. Cell-cell interactions changed during fibrosis 

In addition to the cell proportion changes we have observed, we investigated the cell-cell interactions among cell types/subtypes 
and the interaction changes during fibrosis (Table S1). In the control lung, the number of inferred cell-cell interactions were low, and 
the interaction strength was weak (Fig. 4A), among which AT2 cells and RBCs were found to have the strongest interactions with other 
cells (Fig. 4B and C). After bleomycin instillation, the 7d lung showed some increase in the number of inferred interactions and 
substantial increase of interaction strength. The signals related to cell adhesion, such as PECAM1, CADM, CDH5, and APP, show almost 
zero probability of interaction between cells, which indicates the existence of cell migration in the 7d lung (Fig. 4B). With the number 
of AT2 cells decreasing, their role in affecting other cells reflected by outgoing interaction strength was weakened, while the inter-
action strength of fibroblasts and macrophages with other cells was greatly improved (Fig. 4C). Further looking at the signaling 
patterns, we found COLLGEN to be the major molecule effective in these cell-cell interactions (Fig. 4D), which is related to extracellular 
matrix deposition. This reflected that with the increase of fibroblasts and macrophages, they were affecting other cells through proteins 
including COLLGEN, SPP1, FN1, etc., to result in fibrosis. In the 21d lung, we found the cell-cell interactions to be the strongest with 
large number of interactions (Fig. 4A), and the cell interactions of all cell types were improved with the proteins of CDH5, LAMININ, 
THBS, HSPG, GAS, AGRN, SEMA3, etc. (Fig. 4D) as the communication molecular, which are related to vascular development and 
vascular homeostasis [35,36]. Among all cell types, fibroblasts, macrophages and AT1 cells were improved most in cell-cell in-
teractions, while club1 cells were least changed. Considering persistent fibrosis process and initiation of possible self-resolving in the 
21d lung, the detailed cell-cell interaction dynamics illustrated here provided valuable information for understanding the relationship 
among cell types and inferring possible intervention targets. 

3.5. Epithelial cell differentiation during fibrosis 

Epithelial cells played critical roles in normal lung function and in lung pathogenesis including fibrosis [37]. In normal lungs, 
epithelial cells provide surface areas, thus serve as mediators of gas exchange, with AT2 cells to produce surfactant and replace injured 
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Fig. 5. Epithelial cell differentiation during fibrosis. A, Differentiation trajectory of AT2 cells. B, Genes related to AT2 cell differentiation. C, 
UMAP of epithelial cell subtypes related to differentiation during fibrosis. D, UMAP and pseudotime of epithelial cells related to differentiation. 
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AT1 cells through cell differentiation [38]. In lung diseases like IPF, abnormal epithelial cell differentiation was usually observed, with 
the inability of AT2 cells to repair injured AT1 cells or AT2 cells to differentiate to other cell types [5,39]. Thus, we investigated the 
epithelial cell differentiation in our dataset. We first analyzed the differentiation of AT2 cells (Fig. 5A) to find a gradually evol-
ving/developing process of AT2 cells after bleomycin instillation. AT2 cells in the 7d lung were different from those in the control lung 
and were further developed to AT2 cells in the 21d lung, which were the most mature/developed AT2 cells. Along this pseudotime cell 
differentiation, we identified critical genes including well known fibrosis related genes like Col1a1, Col1a2, Eln and Fn1 (Fig. 5B, 
Table S2). We also find Epas1, which is a transcription factor previously reported to be involved in promoting hypoxic pulmonary 
hypertension [40], to change in accordance with the AT2 differentiation, indicating involvement of oxygen related pathway in fibrosis. 
We found expressions of these genes to first increase in the 7d lung and then decrease to some extent in the 21d lung (Epas1 was in the 
opposite trend), again indicating possible resolution from fibrosis. To further support that, we found AT2 cells in the 21d lung to 
occupy the whole AT2 cell pseudotime differentiation path, with cells similar to both the AT2 cells in the control lung and those in the 
7d lung (Fig. 5A). Overall, AT2 cells were found to differentiate during fibrosis and AT2 cells in the 21d lung seemed to slightly recover 
original AT2 cell functions. 

Since AT1 cells were increased during fibrosis and previous studies already suggested AT2 to AT1 differentiation [41], we then 
investigated the differentiation from other epithelial cells to AT1 cells (Fig. 5C). We confirmed the differentiation path of AT2 cells to 
AT1 cells in the 7d lung and the 21d lung (Fig. 5D). We also confirmed the existence of the activated AT2 cells (AT2Lcn+) and the 
previously reported AT2 subtype, AT2Krt8+. Meanwhile, we found the differentiation path from a subtype of club cells, clubBpfa1+ to be 
able to differentiate to AT2Krt8+ (Fig. 5D, Figs. S2A and S2B). However, our pseduotime analysis results indicated AT2Krt8+ cells to be 
more likely a final status instead of an intermediate cell type (Figs. S2C and S2D). We think the differentiation to AT2Krt8+ cells during 
fibrosis might have large effects on the fibrosis procedure, which awaits further exploration. We finally explored genes that drive 
epithelial cell differentiation, to identify genes including Bpifa1, Muc5b, Cyp2f2, Ltf, etc (Fig. 5E, Table S3). Bpifa1 is a critical 
component of the innate immune response that prevents upper airway diseases [42]. Cytochromes P450 (CYPs) are a multigene su-
perfamily of constitutively expressed and inducible enzymes responsible for the detoxification of many endogenous and exogenous 

Fig. 6. Possible genes related to fibrosis and self-resolving. A, Significantly differentially expressed genes in different cell types comparing the 
7d lung days to the control lung. B, Differentially Expressed Gene Protein Interaction Network comparing the 7d lung days to the control lung. C, 
Significantly differentially expressed genes in different cell types comparing the 21d lung to the 7d lung. D, Network of genes which can interact 
with Prkca protein. 
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compounds and for the metabolism of numerous medications [43]. LTF is a protective gene in PRAD, and its downregulation will 
inhibit the normal immune response in the body [44]. By utilizing these genes to induce epithelial cell differentiation, we hypothesize 
that this process may play a protective role in fibrosis, thereby offering additional insights into the molecular-level alterations asso-
ciated with epithelial differentiation in pulmonary fibrosis. 

3.6. Genes related to fibrosis and self-resolving 

In addition to cell dynamics along fibrosis, we further analyzed the gene expression changes to reveal important genes related with 
fibrosis and self-resolving. We compared the 7d lung to the control lung in the gene expression across all the thirteen cell types 
(Fig. 6A), and we extracted genes to show expression changes across majority of cell types. Within these genes of which the expression 
vastly changed, we found genes including Spp1, Eln, Fn1, Mt2 (upregulated), and Trim30a, Scgb1a1, Cbr2, Tlk1, Prkca, Mettl7a1 
(downregulated) (Table S4). Clustering these genes resulted in one major gene cluster with Fn1, Spp1, Eln, Apoe and other genes as hub 
genes (Fig. 6B), and functional enrichment of these genes reflected enriched functions in cell migration, extracellular structures 
(related to fibrosis) and damage repair (Fig. S3A). Among these upregulated genes, Spp1 was previously found to be expressed in 
macrophages, which would activate the myofibroblasts in IPF [45], and its expression was increased during mouse lung fibrosis [46]. 
Eln encodes components of elastin which can stimulate the migration and proliferation of monocytes and fibroblasts, and previous 
study found it to be upregulated in chronic obstructive pulmonary disease (COPD) affected lungs [47]. Within the downregulated 
genes, Cbr2 encodes carbonyl reductase, which was involved in arachidonic acid pathway and related with anti-apoptosis and 
anti-inflammation [48]. Trim30a encodes a trans-acting factor, which was proved to function in protect from endotoxin shock in mouse 
[49]. Prkca encodes a protein kinase C, which was found to be involved in alleviating acute lung injury and inflammatory response 
[50]. Downregulation of these gene with protective roles might have aggravated the injury of bleomycin and promoted the fibrosis 
procedure. 

Comparing the 21d lung to the control lung (Fig. S3B, Table S5), other than the genes overlapped with the above comparison (the 
7d lung to the control lung), we also found fibrosis related genes to have been commonly upregulated, including genes like Col1a1 and 
Col1a2, which were suggested as potential biomarkers for pulmonary fibrosis [51]. Meanwhile, the difference was obvious in the 
downregulated genes. In the 21d lung to the control lung comparison, we found the commonly downregulated genes to be hemoglobin 
related genes, which might be a result of fibrosis to affect the major lung function of blood oxygen exchange. 

We then compared the gene expression changes in the 21d lung and the 7d lung (Fig. 6C, Table S6), to reveal the expression 
dynamics in later stage of fibrosis. We carried out enrichment analysis for the differentially expressed genes shared among different cell 
types to reflect the changes in this stage. First, we can still find some signals of fibrosis with the genes involved in cell migrations to be 
enriched (Fig. S3C), although the enriched terms were different from the previous comparisons (the 7d lung to the control lung). But 
we found genes involved in wound healing, apoptotic signaling pathway to be enriched, including oxidative phosphorylation and 
response to oxidative stress, which once more, reflected possible self-resolving of fibrosis. Further looking at all differentially expressed 
genes across cell lines in the 7d lung to the control lung comparison and the 21d lung to 7d lung comparison (Fig. S3), we found 132 
genes to have functions related with injury repair, of which 38 were showing significant expression changes (Fig. S4, Table S7). These 
genes should be probable self-resolving related genes. Especially in the 21d lung to the 7d lung comparison, we identified commonly 
upregulated genes to have possible regulation functions and to be involved in damage repair (Fig. S3C), including Tlk1, Trim30a, Afm, 
Nkain2 and Prkca to be commonly upregulated. Afm encodes a possible hydrophobic molecule carrier protein and Nkain2 encodes a 
transmembrane protein, which we did not know their possible functions during fibrosis. Tlk1 encodes a serine/threonine kinase, which 
were found to be function in anti-apoptosis [52,53]. Trim30a was found in the 7d lung to the control lung comparison to be down-
regulated (as described above), and it should have the function of regulating endotoxin shock [49]. Prkca, which was also found in the 
7d lung to the control lung comparison to be downregulated, was reported to be involved in alleviation of acute lung injury [50]. We 
further investigated the proteins interacting with the protein kinase C encoded by Prkca (Fig. 6D), to find genes like Marcks (encoding 
myristoylated alanine rich protein kinase C substrate) and Mapk3 (encoding mitogen-activated protein kinase), which are associated 
with mitosis [54,55]. We found these two genes to have been significantly upregulated in the 21d lung (Fig. S5). Furthermore, we 
investigated the Prkca involved KEGG pathways to find the downstream genes (Fig. S5), including Vegfd (encoding vascular endothelial 
growth factor) and Mmp2 (encoding matrix metallopeptidase 2 which might aid degradation of ECM [56]). These two genes were also 
upregulated, with the expression recovery of Prkca. Taking together, we found genes, including Prkca, to be possibly related with the 
self-resolving of fibrosis in the bleomycin induced lung fibrosis mouse model, which awaits further investigations. 

4. Discussion 

Pulmonary fibrosis is a common phenotype of multiple pulmonary diseases, lacking effective intervention or treatment methods. 
Research, developing of drugs, as well as developing of clinical interventions require an effective disease model. Therefore, we studied 
the commonly used mouse model of pulmonary fibrosis induced by a single dose of bleomycin instillation using the cutting-edge spatial 
transcriptome technique, Stereo-seq. We constructed a spatiotemporal transcriptome atlas of mouse pulmonary fibrosis by in-situ 
spatial sequencing of mouse lungs at three time points including before injection, 7 days after injection, and 21 days after injec-
tion. Through the analysis of the atlas, we first comprehensively annotated the various cell types, to find clear signals of fibrosis in the 
lungs after bleomycin injection. We found substantial changes in epithelial cells, fibroblasts, macrophages, and red blood cells during 
fibrosis. In epithelial cells, a sharp decrease in AT2 cells was accompanied by a significant increase in AT1 cells. Fibroblasts increased 
overall, but there were different trends in subtypes after 7 days. The changes observed in various subtypes of macrophages exhibited a 
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similar pattern, with all subtypes increasing in the 7d lung and decreasing in the 21d lung. We were also able to analyze the RBCs to 
find them consistently and substantially reduced throughout fibrosis. The changes in cell types also correlated with the interactions 
between cells. During fibrosis, the interactions between fibroblasts and macrophages and other cell types are increased. In contrast, 
AT2 cells and RBCs were the major cell types interacting with other cell types in normal lung. We further analyzed the differentiation of 
epithelial cells. In the process of fibrosis, we confirmed that AT2 cells can differentiate into a subtype of AT2Krt8+ reported before [15]. 
We also found that the club cells subtype we annotated (clubBpfa1+) can also differentiate to AT2Krt8+ cells, and we analyzed to find 
AT2Krt8+ to be more likely a terminal cell type rather than an intermediate cell type. Finally, we also analyzed the gene expression 
changed to find Prcka and other potential self-resolving related genes. Our study on mouse fibrosis models using Stereo-seq largely 
replicated the results of previous single-cell sequencing study [15]. Spatial transcriptome data provided in-situ gene expression 
profiling of more cells comparing to single-cell sequencing. All the cells within a section of the mouse lungs were profiled and then used 
for identifying cell types and analyzing cellular changes, with tens to hundreds and thousands of cells. Secondly, spatial transcriptomes 
provide the spatial position information of cells, thus direct investigations of changed cell types or novel cell types, as well as their 
relationship with other cells, were feasible. For example, we found that fibroblasts and macrophages both increased in the 
non-epidermal regions, reflecting the possible joint changes. Of course, the current spatial transcriptome technology also has limi-
tations, such as the absence of cell boundary information and to use cell bins to represent might introduce some bias. We used the 
previous single cell sequencing data to indicate the efficiency and accuracy of our cell bin analysis. 

In this study, we injected single dose bleomycin (1.8 U/kg) to induce the pulmonary fibrosis, which was lower comparing to the 
previous study (3 U/kg) [15]. Although the lower dosage we used also induced fibrosis indicating by corresponding fibrosis markers, 
we think lower dosage might have resulted in faster self-resolving, reflected through several aspects. We found the overall fibroblasts 
to increase, and especially the subtype of myofibroblasts increased steadily. Since myofibroblasts majorly contributed to abnormal 
accumulation of ECM, this reflected ongoing fibrosis in the 21d lung. But we observed cellular level recovery including subtle increase 
of AT2 cells and club2 cells, decrease of macrophages, B cells, as well as backwards changes of subtypes of fibroblasts, comparing the 
21d lung to the 7d lung. Moreover, comparing the gene expression of the 7d lung to the control lung, we were able to find genes 
involved in fibrosis to be upregulated prevalently while comparing 21d lung to the control lung, we only identified hemoglobin related 
genes to be prevalently upregulated and fibrosis related genes to be downregulated. Thus, we compared the 21d lung to the 7d lung in 
gene expression to identify the upregulated genes, of which the function annotations indicated them as non-fibrosis related genes. 
Investigating previous publications on these genes, we proved them as possible self-resolving related genes as they were reported to 
function in cell regulations. Although we did not carry out in depth validations, expression patterns of these genes in previous datasets 
supported them as effective for mouse pulmonary fibrosis and they were probably not invoked in human pulmonary fibrosis. Future 
studies on these genes would accelerate our understanding of the self-resolving in the bleomycin induced pulmonary fibrosis model 
and shed lights on the possible targets to intervening the fibrosis process. Despite the findings in our study, we need to admit that the 
samples were limited, and biological replications were lacking. Although we were able to use the previous single cell sequencing data 
to prove our data quality, it would be more informative if there can be more samples from more time points after the bleomycin 
instillation. 

5. Limitations of this study 

Our study aimed to investigate the molecular changes associated with bleomycin-induced pulmonary fibrosis using mouse models 
and spatial transcriptomics technology. While our findings provide valuable insights into this disease, there are several limitations that 
should be considered. One limitation of our study is that we used a limited number of mouse models. While mouse models are widely 
used to study pulmonary fibrosis, the extent to which they represent the disease is not fully understood, particularly considering the 
uncertainty of different doses of bleomycin. Therefore, our results should be interpreted with caution, and further studies using a larger 
number of mouse models, as well as other animal models and human samples, are needed to validate our findings. Another limitation 
of our study is that we identified key gene expression changes at the cellular and molecular levels, but we did not investigate the 
functional consequences of these changes. Further studies are needed to investigate the functional significance of these molecular 
changes and their potential role in the development and progression of pulmonary fibrosis. Despite these limitations, our study 
provides a foundation for further research into the molecular mechanisms of pulmonary fibrosis and may aid in the development of 
new therapeutic strategies for the disease by identifying potential targets for treatment. By elucidating the key gene expression changes 
and molecular processes involved in lung fibrosis, our study may help to identify novel pathways and molecules that could be targeted 
to prevent or treat this devastating disease. 
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