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Introduction

Life depends on the ability to control size and shape at differ-
ent scales. At the molecular levels, chemical signaling relies on 
the conformational changes of molecules: mutations leading to 
abnormal changes of conformations often cause diseases such as 
tumors, tissue abnormality and malfunction. At the cellular level, 
the ability of cells to form various shapes has a vital importance.1,2 
Such ability appears to control the fate of cells, including cell 
apoptosis,3 direct cell migration,4 and cell differentiation.5 At the 
tissue levels, the ability of cells to self-organize into various struc-
tures with a long-range coordination of their morphologies and 
phenotypes raises the possibility that an understanding of such 
processes could lead to a synthetic approach to engineer and/or 
regenerate tissue-scale structures and even organs without the aid 
of scaffolds.

The most abundant tissue structures that exhibit long-range 
coordination of cell morphologies and phenotypes are epithelial 
tubules, which appear in the respiratory, reproductive, diges-
tive, and renal systems, and can be up to several centimeters 
long.6-9 In the past decades, theoretical studies have suggested 
that long-range morphological patterns can be created by chemi-
cal reaction-diffusion, and extensive experimental studies have 
been performed to investigate how chemical signals are involved 
in tubule formation in vivo.9-13 Nevertheless, attempts to create 
tissue-scale tubular structures by chemical stimulations in vitro 
have seen limited success. Consequently, current engineering 
of long tubules and other tissue-scale structures still relies on 
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organogenesis, such as long tubule self-organization, requires 
long-range coordination of cell mechanics to arrange cell 
positions and to remodel the extracellular matrix. while the 
current mainstream in the field of tissue morphogenesis 
focuses primarily on genetics and chemical signaling, the 
influence of cell mechanics on the programming of patterning 
cues in tissue morphogenesis has not been adequately 
addressed. Here, we review experimental evidence and 
propose quantitative mechanical models by which cells can 
create tubular patterns.
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scaffolds,14,15 which typically require complicated fabrication and 
must remain with the engineered tissue, limiting their clinical 
applications.

Besides chemical stimulation, evidence increasingly suggests 
that extracellular matrix (ECM) plays an important role in tubu-
lar pattern formation.9-12,16 Type I collagen (COL), for example, 
an ECM molecule that can form long linear fibers, often appears 
around long tubules in vivo.17 Cells have also been shown to cre-
ate long-range linear morphological patterns (up to 600 μm) 
through mechanical interactions with collagen molecules in 
vitro.4 Such interactions require cell surface receptors integrins 
that link ECM with various intracellular cytoskeletons.18 In par-
ticular, when the matrix environment is changed from laminin-
rich (the major ECM component in basement membrane19) to 
collagen-rich, cells can switch integrin-linked cytoskeleton from 
intermediate filaments to actomyosin, thereby switching their 
phenotypes from stable epithelial structures to motile cells.20

These experimental observations raise the possibility that cells 
might use mechanical interactions, along with their chemical sig-
nals, to create tissue-scale tubular patterns. Indeed, a growing 
interest has been developed to investigate the roles of mechani-
cal force in tissue development, remodeling, regeneration, and 
tumorigenesis.21-25 Understanding how cell mechanics are 
involved in tubular pattern formation requires familiarity with 
engineering principles of mechanics, the viscoelastic properties 
of biomaterials, and the integration of force and stress within 
tissue-scale structures as morphogenesis progresses. Here, we 
review experimental evidence and propose quantitative mechani-
cal models by which cells can create the tubular patterns. Our 
primary focus is to discuss how biomaterials such as ECM can 
be used to engineer or regenerate tubular patterns—the mecha-
nisms and models proposed here need not to be the ones used or 
observed in vivo.

Chemical-Based Turing Models  
for Tubular Pattern Formation

We first briefly discuss the current chemical-based models for 
tubular pattern formation. Epithelial tubules are either a single 
long cylindrical structure or a tree-like structure with itera-
tive branches of simple cylindrical units, by which cells can 
create long-range transport of gas or fluids, and/or maximize 
the surface area for efficient gas exchange or secretion of fluids 
across the surfaces. In vivo, branching morphogenesis of tubular 
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Mechanics-Based Non-Turing Models  
for Tubular Pattern Formation

General features of mechanical forces in pattern formation. 
In chemical-based lateral inhibition, the formation of spatial 
patterns requires that the activation and the inhibition possess 
different spatial scales; this is achieved by having activators and 
inhibitors with different diffusion constants.12,26,28,33-39 Further, 
to form robust spatial patterns in complex and fluctuating envi-
ronments, it is necessary that the spatial scales of activators and 
inhibitors possess a certain degree of flexibility. The diffusion 
constants of bio-molecules, however, are usually not tunable, 
limiting the dynamic range of tissue pattern formation by chem-
ical-based processes.

Compared with chemical-based patterning processes, several 
features of mechanical forces make them easier to create spatial 
patterns. One feature is the tunability of cell motility, which 
makes it possible to create a broad range of spatial scales. Consider 
two types of cells that interact with each other. These cells can 
create different motilities by tuning their cytoskeletal mechanics 
and/or the expression level of surface receptors that mediate cell-
cell or cell-ECM adhesions. Assume that the slow-moving cells 
act as the activator and the fast-moving cells act as the inhibitor. 
We can then see how their interactions lead to lateral inhibition. 
Examples can be found in the patterning of skin appendages, 
such as hair follicles34 and feather buds,40 where mesenchymal 
cells interact with epithelium and change motility by expressing 
different amounts of receptor N-CAM. Such cell motion-based 
lateral inhibition is also applicable to the cases where a single 
type of cells switch their phenotypes in response to an inhibitor 
released by the cells (such as transforming growth factor41). In 
these cases, the difference of spatial scales is established by the 
diffusion of the inhibitor and the tunability of the cell motility.

Another feature that makes mechanical force useful in pat-
terning processes is its vectorial nature. Such feature allows infor-
mation of mechanical forces to be delivered in the same direction 
over a long spatial range in a short amount of time. This effect 
reduces the dispersion and/or dissipation of information, a com-
mon consequence in chemical diffusion. Further, the vectorial 
nature of mechanical forces creates spatial anisotropy. Consider 
a mechanical process that involves two forces transmitted along 
two orthogonal axes. These forces can be generated by moving 
cells along the ECM fibers. In contrast to isotropic molecular dif-
fusion, the magnitude of each force lasts for a long spatial range 
along its own principle axis, but limited in the other. This effect 
leads to a difference of spatial scales for the distribution/disper-
sion of forces between orthogonal axes, a feature that cannot be 
achieved by simple chemical diffusion.

Perhaps the most important feature of mechanical forces is 
that they can continuously propagate between and across cells 
through cytoskeletons, intercellular adhesions,42,43 and ECM.25 
This feature provides long-range and instant communication 
within the tissue-scale structures. The instant propagation of 
forces over multiple cells can be used to mimic the long-range 
effect required for chemical-based lateral inhibition. Further, pat-
terning cues mediated by mechanical force can propagate among 

organs including lungs,12,26 blood vessels,7,26 salivary glands,27 
mammary glands,26 and renal ducts8,26,28 involves an reiterative 
branching of cells from pre-existing cell sheets to the surround-
ing ECM.7,26 Similar processes can be found in embryo gastrula-
tion, where a group of cells from ectoderm bend inward to form 
endoderm.29

To create tubular patterns, the two important parameters are 
the spatial scale and the geometry of the tubules. One appeal-
ing mechanism to create repetitive tubular pattern is the chemi-
cal reaction-diffusion scheme proposed by Alan Turing (lateral 
inhibition).13 Lateral inhibition relies on the interplay of short-
range activation and long-range inhibition (Fig. 1). Such inhi-
bition can result from the consumption of precursors or the 
creation of inhibitors. Lateral inhibition requires that the activa-
tion self amplifies, while creating inhibition to suppress other 
activations. As a result, individual activations mutually repel 
each other, leading to a regular spacing, L, between neighboring 
activations. In turn, position cues can spontaneously emerge to 
pattern cells into regular/periodic structures.

While chemical patterning has been observed in simple 
chemical systems and developmental processes,30 there is no suc-
cessful example to create tubular patterns and other tissue-scale 
patterns by chemical stimulations in vitro.31 The main difficulty 
arises from the extensive remodeling of ECM and the substantial 
movements of cells during tissue self-organization and morpho-
genesis, which could significantly interference with the chemi-
cal patterning processes.32 Further, in the presence of other cells 
such as mesenchymal cells, the environment surrounding epi-
thelial cells becomes more complex, and the secretion, degrada-
tion, and distribution of diffusible chemical factors become less 
predictable.

Figure 1. The schematics of chemical-based lateral inhibition. (A) Lat-
eral inhibition requires a short-range activation that self amplifies and 
a long-range inhibition that inhibits remote activations. The strength 
of the stimulation and the spatial characteristics of the activation and 
the inhibition determine the spacing L. (B) Hypothetical tubular pattern 
formed by chemical reaction-diffusion (blue, activator; red, inhibitor; 
gray, cells).
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If cells can use mechanical forces to program tubular patterns, 
one immediate question is how far cells can develop mechanical 
interactions with one another. Certainly, the spatial scales of such 
interactions are parameterized by the architecture of the environ-
ments. Measuring these scales requires a quantitative platform. 
Owing to the advanced technologies of micro-patterning, several 
groups have engineered platforms to study how mechanical stress 
within the tissues depends on the geometry of tissue boundaries, 
how far cells can mechanically sense each other through ECM, 
and how cells change their phenotypes in response to the change 
of ECM.4,47,48 On the boundaries of tissue, for example, it has 
been shown that the effects of mechanical forces between cells 
are determined by the curvature of the boundaries.46 Likewise, 
it was observed that cells can mechanically sense each other at a 
sub-millimeter scale, and through mechanical interactions, cells 
can collectively change their phenotypes by translocating mol-
ecules such as Yes-associated protein (YAP), a signaling molecule 
for mechano-transduction,49 into the nuclei.4

Figure 2A shows an example of such platforms, by which 
one can measure how groups of cells change their patterns of 
mechanical interactions in response to the changes of ECM 
and how far they can interact with one another. Remarkably, it 
was found that cells can mechanically interact with each other 
through collagen fibers over a distance ~600 μm, which is far 
beyond the persistence length of collagen fibers and the typical 
diffusion length created by molecular diffusion (~10–20 μm).4 
The tension created by the cells along the collagen fibers then 
facilitates the formation of long-range linear cellular patterns 
(Fig. 2B and C).4 In particular, the traction forces created by 
individual cells help the alignment of collagen fibers, which then 

cells and ECM without the transformation of the patterning 
information by biochemical cues, such as morphogens. Unlike 
chemical signals, however, mechanical forces are not specific and 
cannot be amplified. Thus, the coupling of mechanical forces 
and chemical signals is necessary for robust pattern formation.

Tension and spatial scales created by mechanical processes. 
Several models have been proposed to address how mechanical 
forces and remodeling of ECM can facilitate branching mor-
phogenesis in tubular organs.44-46 It was suggested, for example, 
that cells can degrade ECM at the nascent branching sites, while 
strengthening ECM at the non-branching sites, thereby creating 
branching patterns as the “fingering” process in viscous media.44-46  
These models, however, do not provide any quantitative mecha-
nisms for how the two important parameters in tubular pattern 
formation, i.e., the spatial scale and the geometry, can sponta-
neously emerge through mechanical or mechano-chemical pro-
cesses in cell-cell and cell-ECM interactions.

From a theoretical point of view, the control of molecular 
conformation, cell shape, tissue morphology, and ECM archi-
tecture relies on how mechanical forces are created, distributed, 
and transmitted. In most cases, mechanical force is transmit-
ted by filaments such as actomyosin bundles inside the cells and 
extracellular matrix (ECM) fibers outside the cells. The spatial 
scales of these filaments range from micrometers to the size of 
organs. At the cellular level, the creation of force within single 
cells depends on the orientation and distribution of actomyosin 
filaments, while the propagation of forces between cells depends 
on cell-cell contacts. At the tissue level, the propagation of force 
within tissues is parameterized by the orientation and distribu-
tion of ECM molecules.

Figure 2. Mechanical interaction leads to long-range linear morphological patterns. (A) Schematics of the setup for the measurement of mechani-
cal interactions among groups of cells. (i) The size of cell group (l) and the distance between groups (λ) can be controlled by micro-patterning. (ii) 
The 2-layer ecM setup enables the study of cell mechanical interactions in response to the change of ecM. (B) Schematics to show how mechanical 
interactions lead to the rearrangement and alignment of ecM fibers (Left), which then allow cells within the tissue to remotely influence each other, 
thereby creating long-range coordination (Right). (C) example of linear pattern formation by mechanical interactions, adapted from reference.4 
epithelial cells were grown into acini in laminin-rich matrix environment for two days and the matrix was switched to collagen-rich matrix at t = 00:00. 
cells switched morphologies into linear patterns by developing long-range mechanical interactions through collagen fibers. Time is in hours and 
minutes. Scale bar: 50 μm.
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account both the bending energy and the confinement of tubule 
length is:
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Here, κ is the bending stiffness, σ is the intracellular pres-

sure to push the extension of the tubule, and ds = (dx2 + dy2)1/2 is 
the arc length along the tubule surface. Following the variation 
procedure introduced in reference 52, we can perform a variation 
of F with respect to the coordinates r , which gives the equation 
of motion of r :
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Here, η is the viscosity of the tubule surface when cells move 
into the ECM space. To investigate how branching patterns 
emerge on the tubule surface, consider a small perturbation of 
the tubule surface, i.e., y < < S

0
. Expanding Eqn. 2 to the first 

order of y, we have:
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Using mode analysis with y(k) = y
0
(k) exp[ω(k)t] where k is 

the wavenumber, we have a dispersion relation:
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Eqn. 4 indicates that the tubule surface is marginally stable. 
It also predicts that instability occurs (i.e., ω(k) > 0) when S > 
S

0
. The wavenumber with the maximal growth rate, k
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, and the 

corresponding spacing between branched sites, L, are:
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This model predicts that the spacing between branched sites 
along the tubule surface, L, decreases with the increment of cell 
number [Fig. 3C (i)], which is controlled by the dosage of growth 
factors, while L increases with the bending stiffness (i.e., the ten-
sion at cell-ECM interface) [Fig. 3C (ii)].

Branching pattern formation by surface tension and cell 
scattering. Besides bending stiffness, another possible effect 
due to the tension on the cell-ECM interface is to minimize the 

confine cell motions.4 Such behavior can be used as a foundation 
to create long linear tubules.

Branching patterns emerging from mechanical processes. 
We now discuss how cells could use tension on the cell-matrix 
interface, i.e., the boundaries of tissues (Fig. 2B), and other 
chemical-based cell regulations (such as cell proliferation, switch 
of phenotypes, and tuning of cell motility) to program spatial pat-
terns. We propose and discuss the following models.

Formation of branching patterns by a buckling effect. One 
possible effect of the tension on the cell-ECM interface is to cre-
ate a bending stiffness that helps cells align linearly with the col-
lagen fibers. This effect can suppress the surface roughness of 
the tubules. In the presence of growth factors such as epidermal 
growth factor which stimulates cell proliferation,50 however, the 
tubule cannot carry excessive cells without changing its surface 
topology or its length. As a result, the cells will be bended into 
the lumen or the ECM space (i.e., buckling) if the length is con-
fined. A spatial pattern then emerges by the mechanical balance 
between the bending stiffness and the proliferation pressure (Fig. 
3A). Using a Helfrich energy function,51 Mark et al. have intro-
duced a bending stiffness-based mechanical model to address 
dynamic instability in an expanding cell sheet.52 Here, we discuss 
how cell proliferation and the bending stiffness at the cell-ECM 
interfaces can give rise to branching patterns.

Consider a flat cell-ECM interface on the boundary of a linear 
tubule (Fig. 3B). For simplicity, we use a 1-D topology to repre-
sent the surface of the tubule. The surface area is then the integral 
of arc length of the tubule. The length of the tubule is confined 
as S

0
 by the surrounding matrix environment. After a certain 

amount of time, the number of cells increases and the prolifera-
tion pressure pushes the tubule to reach a new equilibrium length 
S, which is not allowed due to the confinement, leading to the 
formation of buckles (i.e., bending cells into the matrix, Fig. 3A).

To analyze branching pattern formation, let’s use coordinate 
r  = (x, y) to describe the surface of the tubule (initial y = 0 every-
where on the tubule surface). Adapting the equations from refer-
ence 52 the simplest 2-D free energy function F that takes into 

Figure 3. Branching patterning due to a buckling effect. (A) The 
schematics of the buckling effect. (B) The schematics of the coordinates 
for the modeling of tubular surface topology. (C) predictions of the 
model. The spacing between branched sites, L, (i) decreases with the 
increment of cell number, S – S0, and (ii) increases with the bending 
stiffness, k. Results were obtained using equation 6 with S0 = 100 and σ 
= 1. in (i), k = 100. in (ii), S = 120.
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created by the scattering cells to pull the surface outward. This 
traction force is a function of the local density of scattering cells, 
c

sc
, which we assume to increase at a rate proportional to the local 

convexity of the surface:

= − ⋅ − + ∇
dc
dt

G d r
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Here, the first term describes the local curvature-dependent 

increment rate of scattering cells. To ensure that the rate is posi-
tive when the surface forms a local convex curvature, we multiply 
the curvature term with the unit vector of y. The second term 
describes the conversion of scattering cells back to non-scattering 
cells and/or the escape of scattering cells into the ECM. The 
third term describes the diffusion of scattering cells along the 
tubule surface. Comparing Eqns. 8 and 9, the characteristic time 
scale for scattering cell formation is g–1, while the characteristic 
time scale for the morphological change of tubule surface (i.e., 
branching formation) is η.

To investigate how branching patterns emerge on the tubule 
surface, consider a small perturbation of the tubule surface, i.e.,  
y < < S

0
 and c

sc
 < < 1. Expanding Eqn. 8 to the first order of y and 

c
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, we have:
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Here, f '(0) is the derivative of f with respect to c
sc
 (at c

sc
 = 

0), and we set f(0) = 0 since it is the force created by scattering 
cells. Likewise, expanding Eqn. 9 to the first order of y and c

sc
, 

we have:

surface area of epithelial tubules and to confine 
the motion of cells on the surface. To investigate 
how such effect can lead to branching pattern 
formation, consider a group of cells that escape 
or scatter from a preexisting tubule surface 
into the surrounding ECM (Fig. 4A). In vivo 
and In vitro, such scattering can be induced by 
stimulating cells with scattering factors such 
as hepatocyte growth factor.53 As more cells 
scatter into the ECM, the local curvature and 
the local surface area of the tubule increase  
(Fig. 4A). These scattering cells can interact with 
the ECM and create force to “pull” even more 
cells to scatter outward. Further, the pulling 
force is in a direction orthogonal to the tension 
(i.e., spatial anisotropy due to the vectorial 
nature of mechanical force, Fig. 4B), leading to 
a “local” effect to convert more non-scattering 
cells into the scattering cells. Localization of 
such conversion effect can be destroyed if the 
scattering cells move along the tubule surface 
(i.e., lateral diffusion).

Based on these arguments, we assume that 
the rate at which the scattering cells are created 
is enhanced by the local convexity of the tubule 
surface and suppressed by the lateral movement of scattering 
cells along the tubule surface. In the absence of chemical stimu-
lations, branching patterns might spontaneously emerge due to 
a mechanical counterbalance between the scattering and the 
tension: while the tension globally minimizes the surface area 
and suppresses the surface convexity, the scattering effect locally 
amplifies the surface convexity.

To investigate whether branching patterns can spontane-
ously emerge in the absence of chemical stimulations, consider 
the cross-section of a cylindrical tubule along its tubule axis 
(Fig. 4C). For simplicity, we again use a 1-D contour to represent 
the surface of the tubule with r  = (x, y) as the surface coordi-
nate. The surface area is the integral of arc length of the tubule. 
Following Eqn. 1, we write a simple free energy function F to 
describe the minimization of tubule surface area:

∫=
=

=

F T ds.
x

x S

0
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    (7)

Here, S
0
 is the initial length (i.e., surface area in 1-D topology) 

of the tubule, T is the tension that minimizes the surface area, 
and ds = (dx2 + dy2)1/2 is the arc length along the tubule surface. 
Variation of F with respect to the coordinates r  gives the equa-
tion of motion of r :
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= − +dr
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Here, η is the viscosity of the tubule surface when cells move 

into the ECM. We add a new term f


, which is the traction force 

Figure 4. Branching pattern formation due to surface tension and cell scattering. (A) The 
schematics of cell scattering (cyan) from a tubule surface, by which the local curvature 
(i.e., convexity) of tubule surface increases. (B) The scattering cells create force (blue 
arrow) to drag or pull more cells outward, in a direction perpendicular to the tension.  
(C) The schematics of the coordinates for the modeling of tubular surface topology. ccs is 
the local density of scattering cells. (D) Numerical results for the approximated solution 
(Eqn. 15), black, and the exact solution (Eqn. 17), red, of the spacing L in response to the 
change of tension T. The viscosity η is set as 1 in (i), and 100 in (ii). To obtain the results, we 
set g = 1, f ’ = 1, G’ = 1, and Dc = 10 in Eqns. 15 and 17.



e24926-6 Biomatter volume 3 issue 3

amplify the scattering cell density (parameterized by the term G' ) 
and overcome the tension and the conversion (and/or escape) of 
scattering cells (parameterized by g).

Branching pattern formation without separation of time scales. 
In the second condition, we assume that the time scale in 
scattering cell formation is compatible with the time scale in 
morphological change of the tubule surface, i.e., g ~η–1, which 
can occur if the scattering cells are actively secrete enzymes to 
degrade the surrounding matrix. Under this condition, we can-
not use the adiabatic approximation (i.e., Eqn. 12). Instead, we 
have to perform mode analysis with c

sc
(k) = c

0
(k) exp[ω(k)t] and 

y(k) = y
0
(k) exp[ω(k)t] on Eqns. 10 and 11, to obtain the disper-

sion relation:
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Compared with Eqns. 4 and 14, Eqn. 16 also suggests that 
the tubule surface is marginally stable. Similar to Eqn. 14. 
Instability occurs when Tg < f 'G'. The wavenumber with the 
maximal growth rate is then obtained by solving dω(k2)/dk2 = 0:
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Comparing the numerical results from Eqns. 15 and 17, we 
find that the approximated solutions (Eqn. 15) for the spacing 
asymptotically reach the exact solutions (Eqn. 17) in the high 
tension region, regardless of the viscosity η (Fig. 4D).

Conclusion

In this article, we discuss how mechanical forces propagating 
along biomaterials such as ECM can create tension to facilitate 
long-range coordination of cell morphology and phenotype, and 
propose quantitative models to address how branching patterns 
can spontaneously emerge by the counterbalance between ten-
sion and other mechano-chemical based processes. We also pro-
vide quantitative predictions that can be tested by experiments. 
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Here, G'(0) is the derivative of G with respect to the curva-
ture (at zero curvature), and we set G(0) = 0 (i.e., no spontane-
ous scattering on flat tubule surface in the absence of chemical 
stimulations).

Branching pattern formation by separation of time scales. We 
now consider two different conditions where cells can create 
branching patterns. In the first, we assume that the dynamics of 
scattering cell formation is much faster than the morphological 
change of the tubule surface, i.e., g > > η–1, which is likely the 
case in a 3-D matrix environment that prohibits cell movement. 
Under this condition, we can solve Eqn. 11 adiabatically and 
express c

sc
 in terms of y using iterative substitution:
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Substituting Eqn. 12 into Eqn. 10, we have:

η ≈ −
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Using mode analysis with y(k) = y
0
(k) exp[ω(k)t] where k is 

the wavenumber, we have a dispersion relation:
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Here, we have simplified the notions of f ' and G'. Compared 
with Eqn. 4, Eqn. 14 also suggests that the tubule surface is mar-
ginally stable. However, in Eqn. 4 the dissipation effect is due to 
the bending stiffness k, whereas in Eqn. 14 the dissipation results 
from the lateral movement of scattering cells along the tubule 
surface, D

c
. Instability occurs when Tg < f 'G'. Under such condi-

tion, the wavenumber with the maximal growth rate is obtained 
by solving dω(k2)/dk2 = 0:

= −






k g
D
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1
' '

.
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This approximated result suggests that the spacing between 
branched sites along the tubule increases with the motility of 
scattering cells along the tubule surface and the tension at the 
cell-ECM interface, while it requires a critical collective effect to 
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and design principle is universal. Further, unlike specific chemical 
signaling, the non-specificity of mechanical forces allows them to 
be directly combined, providing a simple computation law for the 
programming of mechanics-based patterning processes. These 
features, along with the relatively simple processes required in 
generating mechanical processes, make mechanical force a prom-
ising tool to control and manipulate tissue morphologies.
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The effect of mechanical force on biological materials differs 
from that of chemical force in that it depends both on the force-
molecular interactions and the structure of underlying substrate. 
This opens a door for using biomaterials and cell mechanics to 
control and/or engineer tissue-scale structures by changing the 
topology and structure of the environment. Further, the differ-
ence of time scales in force propagation and chemical signaling 
enables future engineering and control of patterning cues by 
combining synthetic biology and the fabrication/manipulation 
of biomaterials.

There are several advantages of using physical vs. chemical 
forces to control the response of biological materials. For exam-
ple, mechanical force is nonspecific, which does not depend on 
the type of molecules, cells, and tissues involved. Thus, the effect 
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