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NEURAL REGENERATION RESEARCH 

Cerebral ischemia and neuroregeneration

Introduction
Stroke (a form of cerebral ischemia) remains the fifth leading 
cause of death and disability in the United States. A first or 
recurrent stroke occurs every 40 seconds, which affects ap-
proximately 800,000 people per year (Go et al., 2014). Stroke 
occurs when blood vessel(s) are interrupted by a blood clot/
thrombus or when blood vessel(s) rupture (i.e., hemorrhage) 
due to arteriovenous malformations or aneurysms. Since 
the brain is one of the most high-energy consuming organs, 
the lack of oxygen and nutrient supply elicited by stroke can 
cause severe brain damage resulting in neurological disorders. 

Stroke can be classified into two categories: ischemic (87% 
of the population) and hemorrhagic stroke (23% of the pop-
ulation) (Ovbiagele and Nguyen-Huynh, 2011). Ischemic 
stroke is characterized by vascular thrombus formation, inter-
ruption of blood supply to the brain, which causes neuronal 
cell death and neurological deficits, such as learning/memory 
and locomotor deficiencies (Janardhan and Qureshi, 2004; 
Li et al., 2013). The middle cerebral artery, the largest branch 
of the internal carotid artery, is a prevalent site for ischemic 
stroke, which provides oxygen and nutrient supply to the pri-
mary motor, sensory, and speech areas of the brain including 
the frontal and the lateral surface of the temporal and parietal 
lobes. Thus, patients with middle cerebral artery occlusions 
suffer from hemiparesis or monoparesis, hemisensory and 
visual deficits, dysarthria, and ataxia (Gautier and Pullicino, 
1985; No authors listed, 1990). 

Another common type of ischemic stroke is transient isch-
emic attack (TIA or mini-stroke). TIA is characterized by a 
temporary blockage of cerebral blood flow (CBF), caused by 

the formation of blood clots and/or atherosclerotic plaques, 
damaging inner walls of brain vasculature (Eliasziw et al., 
2004; Ovbiagele et al., 2008; Coutts, 2017). This form of isch-
emic stroke does not cause permanent brain damage due to 
the acute (minutes to hours) nature of the ischemia. However, 
One-third of TIA patients are expected to have an ischemic 
stroke within a year indicating that post-TIA care/treatment 
is paramount to favorable outcomes (Amarenco et al., 2016). 

Hemorrhagic stroke is characterized by an aneurysm, arte-
riovenous malformation, or weakening of blood vessel walls 
causing rupture in the brain. Untreated hypertension and 
aging blood vessels are the major risk factors for hemorrhagic 
stroke. In fact, if hypertension is not properly controlled, pa-
tients are 10 times more likely to develop hemorrhagic stroke 
as compared to normotensive patients (Semple, 1995). An 
added consequence of hemorrhagic stroke is the elevation of 
intracranial pressure causing severe brain damage leading to 
high morbidity and mortality (van Asch et al., 2010; Keep et 
al., 2012). Hemorrhagic strokes can be further classified into 
two subtypes: intracerebral hemorrhage (ICH) and subarach-
noid hemorrhage (SAH) (Grysiewicz et al., 2008; Caceres and 
Goldstein, 2012). ICH occurs in the brain parenchyma, while 
SAH is predominately found between the pial and arachnoid 
space caused by the rupture of cerebral vessels. 

Other non-stroke ischemia-related conditions include 
global ischemia (i.e., cardiac arrest) and small vessel diseases 
(SVD). Life-threatening medical conditions, such as cardiac 
arrest, shock, severe hypotension, and asphyxia, result in in-
sufficient blood supply throughout the entire brain (namely 
global ischemia) to cause neuronal cell death in the vulner-
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able CA1 region of the hippocampus and cortex (Kirino, 
1982; White et al., 1996; Schaller and Graf, 2004; Nour et 
al., 2013). Since the neurons in the CA1 region of the hip-
pocampus and cortex play an important role in learning/
memory formation, patients with global ischemia suffer 
severe learning/memory deficits. SVD has been frequently 
diagnosed in the elderly via neuroimaging (i.e., computed 
tomography and magnetic resonance imaging scans). The 
pathological progression of SVD includes small cortical 
infarctions or hemorrhages, microbleeds, white matter at-
tenuation (leukoaraiosis), Virchow-Robin spaces (enlarged 
perivascular spaces), and brain atrophy (brain volume loss) 
(Nitkunan et al., 2011; Wardlaw et al., 2013a, b), which are 
highly related to vascular dementia, cognitive or motor im-
pairments, and depression (Mok et al., 2004; Pantoni and 
Gorelick, 2014). 

Therapeutic strategies against cerebral ischemia are limit-
ed. For example, treatments against hemorrhagic stroke are 
dependent on surgery (i.e., aneurysm clipping, coil embo-
lization, and arteriovenous malformation repair) to reduce 
bleeding and intracranial pressure. In terms of ischemic 
stroke, intravenous thrombolysis with tissue plasminogen 
activator (tPA) (National Institute of Neurological Disorders 
and Stroke rt-PA Stroke Study Group, 1995; Kanazawa et al., 
2017) is the only FDA approved therapy for the treatment of 
acute ischemic stroke (Hacke et al., 2008; Zivin, 2009; Farbu 
et al., 2011; Cheng and Kim, 2015). However, tPA’s narrow 
therapeutic time window (within 4.5 hours after the onset of 
stroke) significantly reduces its’ therapeutic efficacy in the 
treatment against ischemic stroke. As for treatments against 
TIA and cardiac arrest, all therapies except hypothermia 
have failed to reduce neuronal injury. Thus, the goal of the 
treatments mainly focus on preventing risk factors for TIA 
and cardiac arrest (i.e., high blood pressure, hyperlipidemia, 
smoking, and heart disease) indicating that developing 
novel therapies against cerebral ischemia is greatly needed. 
We will discuss the mechanisms underlying stroke/cerebral 
ischemia-induced brain injury as well as current and future 
novel therapies as it relates to cerebral ischemia. 

Mechanisms Underlying Ischemic Brain Injury
Excitotoxicity and apoptosis/necrosis
Glutamate, the most abundant excitatory neurotransmitter 
in the brain, is a major contributor to cerebral ischemia-in-
duced excitotoxicity (excitatory amino acids-induced neuro-
toxicity) and subsequent apoptosis/necrosis (Xu et al., 2001; 
Lai et al., 2014). Adenine triphosphate (ATP) deficiency 
(energy failure) and glutamate transporter dysfunction fol-
lowing cerebral ischemia can cause an increase in neuronal 
excitability and subsequent glutamate release and accumu-
lation in the synaptic cleft (Bosley et al., 1983; Benveniste et 
al., 1984; Drejer et al., 1985; Hagberg et al., 1985; Silverstein 
et al., 1986; Dawson et al., 2000). This results in excessive 
activation of N-methyl-D-aspartate receptors (an ionotropic 
receptor) to cause massive calcium influx and dyshomeosta-
sis in neurons (Berdichevsky et al., 1983; Jancso et al., 1984). 
Neuronal calcium overload can further activate calpains 

(calcium-dependent proteases) to cleave apoptotic regulato-
ry proteins (i.e., caspase family), as a result of lysosome-as-
sociated apoptosis and necrosis (Bisset, 1978; Schielke et al., 
1998; Yamashima, 2004; Li and Yuan, 2008; Mrschtik and 
Ryan, 2015). 

In addition to glutamate-induced cellular excitotoxicity, 
cerebral ischemia alone can induce overexpression of the 
death receptor ligands (i.e., tumor necrosis factor (TNF)-α 
and FasL), as a result of serine/threonine-protein kinase 
1-mediated neuronal necroptosis (Holler et al., 2000; De-
gterev et al., 2005, 2008). Furthermore, enhanced expression 
of c-Jun N-terminal kinase (JNK, a stress-activated protein 
kinase) after cerebral ischemia (Irving and Bamford, 2002; 
Borsello et al., 2003) can activate Fas- and Bim-mediated 
pro-apoptotic signals (Herdegen et al., 1998; Putcha et al., 
2003; Okuno et al., 2004) leading to neuronal cell death. 

Reperfusion injury and neuroinflammation 
Reperfusion injury occurs when a tissue/organ encounters 
deprivation of blood supply followed by a restoration of 
blood flow to the ischemic area (Nour et al., 2013). Follow-
ing reperfusion, reoxygenation, however, causes secondary 
injury (Chen and Nunez, 2010; Eltzschig and Eckle, 2011) 
due to excessive formation of reactive radical oxide species 
(ROS) and/or peroxynitrite (Peters et al., 1998; Bolanos and 
Almeida, 1999; Shen et al., 2003; Vitturi and Patel, 2011; 
Kietadisorn et al., 2012; Li et al., 2012; Olmez and Ozyurt, 
2012; Rodriguez et al., 2013) and activation of the immune 
system (Eltzschig and Eckle, 2011). 

In terms of ischemia induced-neuroinflammation, infil-
trating immune cells release inflammatory mediators to re-
cruit multiple immune and glia cells. These immunoreactive 
cells further limit the extent of the injury and restore tissue 
integrity (Kumar and Loane, 2012; Xanthos and Sandkuhler, 
2014). However, excessive activation of microglia can oc-
cur following cerebral ischemia resulting in the release of 
pro-inflammatory cytokines, such as TNF-α, interleukin 
(IL)-1β, IL-6, IL-12, and interferon (IFN)γ (Schmidt et al., 
2005; Hernandez-Ontiveros et al., 2013), as a result of blood 
brain barrier leakage (Chodobski et al., 2011). Moreover, 
pro-inflammatory cytokines increases neurotoxic molecules 
and free radicals (i.e., ROS), reactive nitrogen species, cyclo-
oxygenase-2, and inducible nitric oxide synthase] to cause 
secondary neuronal cell death (Qin et al., 2007; Erickson and 
Banks, 2011; Tremblay et al., 2011; Park et al., 2012; Bies-
mans et al., 2013; Hernandez-Ontiveros et al., 2013; Kabadi 
and Faden, 2014). 

It is interesting to note that the ischemia-induced neu-
roinflammation mainly occurs in the non-microbial envi-
ronment. Thus, the host receptor (i.e., toll-like receptors) 
can be can be activated via non-microbial ligands, namely 
damage-associated molecular patterns (Chen and Nunez, 
2010; Eltzschig and Eckle, 2011). These damage-associated 
molecular patterns, such as high-mobility group box1 pro-
tein and ATP are released from the cytoplasm upon tissue 
injury and/or cell death to initiate series of innate immune 
responses, as a result of excessive production of proin-
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flammatory cytokines/chemokines (Iyer et al., 2009; Chen 
and Nunez, 2010; McDonald et al., 2010), which causes 
peroxynitrite- and ROS-mediated lipid peroxidation, DNA 
damage, and cell dysfunction/death (Garry et al., 2015). 

Impaired axonal regeneration
Besides excitotoxicity, apoptosis/necrosis, reperfusion, and 
neuroinflammation, impaired axonal regeneration is an-
other major contributor to neuronal cell death following 
cerebral ischemia. One of the major hallmarks of cerebral 
ischemia is the inherent glial scar formation. Glial scar (a 
tissue barrier) is formed by reactive astrocytes, microglia, 
and infiltrating immune cells to protect survival neurons 
from the harmful environment (i.e., nitric oxide toxicity and 
glutamate-induced cellular excitotoxicity) (Reier and Houle, 
1988; Fitch and Silver, 1997; Rolls et al., 2009; Huang et al., 
2014b). These immunoreactive cells are responsible for tro-
phic and metabolic support (i.e., insulin-like growth factors, 
nerve growth factors, brain-derived neurotrophic factor, and 
neurotrophin-3), as well as scavenging excessive accumula-
tion of glutamate, potassium, and other ions after cerebral 
ischemia (Schwartz and Nishiyama, 1994; Wu et al., 1998; 
do Carmo Cunha et al., 2007; White et al., 2008; Rolls et al., 
2009). However, the immunoreactive cells, in particular as-
trocytes, become hypertrophic and release chondroitin sul-
fate proteoglycans (an inhibitory extracellular molecule) in 
response to cerebral ischemia (McKeon et al., 1991), which 
restricts axonal regeneration and neuronal survival via 
RhoA/ROCK-mediated pathways (Silver and Miller, 2004; 
Yiu and He, 2006). In addition to glial scar, myelin (the lam-
inated membrane structure that surrounds the axon) is also 
responsible for the failure of axonal regeneration. Although 
myelin has been reported to regulate the axonal cytoskele-
ton, axon caliber, neurofilament spacing (Yin et al., 1998), 
and microtubule formation (Hsieh et al., 1994; Nguyen et al., 
2009), numerous studies have shown that myelin-associated 
glycoproteins, such as oligodendrocyte-myelin glycoprotein 
and nogoA are actually detrimental to axonal regeneration 
and sprouting after cerebral ischemia (Caroni and Schwab, 
1988; McKerracher et al., 1994; Mukhopadhyay et al., 1994). 

Novel Neuroregenerative Agents
A stroke lesion can be classified into the ischemic core and 
the surrounding penumbra (Yuan, 2009), while the irre-
versible cell death mainly occurs in the ischemic core area. 
Thus, most of the studies are targeted to prevent neuronal 
cell death in the hypoperfused penumbra region. We will 
discuss current and future novel neuroregenerative agents as 
it relates to cerebral ischemia in subsequent paragraphs. The 
clinical evidence for each neuroregenerative agent is sum-
marized in the Table 1. 

Fibroblast growth factors (FGFs)
FGFs are a group of structurally similar polypeptide mito-
gens, which promote tissue repair, angiogenesis, neurogene-
sis, axonal growth, embryonic development, and various en-
docrine signaling pathways. 23 members of FGFs have been 

isolated (Zechel et al., 2010), while the expression of FGF-2 
is significantly increased after various brain injuries includ-
ing seizures (Riva et al., 1992), transient forebrain ischemia 
(Takami et al., 1993; Speliotes et al., 1996), and traumatic 
ischemic brain injury (Christian Alzheimer, 2000-2013). In 
addition, the FGF-2-deficient mice presented with larger 
infarct volume (75% more) following experimental brain 
ischemia, via middle cerebral artery occlusion (MCAO) 
suggesting that FGF-2 had neuroprotective effects against 
ischemic brain injury (Kiprianova et al., 2004). 

The use of FGF-2 has been implicated in several pre-clin-
ical trials of cerebral ischemia. Administration of FGF-2 in 
rats has been shown to increase the number of neurons and 
markers for neurogenesis in the hippocampus and dentate 
gyrus after MCAO (Bethel et al., 1997; Wagner et al., 1999; 
Cheng et al., 2002; Wang et al., 2008). Subsequent studies by 
Leker et al, 2007 and Yoshimura et al, 2001 further indicate 
that up-regulation of FGF-2 via adeno-associated viral vec-
tors in the infarct area can increase the number of proliferat-
ing cells and motor behavior after MCAO (Yoshimura et al., 
2001; Leker et al., 2007). Overall, FGF-2 can enhance neural 
proliferation/differentiation following cerebral ischemia, 
which may provide future therapeutic opportunities.  

Nicotinamide adenine dinucleotide (NAD) 
NAD is a coenzyme of vitamin B3 critical for many bio-
chemical reactions including energy production, ion ho-
meostasis, and biosynthesis of glucose and fatty acids (Ying, 
2006; Belenky et al., 2007). Numerous studies indicate that 
NAD+ (oxidized form) depletion and subsequent ATP loss 
during/after cerebral ischemia result in energy failure and 
cell death (Jagtap and Szabo, 2005), which suggests that re-
pletion of NAD+ is beneficial in the treatment against cere-
bral ischemia. 

Zhao et al. (2015) found that overexpression of nicotin-
amide phosphoribosyltransferase (Nampt, the rate-limiting 
enzyme for NAD+ biosynthesis) enhanced neurogenesis 
after MCAO in mice. Additionally, post-treatment of nic-
otinamide mononucleotide (an intermediate of NAD+ 
biosynthesis) enhanced neuronal survival and neurogenesis 
after MCAO (Zhao et al., 2015), while intraperitoneal (IP) 
injection of nicotinamide (a NAD+ precursor) after MCAO 
enhanced intracellular NAD+ concentration in the brain. 
NAD+ derivatives reduced infarct volume via sirtuin-1 and 
sirtuin-2-mediated pathways (Liu et al., 2009; Siegel and 
McCullough, 2013; Zhao et al., 2015). Overall, the develop-
ment of novel therapies targeting the Nampt-NAD+ cascade 
may be valuable against ischemic brain injury. 

Melatonin (N-acetyl-5-methoxy tryptamine) 
Melatonin, a hormone synthesized and released from the pi-
neal gland, plays a crucial role in the regulation of sleep and 
wake cycles (Reiter, 1991). Thus, melatonin has been widely 
used for the treatment of sleep disorders including insom-
nia, delayed sleep phase syndrome, and rapid eye movement 
sleep behavior disorder (Laudon and Frydman-Marom, 
2014; Tordjman et al., 2017; Xie et al., 2017). Interestingly, 
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recent studies suggest that melatonin provides other non-
sleep/wake cycle related pharmacological effects, such as 
anti-nitric oxide (NO) production, anti-oxyradicals, and 
anti-peroxynitrite effects (Poeggeler et al., 1994; Pozo et al., 
1994; Gilad et al., 1997; Cuzzocrea et al., 2000). Oxyradicals, 
NO, and peroxynitrite play a crucial role in the patholog-
ical progression of neuronal cell death following cerebral 
ischemia (Beckman et al., 1990; Crow and Beckman, 1995), 

which suggests that melatonin may provide neuroprotection 
against cerebral ischemia. 

IP injection and/or oral treatment of melatonin has been 
shown to reduce infarct volume and neuronal cell death 
(Pei et al., 2003; Kilic et al., 2004; Koh, 2008) after MCAO. 
Administration of melatonin (via IP) 30 minutes before bi-
lateral common carotid arteries occlusion-induced transient 
cerebral ischemia alleviates neuronal cell death in the CA1 

Table 1 Neuroregenerative agents in cerebral ischemia 

 Agents Pre-clinical trials Clinical trials/uses Applications 

Fibroblast growth factors Kiprianova et al., 2004; Bethel et al., 1997; 
Wagner et al., 1999; Cheng et al., 2002; Wang 
et al., 2008; Yoshimura et al., 2001; Leker et al., 
2007 

N/A MCAO-induced ischemic brain 
injury 

Nicotinamide adenine 
dinucleotide 

Jagtap and Szabo, 2005; Liu et al., 2009; Siegel 
and McCullough, 2013; Zhao et al., 2015 

N/A MCAO-induced ischemic brain 
injury 

Melatonin (N-acetyl-5-
methoxy tryptamine) 

Pei et al., 2003; Kilic et al., 2004; Koh, 2008; 
Kim and Lee, 2014 

N/A MCAO-induced ischemic brain 
injury; bilateral common carotid 
arteries occlusion-induced 
transient cerebral ischemia 

Resveratrol Tsai et al., 2007; Dong et al., 2008; Fang et al., 
2015; Kizmazoglu et al., 2015; Narayanan et 
al., 2015; Koronowski et al., 2015; He et al., 
2017 

N/A MCAO- and bilateral common 
carotid artery occlusion-induced 
cerebral ischemia 

Protein kinase C (PKC) 
isozymes, δPKC and εPKC 

Raval et al., 2003; Gonzalvez et al., 2005; He et 
al., 2007; Shimohata et al., 2007a, b; DeFazio 
et al., 2009; Ghibelli and Diederich, 2010; 
Dave et al., 2011; Lin et al., 2012 

N/A Oxygen and glucose deprivation; 
ACA- and bilateral carotid 
artery occlusion-induced 
cerebral ischemia 

Pifithrin-α Culmsee et al., 2001; Zhang et al., 2016 N/A MCAO-induced ischemic brain 
injury 

Hypothermia Busto et al., 1987; Dietrich et al., 1990, 1991, 
1993, 1994; Morikawa et al., 1992; Globus et 
al., 1995; Hall, 1997; Prakasa Babu et al., 2000; 
Kollmar et al., 2007; Zhao et al., 2007; Li and 
Wang, 2011; Yenari and Han, 2012; Lee et al., 
2016; Jiang et al., 2017

Schwab et al., 1998; Els et al., 2006; 
Hong et al., 2014 

MCAO- and bilateral common 
carotid artery occlusion-induced 
cerebral ischemia; traumatic 
brain injury; patients with 
middle cerebral artery infarction 

Fatty acids Lin et al., 2008, 2014 N/A MCAO- and ACA-induced 
cerebral ischemia 

Attenuation of sympathetic 
nervous system 

Lee et al., 2017 Treggiari et al., 2003 ACA-induced cerebral ischemia; 
aneurysmal subarachnoid 
hemorrhage 

Neuromodulation therapy Adkins-Muir and Jones, 2003; Kleim et al., 
2003; Plautz et al., 2003; Teskey et al., 2003 

Naeser et al., 2005; Kirton, 2017; 
Lindenberg et al., 2010; Cazzoli et al., 
2012; Bonni et al., 2014; Yamada et 
al., 2014; Lee and Lee, 2015; Triccas 
et al., 2015; Allman et al., 2016; 
Rocha et al., 2016; Kirton, 2017 

MCAO-induced cerebral 
ischemia; patients with ischemic 
stroke 

Traditional Chinese 
therapy 

Wang et al., 2002; Cai et al., 2007; Chen et 
al., 2008, 2015; Ma and Luo, 2008; Wang 
and Jiang, 2009; Lang et al., 2011; Kim et al., 
2013a, b, 2014; Xie et al., 2013; Xin et al., 
2013b ; Huang et al., 2014a, 2017; Mu et al., 
2014; Shen et al., 2014; Lu et al., 2016 

Tan et al., 2013; Huang et al., 2014c; 
Mu et al., 2014; Liu et al., 2015; 
Zhang et al., 2015; Lu et al., 2016; Li 
et al., 2017; Yang et al., 2017; Wang et 
al., 2017 

MCAO-induced cerebral 
ischemia; patients with acute 
stroke 

Stem cell therapy Goldman and Nottebohm, 1983; Gage, 2000; 
Li et al., 2000; Anderson, 2001; Chen et al., 
2001; Doetsch et al., 2002; Arvidsson et al., 
2002; Chen et al., 2003; Dempsey et al., 2003; 
Picard-Riera et al., 2004; Ryan et al., 2005; 
Kobayashi et al., 2006; Leker et al., 2007; 
Chojnacki and Weiss, 2008; Liauw et al., 2008; 
Yoo et al., 2008; Daadi et al., 2009; Jin-qiao et 
al., 2009 

Kondziolka et al., 2000, 2005; Riera 
et al., 2004; Bliss et al., 2010; Zhao 
et al., 2012; Ankrum et al., 2014; 
Trounson and McDonald, 2015; 
Azad et al., 2016; Polymeri et al., 
2016 

MCAO-induced cerebral 
ischemia; patients with acute 
stroke 

N/A: Not applicable; MCAO: middle cerebral artery occlusion; ACA: asphyxial cardiac arrest.
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and CA2 regions of the hippocampus (Kim and Lee, 2014). 
Mechanisms underlying melatonin-induced neuroprotection 
after cerebral ischemia are highly complicated and remains 
to be elucidated. Kilic et al., (2004) reported that melatonin 
prevents cerebral ischemia-induced brain injury via inhibi-
tion of endothelin converting enzyme-1, while others’ suggest 
that melatonin reduces ischemic brain injury via inhibition of 
matrix metalloproteinase-9 (Kim and Lee, 2014) or enhanced 
MEK/ERK/p90RSK/Bad signaling cascade (Koh, 2008). In 
summary, melatonin may be used to combat cerebral isch-
emia by inhibition of oxyradicals/peroxynitrite production, 
endothelin biosynthesis, and promote MEK/ERK-mediated 
cell proliferation and differentiation. 

Resveratrol
Resveratrol, 3,5,4′-trihydroxy-trans-stilbene, is a poly-phe-
nol found in red wine, grapes, chocolate, and many plants, 
such as knotweeds and pine trees. Numerous studies have 
shown that resveratrol has multifactorial effects including 
anti-inflammation and anti-oxidation, which suggests that 
the use of resveratrol may provide benefits in the treatment 
against cerebral ischemia. Many studies conducted in ex-
perimental brain ischemia further suggest that administra-
tion of resveratrol (0.1 μg/kg to 40 mg/kg) reduced infarct 
volume following MCAO- and bilateral common carotid 
artery occlusion-induced cerebral ischemia (Tsai et al., 2007; 
Dong et al., 2008; Fang et al., 2015; Kizmazoglu et al., 2015; 
Narayanan et al., 2015; He et al., 2017). 

Mechanisms underlying resveratrol-induced neuropro-
tection against cerebral ischemia are multifactorial. Tsai et 
al. (2007) reported that resveratrol reduced MCAO-induced 
infarction by inhibition of inducible nitric oxide synthase 
(iNOS) production, while upregulation of endothelial nitric 
oxide synthase (eNOS) expression. Other studies suggest that 
resveratrol attenuates ischemic brain injury via inhibition of 
myeloperoxidase levels, pyrin domain-containing 3 inflam-
masome formation, cerebral TNF-α production, and markers 
for apoptosis (i.e., Bcl-2, Bax, p53, and annexin V) (Fang et 
al., 2015; Kizmazoglu et al., 2015; He et al., 2017). Further-
more, resveratrol activates nuclear erythroid 2-related factor 
2- and sirtuin-1-mediated pathways to enhance neuronal 
survival in response to cerebral ischemia (Koronowski et al., 
2015; Narayanan et al., 2015) indicating that resveratrol is a 
potential candidate in the treatment of cerebral ischemia. 

Protein kinase C (PKC) isozymes, δPKC and εPKC 
Enhanced expression of δPKC after cerebral ischemia (Shi-
mohata et al., 2007b; Dave et al., 2011) can initiate phos-
phorylation of mitochondrial phospolipid scramblase 3 
(PLSCR3) (He et al., 2007), dephosphorylation of Bad, and 
formation of Bax/Bak pores, as a result of cytochrome c 
release and mitochondria-mediated apoptosis (Gonzalvez 
et al., 2005; He et al., 2007; Ghibelli and Diederich, 2010). 
Subsequent studies by Lin et al. (2012) further suggest that 
inhibition of δPKC via δPKC specific inhibitor, δV1-1, can 
alleviate neuronal cell death and CBF derangements, which 
suggest the neuroprotective effects of δPKC inhibition after 

cerebral ischemia. Unlike the detrimental role of δPKC in 
ischemic brain injury, εPKC (another PKC isozyme) expres-
sion is actually enhanced during therapeutic hypothermia 
and ischemic preconditioning, which suggest εPKC’s pos-
sible neuroprotective role in ischemic brain injury (Raval et 
al., 2003; Shimohata et al., 2007a). 

The Perez-Pinzon research group further investigated the 
activation of εPKC following oxygen and glucose deprivation 
(an in vitro ischemia injury model) can reduce GABAA re-
ceptor-mediated excitotoxicity in the hippocampal neurons 
(DeFazio et al., 2009). Furthermore, pretreatment of specific 
εPKC activator, ψεRACK, can attenuate CBF derangements 
and neuronal cell death elicited by asphyxial cardiac arrest 
(ACA)- and bilateral carotid artery occlusion-induced ce-
rebral ischemia, which suggests that development of novel 
therapies to inhibit δPKC but activate εPKC may provide 
potential benefits in the treatment against cerebral ischemia. 

Pifithrin-α (PFT-α)
Recent studies suggest that the tumor suppressor protein 
p53-induced apoptosis plays a crucial role in neuronal cell 
death after cerebral ischemia (Broughton et al., 2009; Hong 
et al., 2010). Culmsee et al. (2001) thus developed a synthetic 
p53 inhibitor, PFT-α, to evaluate the therapeutic potentials of 
p53 inhibition on ischemic brain injury. They found that IP 
injection of PFT-α 30 minutes before MCAO can reduce neu-
ronal cell death in the CA1 region of the hippocampus, which 
suggests that the use of PFT-α may have therapeutic potential 
against cerebral ischemia in the near future. Mechanisms un-
derlying PFT-α-induced neuroprotection after cerebral isch-
emia remains to be elucidated. Zhang et al. (2016) reported 
that PFT-α can stimulate angiogenesis and neurogenesis after 
MCAO, while other studies suggest PFT-α reduces infarct 
volume and neurological and locomotor deficits via vascular 
endothelial growth factor-mediated pathways. 

Other Neuroregenerative Factors/Agents
Hypothermia 
The normal body core temperature is near 37°C in humans, 
while hypothermia is defined as body core temperature be-
low 35°C. Hypothermia can be a medical emergency if the 
body temperature falls below 32°C or less, which results in 
multiple organ failure and even death. However, Busto et 
al. (1987) first discovered that moderate decrease of brain 
temperature provides neuroprotection against experimen-
tal brain ischemia. In Busto et al’s studies, the rat brain 
temperature was maintained at 36, 33, or 30°C following 
four-vessel or bilateral carotid artery occlusion-induced 
cerebral ischemia. They found that hypothermia treatment 
(at 33 and 30°C) significantly reduced neuronal metabolic 
demand and glutamate release, ultimately attenuating neu-
ronal cell death in the CA1 region of the hippocampus after 
cerebral ischemia (Busto et al., 1987; Dietrich et al., 1993). 
Busto et al’s landmark findings were further established by a 
different experimental brain ischemia including MCAO and 
traumatic brain injury (Morikawa et al., 1992; Dietrich et al., 
1994; Kollmar et al., 2007; Li and Wang, 2011) suggesting 
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that hypothermia is actually beneficial in the treatment of 
general cerebral ischemia. 

In addition to experimental brain ischemia, moderate 
hypothermia has been shown to significantly reduce intra-
cranial pressure, cerebral edema, and neurological deficits 
in patients with severe middle cerebral artery infarction 
(Schwab et al., 1998; Els et al., 2006; Hong et al., 2014). 
Multiple factors are involved in hypothermia-mediated neu-
roprotection after cerebral ischemia. Hypothermia inhibits 
glutamate-induced excitotoxicity (Busto et al., 1987; Zhao et 
al., 2007; Yenari and Han, 2012), while reducing the produc-
tion of superoxide, peroxynitrite, hydrogen peroxide, and 
hydroxyl radicals to relieve oxidative stress after cerebral 
ischemia (Globus et al., 1995; Hall, 1997; Yenari and Han, 
2012). Furthermore, hypothermia has also been reported to 
reduce apoptosis, autophagy, and inflammation (Prakasa 
Babu et al., 2000; Lee et al., 2016; Jiang et al., 2017), as well 
as blood-brain barrier leakage and brain metabolism after 
cerebral ischemia (Busto et al., 1987; Dietrich et al., 1990; 
Dietrich et al., 1991), which suggests that the use of hypo-
thermia during/after cerebral ischemia provides high ther-
apeutic potential in the treatment of patients with stroke or 
other central nervous system disorders. 

Fatty acids 
Saturated fatty acids were traditionally considered as a “det-
rimental” class of fatty acids, which can increase the risk of 
cardiovascular diseases. Lin et al. (2008, 2014) however, found 
palmitic acid methyl ester (PAME) released from the sympa-
thetic nervous system is a novel vasodilator and CBF media-
tor. Since hypoperfusion (decrease in CBF) following cerebral 
ischemia plays a crucial role in the pathological progression of 
neuronal cell death and neurological deficits, the vasodilatory 
properties of PAME suggest its therapeutic potential in the 
treatment against cerebral ischemia. Subsequent investigations 
by Lin’s research group further indicate that pre-treatment of 
PAME increased CBF and neuronal viability after MCAO and 
ACA (Lin et al., 2014), which suggests that PAME is a novel 
neuroprotective agent against cerebral ischemia. 

Attenuation of sympathetic nervous system
Autonomic dysregulation after cardiac arrest can be detri-
mental to the brain. Lee et al, 2017 first reported that exces-
sive activation of perivascular sympathetic nervous system in 
the brain is one of the major causes of hypoperfusion, neu-
ronal cell death, and neurological deficits after ACA-induced 
cerebral ischemia (Lee et al., 2017). Thus, surgical interrup-
tion of perivascular sympathetic nerves via decentralization 
of superior cervical ganglion (a sympathetic ganglion that 
innervates cerebral arteries) can alleviate ACA-induced hy-
poperfusion and brain injury (Lee et al., 2017). Interestingly, 
interruption of cervical sympathetic chain via bolus injection 
of bupivacaine and clonidine (ganglionic and α2 blocker, re-
spectively) in the superior cervical ganglion has been shown 
to reduce neurological deficits after aneurysmal subarachnoid 
hemorrhage in humans (Treggiari et al., 2003), which sug-
gests that developing novel therapies target on the perivascu-

lar sympathetic nervous system may be beneficial. 

Neuromodulation therapy 
Neuromodulation therapy is a novel technique that utilizes 
implantable neuromodulatory device/stimulator to deliver 
electrical or magnetic stimuli directly upon injured neurons. 
There are growing evidences suggest that neuromodulation 
therapies can promote functional recovery, in particular lo-
comotor function after stroke. For example, the use of repet-
itive transcranial magnetic stimulation (TMS) (at ~1 and ~10 
Hz) to stimulate motor cortex has been shown to enhance 
motor function after experimental ischemia (Adkins-Muir 
and Jones, 2003; Kleim et al., 2003; Plautz et al., 2003; Teskey 
et al., 2003; Naeser et al., 2005; Kirton, 2017). In addition to 
experimental ischemia, recent clinical studies suggest that 
non-invasive brain stimulation via transcranial direct current 
stimulation (tDCS) or theta burst stimulation (TBS, a neuro-
modulatory device that provides continuous theta frequency 
low-intensity stimuli into target brain regions) can facilitate 
motor and language recovery after chronic stroke (Lindenberg 
et al., 2010; Cazzoli et al., 2012; Bonni et al., 2014; Yamada 
et al., 2014; Lee and Lee, 2015; Triccas et al., 2015; Allman et 
al., 2016; Rocha et al., 2016; Kirton, 2017). Since over 70% 
of stroke survivors suffer from gait abnormalities, one of the 
major therapeutic challenges for stroke survivors is gait reha-
bilitation indicating that neuromodulation therapy’s poten-
tial in the treatment of cerebral ischemia. 

Traditional Chinese therapies 
Traditional Chinese therapies (i.e., plant-based medicines 
and acupuncture) are considered novel therapies against 
stroke/cerebral ischemia due to their multifactorial effects 
(i.e., anti-inflammation and anti-oxidation). For example, 
Buyang Huanwu decoction (BHD) is derived from extracts 
from various Chinese herbs, including Radix Astragali (the 
root of Astragalus membranaceus), Radix Angelicae Sin-
ensis (the root of Angelica sinensis), Radix Paeoniae Rubra 
(chishao, the root of Paeonia lactiflora Pall), Chuanxiong 
Rhizoma (the root and rhizome of Ligusticum chuanxiong 
Hort), Semen Persicae (taoren, the seeds of Amygdalu sper-
sica), Flos Carthami (the flower of Carthamus tinctorius L, 
and Pheretima [the body of Pheretima aspergillum (earth 
worm)] (Mu et al., 2014). Numerous studies have shown 
that BHD can reduce cerebral ischemia-induced neuronal 
damage by inhibiting excitotoxicity, inflammation, and 
apoptosis (Chen et al., 2008; Wang and Jiang, 2009), while 
promoting angiogenesis (Shen et al., 2014), proliferation, 
differentiation, and migration of neuroprogenitor cells 
(NPCs) to the infarct area (Cai et al., 2007). 

In addition to BHD, Dragon’s blood dropping pills (the red 
resin from Dracaena cochinchinensis) and Bilobalide (EGb 
761, a ginkgo biloba extract) have also been shown to alleviate 
cerebral water content, oxidative stress, and glutamate release 
in the infarct area following MCAO, thus reducing excito-
toxicity, infarct volume, and neurological deficits (Lang et al., 
2011; Xin et al., 2013b). Furthermore, clinical studies suggest 
that flower extracts, including Dengzhan Xixin (erigeron 
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breviscapus, a Chinese daisy) and Dengzhanhua can enhance 
acute stroke patients’ CBF, plasma viscosity, and platelet ad-
hesion to improve neurological function (Huang et al., 2014c; 
Li et al., 2017; Wang et al., 2017). 

In additional to the aforementioned traditional Chinese 
medicines, acupuncture has also been considered as a com-
plementary and alternative therapies for stroke patients in 
Asian countries. Acupuncture can be divided into tradition-
al acupuncture and electro-acupuncture. The traditional 
acupuncture utilizes thin metal needles to stimulate acu-
puncture points over the body, while electro-acupuncture 
combines traditional acupuncture with modern electrother-
apy to enhance stimulations to acupuncture points. Acu-
puncture has been shown to ameliorate neuronal cell death, 
neurological deficits, and brain edema following MCAO 
(Lu et al., 2016). In addition to experimental stroke models, 
recent clinical studies suggest that acupuncture can reduce 
disability rates, while enhance stroke patients’ activities of 
daily living evaluated by Barthel Index, National Institutes of 
Health Stroke Scale, and Revised Scandinavian Stroke Scale 
(Tan et al., 2013; Liu et al., 2015; Yang et al., 2017). Further-
more, a multicenter randomized controlled trial from 862 
stroke patients suggests that patients received acupuncture 
therapies 5 times per week for 3 to 4 weeks have higher 
survival rate than patients without acupuncture treatments 
(Zhang et al., 2015), which suggest acupuncture’s potential 
in the treatment against stoke/cerebral ischemia. 

Multiple pathways are involved in acupuncture-mediated 
neuroprotective effects following cerebral ischemia. Huang 
et al. (2017) reported that acupuncture enhances IκB-α ex-
pression to reduce NF-κB-mediated inflammation. Kim et 
al. (2013b) and Wang et al. (2002), however, suggest that 
acupuncture can inhibit apoptotic signaling cascade via 
enhancing Akt, Bcl-2, Bcl-xL, and cIAP1/2, while reducing 
apoptotic mediators (i.e., death receptor 5 and caspases-3, 
-8, and -9). In addition to acupuncture’s anti-inflammatory 
and anti-apoptotic effects, Kim et al. (2014) reported that 
acupuncture promotes astrocytes and neuronal progenitor 
cells proliferation via Wnt/β-catenin- and ERK1/2-mediat-
ed pathways (Xie et al., 2013; Huang et al., 2014a; Chen et 
al., 2015), as a result of brain-derived neurotrophic factor/
vascular endothelial growth factor (VEGF)-mediated neuro-
genesis (Kim et al., 2014). Furthermore, acupuncture enhanc-
es post-ischemia CBF by promoting VEGF and angiogen-
in-1-mediated angiogenesis (Ma and Luo, 2008), as well as 
enhanced release of vasoactive mediators (i.e., acetylcholine 
and nitric oxide) (Kim et al., 2013a) after cerebral ischemia. 
Overall, traditional Chinese therapies (i.e., plant-based medi-
cines and acupuncture) can inhibit cerebral ischemia-induced 
excitotoxicity, inflammation, and apoptosis, while promoting 
angiogenesis and cerebral blood flow after cerebral ischemia. 
The use of traditional Chinese traditional may provide thera-
peutic opportunities against cerebral ischemia. 

Stem cell therapy 
In addition to the above mentioned neuroregenerative 
agents, stem cell therapy is also a promising option for 

patients with stroke/cerebral ischemia due to stem cells’ 
self-regenerative, differentiating, and multifunctional prop-
erties (Trounson and McDonald, 2015). Stem cell therapies 
can be divided into endogenous and exogenous therapies. 
The endogenous therapies utilize neurotrophic and growth 
factors, such as epidermal growth factor, glial cell-derived 
neurotrophic factor, FGF-2, insulin-like growth factor-1, 
and brain-derived neurotrophic factor (Dempsey et al., 
2003; Kobayashi et al., 2006; Leker et al., 2007; Jin-qiao et al., 
2009) to enhance vascular regeneration and brain synaptic 
plasticity, while it stimulates the reparative abilities of the 
endogenous neural stem cells (NSCs) in the injured dentate 
gyrus and subventricular zone (SVZ) (Picard-Riera et al., 
2004), thus reducing lesion size and locomotor deficits. On 
the contrary, exogenous therapies use tissue extraction, in 
vitro cultivation, and subsequent stem cell transplantation 
into damaged brain regions caused by stroke/cerebral isch-
emia (Azad et al., 2016). 

Mechanisms underlying endogenous stem cell therapies 
against cerebral ischemia are highly complicated and re-
mains to be elucidated (Arvidsson et al., 2002). Endogenous 
activation of neural stem cells (NSCs) in the subgranular 
zone (SGZ) and SVZ after cerebral ischemia have been 
shown to produce neurotrophic factors (i.e., brain-derived 
neurotrophic factor), which reduce inflammation, while 
promoting angiogenesis via activation of pro-angiogenic 
complexes, such as netrin-4, laminins, and integrins (Gold-
man and Nottebohm, 1983; Anderson, 2001; Doetsch et al., 
2002; Staquicini et al., 2009), thus reducing brain injury elic-
ited by hypoxia/ischemia. Additionally, the activated NSCs 
after cerebral ischemia can produce and secrete throm-
bospondins to promote synaptic regeneration and axonal 
sprouting (Liauw et al., 2008). 

In terms of exogenous stem cell therapies, NPCs, 
bone-marrow derived stromal cells (BMSCs), and immortal-
ized cell lines have been widely used in the treatment of ce-
rebral ischemia (Bliss et al., 2010). Transplantation of NPCs 
following ischemic stroke results in the migration of mature 
and immature neurons towards the injured brain regions, as 
a result of long-term cell survival, electrical balance, synaptic 
plasticity recovery (Daadi et al., 2009; Clarkson et al., 2010; 
Darsalia et al., 2011; Bacigaluppi et al., 2016), and functional 
outcome improvement (i.e., sensorimotor and memory) 
(Jin et al., 2010). The major advantage of the NPCs therapy 
is NPCs’ self-differentiate abilities into astrocytes, neurons, 
and oligodendrocytes (Gage, 2000; Chojnacki and Weiss, 
2008). However, NPCs are commonly associated with ter-
atoma formation due to their endless self-renewing ability 
(Rong et al., 2012), which reduces NPCs’ therapeutic efficacy 
in the treatment of cerebral ischemia indicating that further 
studies are necessary to evaluate safety and efficacy of NPCs 
in the treatment against cerebral ischemia. 

BMSCs are another type of multipotent stem cells with 
high-differentiation and migration (Polymeri et al., 2016). 
BMSCs’ anti-inflammatory, immune suppressive, and low 
tissue rejection properties (Ryan et al., 2005; Zhao et al., 
2012; Ankrum et al., 2014) provide therapeutic potential in 
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the treatment against cerebral ischemia. In vivo studies have 
shown that implantation of BMSCs in rats after cerebral 
ischemia results in an increase in axonal sprouting (Li et al., 
2000), neurogenesis, and angiogenesis (Chen et al., 2001, 
2003; Yoo et al., 2008; Xin et al., 2013a), thus reducing brain 
injury, neuronal cell death, and neurological deficits (Chen 
et al., 2003; Zheng et al., 2010; Xin et al., 2013a). Mecha-
nisms underlying BMSCs-induced neuroprotection remains 
unclear. Previous studies, however, suggest that trophic fac-
tors (i.e., brain-derived neurotrophic factor) released from 
BMSCs after cerebral ischemia are the major contributors to 
BMSCs-induced angiogenesis and regrowth/repair of nerve 
tissue (Bao et al., 2011). Additionally, BMSCs have also been 
reported to reduce the expression of axonal-growth inhibi-
tory proteins (i.e., Rho-associated and coiled-coil-containing 
protein kinase 2) (Song et al., 2013), thus enhancing axon 
growth and formation following cerebral ischemia. 

In addition to NPCs and BMSCs, recent studies also focus 
on investigating the therapeutic potential of immortalized cell 
lines as another option for cerebral ischemia treatment due 
to immortalized cell lines’ ability to proliferate indefinitely 
(Kondziolka et al., 2000, 2005; Stroemer et al., 2009). Further-
more, immortalized cell lines can differentiate into oligoden-
droglial and endothelial cells to promote/restore endogenous 
neurogenesis in the SVZ after cerebral ischemia (Stroemer et 
al., 2009). Thus, treatment with immortalized cell lines (i.e., 
CTX0E03) can enhance functional sensorimotor recovery 
(evaluated via bilateral asymmetry and rotameter test) after 
cerebral ischemia elicited by MCAO. Since immortalized 
cell lines are mainly derived from tumor cells and contain 
oncogenes, the major drawback of immortalized cell lines 
is their propensity to form tumors. Although results from 
several Phase I and II clinical trials suggest that implantation 
of Ntera2/D1 neuron-like cells, another immortalized cell 
line derived from teratocarcinoma, has no adverse effects in 
stroke patients (Kondziolka et al., 2000, 2005), more studies 
are needed to evaluate the safety and efficacy of the immortal-
ized cell lines in the treatment against cerebral ischemia.

Conclusions
Despite improved education (i.e., dietary), psychological 
care, and better therapeutic treatments [i.e., less door-to-
needle time for plasminogen activator], cerebral ischemia 
is still one of the leading causes of morbidity and mortal-
ity worldwide (Lopez et al., 2006; Feigin et al., 2009). The 
stroke-related costs are expected to reach 240.67 billion 
by 2030 according to the American Heart Association 
(Ovbiagele et al., 2013) indicating that developing novel 
therapies that can effectively alleviate post-stroke long-
term disability is greatly needed. Although more studies are 
needed to evaluate the safety and efficacy of the novel neu-
roregenerative agents as we have already discussed, agents 
that have been investigated in clinical studies, such as hypo-
thermia, bolus injection of bupivacaine and clonidine in the 
superior cervical ganglion, neuromodulation therapy, stem 
cell and traditional Chinese therapies should be considered 
for treatment against stroke and general ischemia.
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