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Abstract

As a complement to virtual screening, de novo design of small molecules is an alter-

native approach for identifying potential drug candidates. Here, we present a new

3D genetic algorithm to evolve molecules through breeding, mutation, fitness pres-

sure, and selection. The method, termed DOCK_GA, builds upon and leverages pow-

erful sampling, scoring, and searching routines previously implemented into DOCK6.

Three primary experiments were used during development: Single-molecule evolution

evaluated three selection methods (elitism, tournament, and roulette), in four clini-

cally relevant systems, in terms of mutation type and crossover success, chemical

properties, ensemble diversity, and fitness convergence, among others. Large scale

benchmarking assessed performance across 651 different protein-ligand systems.

Ensemble-based evolution demonstrated using multiple inhibitors simultaneously to

seed growth in a SARS-CoV-2 target. Key takeaways include: (1) The algorithm is

robust as demonstrated by the successful evolution of molecules across a large

diverse dataset. (2) Users have flexibility with regards to parent input, selection

method, fitness function, and molecular descriptors. (3) The program is straightfor-

ward to run and only requires a single executable and input file at run-time. (4) The

elitism selection method yields more tightly clustered molecules in terms of 2D/3D

similarity, with more favorable fitness, followed by tournament and roulette.
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1 | INTRODUCTION

Atomic-level docking and virtual screening are powerful and

well-documented structure-based computational approaches that

have led to the identification of active compounds in early stages of drug

discovery and development.1–3 Since the early 1980s, the field has seen

rapid growth due to a combination of ever increasing numbers of publicly

available protein and nucleic acid drug-target structures,4,5 catalogs con-

taining commercially available ligands,6,7 and ever-faster computers.8 In

our own work, we have employed virtual screening, in collaboration with

experimental groups, to identify inhibitors targeting a variety of clinically

relevant targets.9–19 However, despite its proven utility, some caveats

associated with virtual screening include: (1) publicly available catalogs

cover only a fraction of chemical space and therefore may not containLauren E. Prentis and Courtney D. Singleton contributed equally to this work.
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compounds optimal for the specific site being targeted, (2) it is computa-

tionally prohibitive for most users to exhaustively screen massive libraries

such as ZINC20 containing billions of compounds, (3) catalog compounds

may be subject to intellectual property protection.

As an alternative approach, de novo design methods (hereafter

referred to simply as de novo) can be employed to generate, from-

scratch, new molecules directly in the context of the binding site envi-

ronment. In principle, from-scratch assembly of compounds from drug-

like fragments, synthetic building blocks, or in some cases individual

atoms, will enable a highly directed and therefore more fruitful search

through chemical space.21–26 As we have shown previously with a ver-

sion of DOCK627 with extensive de novo functionality developed and

implemented by our group (termed DOCK_DN),21 outcomes from de

novo molecular construction can also be used to create compounds that

can be found in existing vendor catalogs. Our research and those of

many other de novo methods, including the programs AutoGrow,24,25

BOMB,28 BREED,29 CONCERTS,30 DOCK_DN,21 FLUX,31,32 GANDI,33

GenStar,34 GroupBuild,35 LEGEND,36,37 LUDI,38,39 Molecule

Evoluator,40 OpenGrowth,23 PRO_LIGAND,41 SKELGEN,42 SMoG,43

and SPROUT,44,45 validate that computer-based methods can be used

effectively to create reasonable, chemically sound molecules. More

recently there have been a number of de novo programs that have been

reported that rely on Artificial Intelligence to overcome the abovemen-

tioned hurdles involved in virtual screening.46,47

Under the umbrella of de novo are a class of methods based on

evolutionary principles (termed genetic algorithms). Examples of previ-

ously reported methods that specifically employ a genetic algorithm

include the programs ADAPT,48 Autogrow4,49 Chemical Genesis,50

CoG,51,52 Globus,53 LEA,54 LEA3D,55,56 LigBuilder,57,58 Nachbar,59

SYNOPSIS,60 TOPAS,61 and an algorithm published by Kawai et al.62,63

Some therapeutic application examples using de novo include the iden-

tification of inhibitors targeting HIV-1 RT (SYNOPSIS),60 HIV-1 protease

(BREED),29 and Thrombin (LUDI, TOPAS).38,39,61,64 In the present work,

we present the development, validation and optimization of a powerful

new genetic algorithm framework for DOCK6 (termed DOCK_GA) built

around molecular evolution as outlined by Holland65 which employs

basic evolutionary principles such as breeding, mutation, and natural

selection. Early inspiration for the present work was the 2001 paper

by Pegg, Haresco, and Kuntz that introduced the program ADAPT.48

The ADAPT approach employs a 2-D graph representation of mole-

cules comprised of nodes representing fragments and edges repre-

senting bonds connecting the fragments. Specifically, the authors

utilized an earlier version of DOCK to generate molecules in 2D

space, a process referred to as breeding, energy-minimized in 3D

space, and subsequently docked and scored in the binding site. In

addition, the scoring fitness function was also augmented to include

chemical descriptors such as molecular weight, #ligand rotatable

bonds, #hydrogen bond donors/acceptors, and ClogP. However,

breeding in ADAPT occurred outside of the protein thus evolution

was not tightly coupled to the biologically significant binding site as

might be desired. Additionally, ADAPT is no longer under active

development. We hypothesized that an actively developed genetic

algorithm devised around the latest version of DOCK would not only

lead to improvements over the original ADAPT algorithm but be a

desirably alternative to other reported approaches. More specifi-

cally, our goal is to leverage DOCK6's well-validated conformational

sampling routine (anchor and grow),27,66 fragment-based chemical

searching algorithm,21 and powerful similarity-based scoring

functions67–69 to drive molecular growth and evolution.

As illustrated in Figure 1, DOCK_GA evolves molecules according

to two main criteria: (i) crossover (i.e., breeding) combines two “parents”
together across geometrically compatible rotatable bonds and

(ii) mutation utilizes a fragment library of building blocks to explore

chemical space. The program leverages the DOCK_DN21 infrastructure

including fragment libraries, local bond environment checks to maintain

chemical feasibility, and chemical descriptor filters to prevent construc-

tion of non-drug-like molecules. Key features of the code include:

(1) molecular construction in 3D space in the context of the targeted

binding site, (2) customizable fitness functions that can include a variety

of scoring functions and descriptors, (3) multiple mutation types includ-

ing internal fragment replacement (scaffold hopping),70 (4) different

selection methods to drive evolution, and (5) modularity of functions

and routines. Importantly, the majority of DOCK_GA is housed directly

within the central DOCK6 infrastructure, which facilitates simplified

execution of the software for users via straightforward and standard-

ized protocols and input files. The algorithms presented in this work,

along with example input files and test cases, and source code, have

been implemented into the latest DOCK6 release and will be made

available for download for free to registered academic users at http://

dock.compbio.ucsf.edu/.

2 | ALGORITHM THEORY AND
IMPLEMENTATION

2.1 | Terminology and basic input parameters

Evolution in DOCK_GA can be initiated or seeded, using a single mol-

ecule (single-molecule evolution) as input, or an ensemble of

F IGURE 1 Schematic showing the two main DOCK6 search
routines for the genetic algorithm. Crossover (above) exchanges
segments of molecules between a pair of parents where bonds
geometrically overlap to create two offspring with a blended
molecular composition. Mutations (below) delete, add, substitute, or
replace functionality on parents and/or offspring based on a library
consisting of drug-like fragments
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molecules (ensemble-based evolution). A partial (incomplete) molecule

can also be used. As in DOCK6, ligands are stored in mol2 format and

employ Sybyl atom types.71 The input molecule(s) specified at the

very first generation are referred to as the “initial parent(s)” while

those that survive to seed successive generations are referred to sim-

ply as “parent(s).” Products of successful crossover and/or mutation

are considered “offspring.” The molecules that are retained through

the selection method, referred to as “survivors,” are used to seed

growth for the next generation, and subsequently become “parents”
of the next iteration of molecules created from the algorithm.

These calculations require the same protein docking grid(s) as

used in DOCK6, which are prepared prior to running any calculations

using a standardized protocol.27 DOCK_GA is fragment-based, and

molecules are defined as collections of segments connected by rotat-

able bonds (fragments) as specified in the DOCK6 flex definition file

(flex.defn). Throughout this document, key input filenames and param-

eter names are highlighted in italics. A representative input file, speci-

fying key parameter values employed in this work, is provided as

Supporting Information (Table S1). The program requires a properly

prepared fragment library, which is typically generated using the same

DOCK_DN infrastructure as previously described.21 Briefly, library

fragments are arranged into three classes: (a) sidechains with one

attachment point (ga_fraglib_sidechain_file), (b) linkers with two attach-

ment points (ga_fraglib_linker_file), and (c) scaffolds with three or more

attachment points (ga_fraglib_scaffold_file).21

2.2 | Initial generation

Figure 2 schematically outlines the overall flow of the DOCK_GA pro-

gram. The initial parent(s) should have reasonable 3D input geome-

tries and already be bound (and thus compatible) to the target of

interest. Input geometries of parents can be generated from x-ray

structures or computationally docked poses. The initial generation is

assigned partial atomic charges using the Gasteiger72 function, which

is also used to assign atomic charges for molecules created as a result

of crossover or mutations, as needed. The initial generation then

undergoes a brief energy minimization to check for compatibility with

the binding site and similarity-based pruning (Hungarian algorithm)67

is employed to ensure evolution initiates from chemically distinct mol-

ecules. The algorithm proceeds until a user-defined number of genera-

tions have been reached (ga_max_generations).

2.3 | Crossover

Parental crossover (ga_xover_on) occurs between two molecules with

geometrically overlapping same-order DOCK rotatable bonds in the

context of the protein (Figure 3A). This is important to emphasize

because many de novo design and genetic algorithms do not construct

molecules in 3D directly in the binding site environment. Distance tol-

erance (ga_bond_tolerance) and angle tolerance (ga_angle_cutoff )

parameters control if bond-pair overlap between two molecules under

consideration is tight enough for a potential new bond to even be

considered. As highlighted in Figure 3A, each successful single-point

crossover event produces two offspring where the substructures on

each side of the overlapping bond are swapped.29 Parent pair combi-

nations for potential crossover can be selected randomly

(ga_xover_sampling_method_rand = yes) or exhaustively. In the present

work, the random method was employed with crossovers being

attempted until a user defined number of offspring were generated

(ga_xover_max = 150). For exhaustive crossover, because all possible

parent pairs are examined, the procedure is very memory intensive

and should therefore be used with only a few initial parents. Prior to

crossover, each parent pair is subjected to a 3D similarity-based filter,

F IGURE 2 Flowchart outlining key aspects of DOCK_GA. See
text for a description of each stage

F IGURE 3 An example of (A) crossover, where two parents (left)
crossover at a geometrically and chemically compatible rotatable bond
denoted by the dashed line to produce two offspring (right). Examples
of the four mutation methods: (B) deletion, (C) addition,
(D) substitution, and (E) replacement. The blue outlined pentagons
represent the portion of the molecules to be augmented and the
purple outlined circles represent the portion of the molecules
manipulated and added by the mutation routines
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which again leverages the Hungarian algorithm,67 to avoid redundant

offspring. Each offspring undergoes a torsion environment check, as

described in DOCK_DN,21 to determine if the newly formed bond is

in an allowable torsion environment table (ga_torenv_table). Once

crossover event(s) are successful for a pair of parents, those parents

cannot crossover with any other parents in the ensemble for that spe-

cific generation. It should be emphasized that crossover requires at

least two compatible (non-identical) molecules. Thus, when only a sin-

gle molecule is used as input for the initial generation the algorithm

proceeds directly to mutation (ga_mutate_parents) until suitable off-

spring can be created. Single-molecule evolution also requires specifi-

cation of the number of generations allowed without crossover

(ga_max_num_gen_with_no_crossover).

2.4 | Mutations

Following crossover, parents and offspring can undergo fragment-

based mutations to generate new molecules (Figure 3B–E) which, if

successful, will diversify the molecular make-up of the population over

successive generations. Mutations also increase the chances for suc-

cessful crossover, especially if the parents at the start of each genera-

tion do not have a significant number of overlapping bonds. As

highlighted in Figure 3B–E, DOCK_GA has four possible mutation

types: (1) deletion, (2) addition, (3) substitution, and (4) replacements,

which are described below. The user can specify which mutation(s)

types should be attempted. For a given attempt, the specific molecule

for mutation, the specific segment for mutation, and the specific

mutation type are all randomly selected from the existing population.

However, depending on the number of attachment points in a seg-

ment, and its location in the molecule (terminal vs. non-terminal), only

certain mutation types may be permitted. For example, for completely

rigid molecules, only additions can be performed.

Deletion (ga_mutate_deletion) (Figure 3B) can involve removal of

a single terminal segment or in some cases multiple segments, pro-

vided the deletion itself does not result in disconnected segments.

The modified molecule is subsequently capped with a hydrogen atom

at the point of segment removal and examined to ensure that the

deletion event did not result in unphysical torsions (ga_torenv_table).

No more than 50% of the molecule by molecular weight may be

deleted in any one move. Addition (ga_mutate_addition) (Figure 3C) is

performed by randomly replacing a hydrogen atom with a sidechain

from the fragment library regardless of the segment type (terminal

vs. non-terminal). Currently, additions only involve single layer growth

per addition attempt. Over multiple generations however, successive

additions can lead to growth that encompass multiple layers. Substitu-

tion (ga_mutate_substitution) (Figure 3D) occurs by combining deletion

and addition events in succession. Both single and multisegmented

substitutions are possible. For a single segment, only a sidechain

would be deleted and then replaced. For multiple segments (for which

one must be terminal), the number of deleted segments must equal

the number of added segments. Replacement (ga_mutate_replacement)

(Figure 3E) involves taking a nonterminal segment and replacing it

with a library fragment of similar shape and number of connection

points.70 This mutation type is facilitated by using heavy atoms of the

segment for replacement as “spheres” to orient fragments for subse-

quent consideration. Analogous to crossover, docked fragments for

replacement are only considered if the new connection points are well

aligned with the bonds of the molecule prior to mutation.

Similar to crossover, for a mutation to be considered successful,

all torsions in a newly constructed molecule must be allowable

(ga_torenv_table). Molecules undergo fragment-based mutations

until the number of successful mutations for parents and offspring

reach a user-defined target (ga_pmut_rate and ga_omut_rate, respec-

tively) or the maximum number of mutations is reached (ga_ma-

x_mut_cycles). The user also has control over the number of

fragments that are randomly selected for addition, substitution, or

replacement (ga_num_random_picks). The number of individual muta-

tions that can be attempted on any given molecule can also be specified

(ga_max_root_size) with only the single best scoring molecule being

retained.

2.5 | Minimize & score & prune

As viable offspring are produced from crossover and mutations their

partial atomic charges are updated (Gasteiger method),72 poses are

energy minimized and scored, molecular descriptors are computed,

and additional pruning routines are applied to promote drug-likeness

in the growing ensemble. Energy minimizations incorporated a har-

monic restraint (simplex_coefficient_restraint), which helps keep off-

spring tethered close to their initial parent poses, and included the

ligand translational, rotational, and torsional degrees of freedom. As in

standard docking, a repulsive-only ligand internal energy term was

added to the scoring function to avoid intramolecular clashes. In terms

of scoring, DOCK_GA employs a customizable master scoring function

based on a user-definable combination of DOCK6 functions (termed

Descriptor Score).27 Available functions include single-grid energy

(SGE), multi-grid energy (MGE), footprint similarity (FPS),68 pharmaco-

phore matching similarity (FMS),69 Hungarian matching similarity

(HMS),67 volume overlap similarity (VOS),17 and Tanimoto similarity

(TAN), and combinations thereof.27

After minimization and scoring, ligands with unfavorable repulsive

internal energy (internal_energy_cutoff ) or total energy (ga_energy_cut-

off ) are pruned. The HMS scoring function is also employed at this stage

to compute the 3D similarity between all parents and offspring, and

within groups of offspring, in order to prune (remove) redundant mole-

cules within each generation. Briefly, the Hungarian method in

DOCK667 can be used to determine the optimal one-to-one correspon-

dence between sets of atoms of the same atom type. As one example

of its utility, the algorithm can be used to compute a symmetry cor-

rected root mean square deviation (RMSD). As shown in Equation (1),

and outlined in greater detail in Allen and Rizzo67 symmetry corrected

RMSD for subsets of matched atoms (RMSD matched) can be used to

compute a 3D similarity score (HMS score) between two different mol-

ecules when used in conjunction with the total number of unmatched
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atoms (#unmatched), and the number of heavy atoms of the molecule

being considered as a reference (#ref atoms). User-defined criteria in

terms of an RMSD cutoff for matched atoms (ga_heur_matched_rmsd)

and number of unmatched atoms (ga_heur_unmatched_num) help con-

trol the aggressiveness of the pruning. The values for the constants in

Equation (1) (C1 = �5, C2 = 1) were originally chosen67 so that the two

HMS score terms would be approximately equal in weight and higher

similarity would result in a more negative score (�5 equals perfect

overlap).

HMSscore¼C1
#ref atoms�#unmatched

#ref atoms

� �
þC2 RMSDmatchedð Þ

ð1Þ

Finally, a hard filter is used to remove molecules with properties

outside of user-defined limits for molecular weight (ga_constraint_

mol_wt), number of DOCK rotatable bonds (ga_constraint_rot_bon),

number of H-bond donors (ga_constraint_H_don), number of H-bond

acceptors (ga_constraint_H_accept), and formal charge (ga_constraint_

formal_charge). If any input parents have properties that fall outside of

the hard filter ranges, a warning is printed but the molecules are

allowed to pass which provide an opportunity for mutations to gener-

ate compliant offspring.

Table 1 shows values for some of the key DOCK_GA parameters

used in the five major algorithm stages outlined in Figure 2 (Initial

Generation, Crossover & Mutation, Minimize & Score & Prune, Fitness

Evaluation, Selection). For completeness, an input file listing all of the

parameters used in a representative elitism experiment is provided as

Supporting Information (Table S1).

2.6 | Fitness evaluation

In preparation for selection (see next section) parents and offspring

are rank-ordered using a fitness function. At this time, the function

used for fitness is the same as that used for energy minimization

minus the ligand internal energy. If desired, fitness can include any of

the similarity scores discussed above. In the present work, a simple

two-term fitness function was employed as shown in Equation (2)

with C1 = 1 and C2 = �15.

Fitness¼C1 �SGEþC2 �VOS ð2Þ

Here, single-grid energy (SGE)73 represents protein-ligand intermo-

lecular interactions which are computed using a docking grid comprised

of van der Waals (6–9 potential) and Coulombic (distant dependent

dielectric = 4r) energy terms. Volume overlap score (VOS)14,17,74 repre-

sents the 3D spatial overlap between newly constructed molecules and

a user-defined reference in terms of their hydrophobic and hydrophilic

atoms, and positively and negatively charged atoms. In the present

work, VOS references were based on the crystallographic ligand pose

in each system tested (each pdb code). VOS scores are between

0 (no overlap) and 1 (complete overlap). Thus, with the present C2 coef-

ficient, up to �15 kcal/mol will be added to the score for molecules

TABLE 1 Key DOCK_GA parameter values used in this work

Parameter Description Value

ga_max_generations Max number of generations per run 500, 25

ga_xover_max Max number of offspring allowed via crossover 150

ga_bond_tolerance User-specified cutoff for allowable bond distance (squared) 0.5 Å2

ga_angle_cutoff User-specified cutoff for allowable bond vector angles 0.14 radians

ga_pmut_rate Parent mutation rate 0.4

ga_omut_rate Offspring mutation rate 0.7

ga_max_mut_cycles Max mutation attempts 10

internal_energy_cutoff Max repulsive internal energy of ligand 100 kcal/mol

simplex_coefficient_restraint Harmonic restraint for RMSD tether 10 kcal/mol Å2

ga_num_random_picks N fragments randomly selected for add, sub, or rep 10

ga_max_root_size Max root size 5

ga_energy_cutoff Upper bound for energy pruning 100 kcal/mol

ga_heur_unmatched_num N unmatched atoms for HMS pruning 1, 5

ga_heur_matched_rmsd RMSD of matched atoms for HMS pruning 0.5, 2.0 Å

ga_constraint_mol_wt The upper bound for MW 550

ga_constraint_rot_bon The upper bound for # rot bonds 20

ga_constraint_H_accept The upper bound for # of hydrogen acceptors 10

ga_constraint_H_don The upper bound for # of hydrogen donors 5

ga_constraint_formal_charge The upper and lower bound for formal charge ±4

ga_ensemble_size The number of survivors to carry to next generation 100

ga_max_num_gen_with_no_crossover Max generations without crossover 500
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with perfect reference overlap. This combination allows for energeti-

cally favorable growth to occur while biasing evolution to remain near

the targeted binding site.

2.7 | Selection

Genetic algorithms that construct new molecules suffer from expo-

nential growth, which will quickly lead to an intractable number of

compounds. To avoid computational bottleneck, only a small subset of

molecules is “selected” to become survivors (i.e., parents) for the next

generation. In order to provide the user with greater control over

diversity and fitness, DOCK_GA currently has three major selection

methods: (1) elitism, (2) tournament, and (3) roulette, as shown in

Figure 4, with the number of molecules to be passed to the next

generation defined by the user (ga_ensemble_size), which is set to

100 molecules per generation for all experiments presented. Elitism

(Figure 4A) retains only those molecules with the best fitness scores,

based on rank-order.40,59 The method employs three sub-selection

types: max (the maximum number of parents are retained), number

(x number of parents are retained, ga_elitism_number), or percent (% of

parents are retained, ga_elitism_percent). In terms of ranking, parents

and offspring may be combined, or treated separately, which is true of

all DOCK_GA selection methods. The flexibility to sample two differ-

ent subsets of the same selection method permits distinct molecule

propagation and therefore unique molecule evolution even if the

same initial parents are utilized. Elitism was employed, in the present

work, using sub-selection type max (ga_elitism_option) max and com-

bined ensembles only. In tournament (Figure 4B), the fitness scores

for two randomly selected molecules are compared and the more fit

molecule is retained.63,75 Tournament experiments discussed here

employed combined ensembles. Finally, in roulette (Figure 4C), a sto-

chastic probability fitness proportionate selection method is uti-

lized.54,76 Briefly, a random number (R1 in Figure 4C) is used to select

a molecule based on its rank-ordered position on a roulette wheel. A

second random number (R2) is then used to accept or reject the mole-

cule based on its position relative to other molecules on a number

line. For simplicity, Figure 4C only illustrates the combined method.

All roulette results present here employed combined ensembles.

3 | COMPUTATIONAL DETAILS

3.1 | Fragment library generation

Fragment libraries employed in this work were generated by segment-

ing approximately �13.1 M drug-like molecules from the ZINC data-

base,20 as described previously in Allen et al.21 Figure 5 graphically

F IGURE 4 Graphical representations of each selection method in
which blue denotes a parent molecule, orange denotes an offspring
molecule sorted by fitness score (m1 best tomn worst), and R denotes a
random number. (A) Elitism selects the best-ranked molecules based on
their location in a combined population comprised of parents and
offspring (left) or from individually ranked populations (right) until a

specified size criteria are met. (B) Tournament employs random numbers
to select two molecules to compete to remain in the population based on
their scores from combined (left) or separated (right) populations.
(C) Roulette randomly selects a molecule (R1) and uses a second random
number (R2) to accept or reject the selection based on the location of the
molecule on a normalized number line. Both combined and separated
populations may be used (only the combined method is illustrated here)

F IGURE 5 Fragment library generation example illustrating how
epinephrine can be segmented based on DOCK6 rotatable bonds
definitions into sidechains (1 connection point), linkers (2 connection
points), and scaffolds (3+ connection points)
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illustrates the procedure using the small molecule epinephrine as an

example. The procedure is entirely automated and entails segmenta-

tion along rotatable bonds as defined by DOCK6, fingerprinting of

each fragment, removal of duplicate fragments, and organization into

groups comprised of sidechains (1 connection point), linkers (2 connec-

tion points), and scaffolds (3+ connection points). Frequency cutoffs

of >13,000 (sidechains and linkers) and >1300 (scaffolds) were used

to retain only the most common fragments seen in the original library

of 13.1M molecules. These cutoffs resulted in 167 sidechains,

147 linkers, and 122 scaffolds. A companion “allowable torsion envi-

ronment” table (ga_torenv_table) is generated concurrently which

helps to ensure that newly formed bonds due to crossover and/or

mutations are chemically reasonable. In addition, the ga_torenv_table

was augmented to include torsion types for the initial parents if they

are not already present in the standard library, preventing them from

being immediately pruned. Library generation in the present work uti-

lized an updated DOCK6 rotatable bond flex definition file (flex.defn)

parameter file for segmentation, and a smaller cutoff frequency cri-

teria for scaffolds (to promote replacements), which resulted in a

larger number of allowable torsions (11,208 vs. 10,838) and additional

scaffolds (122 vs. 18) than employed in previous work.21

3.2 | Test set systems and preparation

Development and testing of DOCK_GA involved hundreds of experi-

ments run under different conditions. The majority of our analysis was

based on single-molecule evolution simulations initiated from four clini-

cally relevant protein-ligand crystal complexes selected from our previ-

ously described SB2012 test set:27,77 neuraminidase (NA) complexed

with zanamivir (pdb 1A4G),78 epidermal growth factor receptor (EGFR)

complexed with erlotinib (pdb 1M17),79 factor XA (FXA) complexed

with apixaban (pdb 2P16),80 and cyclooxygenase-2 (COX2) complexed

with indomethacin (pdb 4COX).81 Molecular properties for the cognate

ligands in these four systems are listed in Table 2. All test set complexes

were prepared as previously described27,77 and each DOCK_GA run for

the in-depth experiments involved 500 generations where the initial

parent (cognate ligand) was used as the reference.

As a means to assess the program's ability to successfully evolve

a large and diverse group of ligands in a wide variety of binding site

environments, single-molecule evolution was also initiated starting

from 651 systems (651 individual pdb codes), also taken from the

SB2012 test set.27,77 The 651 x-ray complexes contained ligands of

varying flexibility (5–20 rotatable bonds), formal charge (�2 to +2e),

and MW (125–600 Da). For these large-scale experiments, DOCK_GA

simulations were run for a total of 2637.9 CPU h (�4 h per system)

on 12 node 40 core Intel Xeon Gold 6148 on the SeaWulf cluster

housed and managed at the Stony Brook University High Performance

Computing Center. DOCK_GA runs for these large-scale-based exper-

iments were 25 generations.

To demonstrate DOCK_GA can also be used for ensemble-based

evolution, starting from a collection of known binders, we down-

loaded 23 structures from the Diamond Light Source/COVID

Moonshot effort,82,83 of the SARS-CoV-2 main protease (Mpro) com-

plexed with a variety of non-covalent ligands that target the A-active

site (pdb codes 5R7Y, 5R7Z, 5RE4, 5R80, 5R81, 5R82, 5RE9, 5REB,

5RGH, 5RGI, 5RGK, 5R83, 5REH, 5R84, 5REZ, 5RF1, 5RG1, 5RF2,

5RF3, 5RF6, 5RF7, 5RFE, and 5RHD). Fortunately, the 23 complexes

were already aligned to a common reference frame (protein back-

bones were already well-overlaid). To prepare the system for evolu-

tion, all 23 non-covalent ligands were energy minimized in a single

protein (entry 5R7Y) and the ligand from this entry was also used as

the reference for the fitness function shown in Equation (2).84

DOCK_GA runs for the ensemble-based experiments were

15 generations.

3.3 | GA utilities

To assist with analysis, a function called “GA utilities” was implemen-

ted into DOCK_GA, which computes the chemical/structural similarity

between molecules in an ensemble (or between ensembles). At this

time, GA utilities can be used to compute pairwise Tanimoto coeffi-

cients to assess topological similarity, compute pairwise Hungarian

matching similarity (HMS) scores to assess structural similarity, and

assign Gasteiger charges for any input molecule. The functions have

been incorporated under the umbrella of DOCK_GA but currently

should only be used to process one generation at a time, as a post-

process analysis.

4 | RESULTS AND DISCUSSION

4.1 | Single-molecule evolution

To interrogate the behavior of DOCK_GA under different conditions,

we employed the four test systems described above (Test Set Systems

and Preparation) to seed molecular evolution for 500 generations

using three distinct selection protocols (elitism/max-combined, tour-

nament/combined, and roulette/combined). Further, due to the sto-

chastic nature of the algorithms, evolution can also be varied by the

use of a different pseudo-random number to perform functions such

as crossover, mutations, as well as selection. To explore how the

TABLE 2 Molecular properties for cognate ligands from four
protein systems

Ligand (pdb code) MWa RBb HAc HDd

Zanamivir (1A4G) 332.3 11 11 9

Erlotinib (1M17) 393.4 12 7 1

Apixaban (2P16) 459.5 7 9 2

Indomethacin (4COX) 356.8 6 6 0

aMW = molecular weight (g/mol).
bRB = number rotatable bonds as defined by DOCK6 flex.defn file.
cHA = number H-bond acceptors (N plus O).
dHD = number H-bond donors (H bonded to N or O).

1948 PRENTIS ET AL.



results might be affected, three distinct random seeds (0, 2, and 3)

were employed for a subset of experiments.

4.2 | Mutation success and crossover

Table 3 shows average success rates for the four different mutation

types (accepted/attempted) along with the average number of survi-

vors containing a crossover event (children with crossover / total pop-

ulation size) subdivided by the four protein-ligand test systems and

three selection method across 500 generations. Here, since evolution

was initiated from only a single species, it should be emphasized that

early generations necessarily involve only mutations since at least two

chemically distinct molecules must be accessible before crossovers

can be attempted.

On a global scale, across all systems and selection methods

tested, the most successful mutations were substitutions (77%)

> deletions (75%) > additions (27%) > replacements (8%). Compared

to addition, substitution is a two-step process (deletion followed by

addition) thus the size of the parent before mutation (MW, rotatable

bonds) would not be expected to be a major factor in terms of

exceeding MW cutoffs after mutation. The significant difference

between substitution (77%) and addition (27%) supports this hypothe-

sis, however it is also true that successful substitutions in all cases are

lower for elitism (64%) compared to the corresponding simulations

with tournament (82%) or roulette (84%). Here, the overall larger size

for molecules obtained via elitism (shown below) is expected to nega-

tively impact the “addition” part of substitution. In contrast, deletions

varied only marginally across the different selection methods (72%–

78%). Deletions are only expected to be rejected if too much of a

molecule was removed which would lead to a degraded score as a

result of decreased favorable protein-ligand contacts. For pure addi-

tion, the success rates varied significantly depending on which selec-

tion method was used (6%–42%). For elitism (6%), the low number

obtained is again likely a function of the larger-sized parents for which

adding additional fragments would more likely exceed MW cutoffs. In

contrast, the generally smaller molecules from tournament and rou-

lette lead to more successful (33%–42%) additions. Replacement was

the least successful mutation event observed with only 2 of the

12 simulations in Table 3 averaging above 10%. We hypothesize that

the low acceptance rates primarily reflect the requirement for a rela-

tively tight geometric match between the bonds on the fragment

being replaced with those on candidate fragment. Strategies for

increasing replacement success rates could include evaluation of less

stringent bond tolerances, although our initial tests showed tight

overlaps were necessary to retain geometric integrity of children prior

to minimization. A more promising strategy would likely involve

increasing the size and diversity of the fragment libraries. Replace-

ments involving more than one rigid fragment at a time would also be

desirable and are currently under investigation.

The last column in Table 3 shows the average number of survi-

vors containing a crossover event relative to the total population. The

magnitude for crossover (36%) is most similar to addition (27%), and

similar to the trends seen with addition the percentages are lowest

for elitism (8%) followed by tournament (44%) and roulette (56%). As

before, we hypothesize that the larger-sized molecules from elitism

undergoing crossover would be less likely to pass the MW cutoff rela-

tive to smaller molecules from tournament or roulette. It should be

emphasized that the statistics shown in Table 3 represent only a lower

bound for crossover success since they are based solely on the

TABLE 3 Success rates for different
mutation types and number of survivors
containing a crossover

Del %a Add % Sub % Rep % Crossover %b

1A4G (NA) Elitism 64.1 4.0 80.4 5.8 8.65

Tournament 81.4 36.5 90.4 9.1 44.09

Roulette 72.3 50.3 91.3 13.8 60.10

1M17 (EGFR) Elitism 84.6 6.1 66.4 10.2 8.62

Tournament 71.4 35.7 76.2 4.5 42.93

Roulette 84.3 41.9 87.0 8.7 56.88

2P16 (FXA) Elitism 78.0 7.2 49.0 6.3 6.06

Tournament 92.1 34.9 83.9 7.0 44.28

Roulette 78.0 42.3 76.4 9.1 56.58

4COX (COX2) Elitism 67.7 5.1 60.8 7.8 9.43

Tournament 67.6 26.2 77.2 6.2 44.51

Roulette 54.3 35.8 83.1 6.7 53.69

Average 74.65 27.17 76.84 7.93 36.32

aAverage success rates for different mutation types (accepted/attempted) after final fitness pruning for

structurally dissimilar molecules.
bAverage survivors with crossover (children with crossover/total population size). Molecules evolved in

1A4G (NA), 1M17 (EGFR), 2P16 (FXA), and 4COX (COX2) using elitism, tournament, and roulette

selection methods. Data represents averages over 500 generations. Results from one seed are shown

(seed 0).
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number of retained survivors. Molecules created via crossover are

also subject to similarity-based pruning and score-based pruning.

4.3 | Offspring survival

One of the primary objectives of DOCK_GA is to create and retain

energetically and geometrically fit, chemically distinct offspring at

each generation as successful offspring production drives molecular

evolution. Offspring are products of both breeding and mutation

events. However, as shown in Figure 6, the number of unique off-

spring produced at each generation varies greatly depending on

which selection method is employed. Overall, the behavior within

each selection method was relatively uniform across the four test

systems. In contrast, the behavior between the three selection

methods was markedly different. A number of routines in DOCK6

rely on a random seed (e.g., simplex minimizer, fragment selection),

thus, for completeness, we performed additional simulations for

each test case using two different random seeds (seed 2, seed 3).

For each selection method, in all cases, the number of unique off-

spring per generation were remarkably similar (seed 0 vs. 2 vs. 3). It

is also important to emphasize that the specified selection method is

only employed when the combined ensemble exceeds a user-

defined maximum size (ga_ensemble_size), which in this case was

100 molecules. In addition, these graphs plot only the number of

unique offspring within that specific generation and do not include

parents from previous generations.

For elitism (Figure 6, left), as systems evolve, the large number of

unique offspring retained (�50–75 molecules) in earlier generations

quickly decrease and begin to converge by around generation

100 (10–15 new molecules). Elitism retains only the most energeti-

cally favorable offspring thus the outcome is rapid convergence to a

local optimum.85 As discussed below, from a structural standpoint,

single-molecule evolution with elitism tends to yield tightly coupled

congeneric series most influenced by offspring in the early genera-

tions although not necessarily the initial parent (Gen 0). If desired,

greater diversity from elitism can be obtained by utilizing multiple ran-

dom seeds or including a diverse ensemble of initial parents. For elit-

ism (seed 0), the total number of unique molecules generated under

these conditions was 4500 (1A4G), 4499 (1M17), 3192 (2P16), and

4954 (4COX).

In sharp contrast, single-molecule evolution employing tourna-

ment selection (Figure 6, middle) maintains 50 unique offspring per

generation which is 50% of the generation max (100). As expected,

even with different random seeds, tournament maintains a strict 50%

offspring retention. The only exception is for very early generations in

which slightly more offspring may be retained to account for the ini-

tially small ensemble sizes (<100). Overall, tournament allows more

F IGURE 6 Number of “unique offspring” per generation after selection (100 molecules max per generation) for molecules evolved in 1A4G
(NA), 1M17 (EGFR), 2P16 (FXA), and 4COX (COX2) using elitism (blue), tournament (green), and roulette (pink) selection methods. Results from
three seeds are shown (seed 0, 2, and 3)
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opportunities for less energetically fit offspring to compete for sur-

vival which maintains greater chemical and structural diversity than

for elitism (discussed below). As before, if greater diversity is desired,

multiple random seeds and/or initial parents can be employed. For

tournament (seed 0), the total number of unique molecules generated

was 24,769 (1A4G), 24,832 (1M17), 24,786 (2P16), and

24,799 (4COX).

For roulette (Figure 6, right), a consistent offspring retention rate

was also obtained which averaged 60–65 molecules. Since molecules

are not passed to successive generations based solely on fitness, the

majority of survivors in each roulette ensemble (100 max) are

expected to be offspring. This is due to the overwhelming offspring to

parent ratio prior to selection and the random nature of the algorithm

(Figure 4C). Thus, it is reasonable that roulette selection would lead to

distributions >50%. We hypothesize that the plateau behavior is

attributable to the fitness proportionate selection method being

bounded by a maximum number of allowable crossover events (ga_xo-

ver_max = 150) and a maximum number of mutation attempts

(ga_max_mut_cycles = 5) per generation. As discussed further below,

roulette ensembles tend to have the greatest overall variability in

terms of molecular properties, chemical diversity, docking poses, and

fitness scores. For roulette (seed 0), the total number of unique mole-

cules generated was 32,891 (1A4G), 31,574 (1M17), 31,338 (2P16),

and 31,143 (4COX).

4.4 | Chemical properties and similarity of
survivors

To assess the drug-like characteristics for the survivors generated

using different selection methods, we computed several chemical

properties including molecular weight, number of rotatable bonds,

number of hydrogen bond acceptors, and number of hydrogen bond

donors as shown in Figure 7. It is important to note that in addition to

scoring, clustering, and pruning criteria, molecules constructed at each

generation are only retained if they also conform to a set of user-

defined upper boundary conditions (Table 1) for each property which

in this case were: MW (550 Da), #Rotatable Bonds (20), #H-bond

Acceptors (10), and #H-bond Donors (5). Thus, no molecules in

Figure 7 will exceed these upper bounds. For simplicity, results from

only one random seed are shown (seed 0).

As a general rule, the genetic algorithm has a propensity to maxi-

mize interactions between offspring and protein by constructing and

preserving larger molecules that extend towards the user-defined

upper bound cutoffs for each chemical descriptor. The DOCK6 scor-

ing function is known to favor larger molecules (MW bias) because

the van der Waals component of the fitness function rewards more

contacts. At the extreme, all molecules constructed using elitism

(Figure 7, blue) have MW near 550 Da. Interestingly, the maximum

number of rotatable bonds (20) was not attained under the present

F IGURE 7 Chemical property distributions at generation 500 (N = 100) for molecules evolved in 1A4G (NA), 1M17 (EGFR), 2P16 (FXA), and
4COX (COX2) using elitism (blue), tournament (green), and roulette (pink) selection methods. The user-defined parameters utilized are as follows:
molecular weight ≤550 Da, rotatable bonds ≤20, hydrogen bond acceptors ≤10, and hydrogen bond donors ≤5. The box represents the
interquartile range and the line within represents the median of the data. The whiskers represent the full range of the data excluding outliers. The
outliers of each set are represented as white dots. Results from one seed are shown (seed 0)
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conditions, most likely because of the interplay between weight and

flexibility. For example, the addition of a benzene fragment will

increase the MW far more than a hydroxyl group but contribute the

same number of rotatable bonds. In terms of the distributions,

descriptor ranges from elitism (Figure 7, blue) were generally narrow

which we hypothesize is indicative of greater chemical similarity. In

addition, in all but one case (#H-bond donors, 1M17), properties for

molecules constructed using elitism were much closer to their maxi-

mum allowable value compared to the other two selection methods.

In contrast, tournament (Figure 7, green) yielded broader descriptor

ranges with lower mean values. Properties for molecules obtained via

the roulette method (Figure 7, pink) had the widest distributions and

the lowest mean values.

Because molecules may have comparable chemical properties,

but be chemically similar or chemically distinct, we also examined 2D

similarity between survivors (Figure 8) using the DOCK6 Tanimoto

function,21 which scales from 0 (no similarity) to 1 (chemically identi-

cal).86,87 The goal was to test the hypothesis that elitism would yield

more similar molecules, followed by tournament and roulette. Chemi-

cal similarity was evaluated for one early generation (Gen050,

100 � 100) for comparison with the last generation (Gen500,

100 � 100) using a probability density function in which the area

under the curve is normalized to 1, which highlights chemical variance.

Generation 50 was chosen for the early ensemble because, although

the number of survivors had reached the max ensemble size (100), the

chemical properties themselves had not yet converged.

As hypothesized, elitism (Figure 8, solid blue) showed the highest

level of chemical similarity (higher Tanimoto) at the last generation

(Gen500), followed by tournament (Figure 8, solid green) and roulette

(Figure 8, solid pink). In all cases, there was striking separation

F IGURE 8 Tanimoto similarity plotted as probability density functions (GA utilities) to assess topological (2D) convergence. Data represents
all pairwise scores (100 � 100 = 10,000 pairs) based on molecules in the ensemble at generation 50 (dashed) relative to those at generation
500 (solid) from 1A4G (NA), 1M17 (EGFR), 2P16 (FXA), and 4COX (COX2) simulations using elitism (blue), tournament (green), and roulette (pink)
selection methods. Results from one seed are shown (seed 0)
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between the three different selection methods. In particular, distribu-

tions for elitism were much more focused (less varied density). The

similar trends obtained across all four test systems (eli-

tism > tournament > roulette) strongly suggests chemical diversity will

be influenced by which selection method is employed, regardless of

the binding site environment. Somewhat surprisingly, results from the

early generation (Gen050) show a similar but less pronounced trend,

with the elitism distributions being right-shifted (Figure 8, dashed

blue) and the roulette distributions being left-shifted (Figure 8, dashed

pink). In addition, a comparison between the Gen050 (dashed) and

Gen500 (solid) distributions illustrate that, in some cases, there is a

dramatic shift from low to high Tanimoto, particularly in 1A4G and

4COX. The roulette algorithm (Figure 8, dashed pink), stands out as

showing the least deviation between Gen050 and Gen500. Taken

together, the unique offspring (Figure 6), chemical properties

(Figure 7), and pairwise similarity (Figure 8) analysis highlight how the

different selection methods provide orthogonal means to generate

drug-like ensembles starting from only a single input molecule.

4.5 | Fitness convergence

A strategic use of genetic algorithms is their ability to optimize prop-

erties, subject to a fitness function, until some desired level of conver-

gence (or threshold) is achieved. Given the varied outcomes discussed

above with regards to number of unique offspring per generation

(Figure 6), chemical properties (Figure 7), and similarity of survivors

(Figure 8), we expected that “convergence” behavior, in terms of

energy (Equation 2), would also be affected by which selection

method was employed. In particular, we expected that use of elitism

would show the fastest energetic convergence and yield, on average,

more favorably-scored ligands, use of roulette would require the most

generations to reach energetic convergence and yield ligands with

worse fitness scores, and tournament would likely be in-between.

Figure 9 plots mean ensemble fitness for the top 25 scored com-

pounds, with their standard deviations, for the three selection

methods and four test systems examined. The standard deviations for

the entire ensemble at each generation (N = 100 molecules) are also

plotted for comparison (light colors). As hypothesized, elitism

(Figure 9 left, dark blue) shows rapid convergence for the top 25 mole-

cules, with minimal variation in fitness score (Figure 9 left, cyan), and

yields lower (more favorable) energies across all test systems. As pre-

viously noted, the fitness function (Equation 2) combines protein-

ligand interactions (van der Waals plus Coulombic) with a volume

overlap term to the cognate (x-ray) ligand. Thus, more favorably fit-

ness reflects enhanced interactions with the binding site. Tournament

(Figure 9 middle, dark green) yielded a similar trend in terms of the

shape of convergence, and for 1M17 and 4COX, the mean values at

generation 500 were similar to elitism. The dramatically larger stan-

dard deviations for tournament (Figure 9 middle, light green), how-

ever, highlight the much wider range of fitness scores within each

individual ensemble. In general, roulette (Figure 9 right) showed the

largest variability in terms of standard deviation across all

100 molecules in each generation (pink) or only the top 25 (red). In all

cases, average fitness scores obtained with roulette were less favor-

able than elitism or tournament. Regardless of selection method,

across all systems, reasonably plateaued fitness was seen by about

250 generations. In some cases, plateaued fitness was reached in as

early as 100 generations.

We also examined convergence behavior using multiple random

seeds (see Supporting Information, Figure S1). On one hand, use of

different seeds leads to similar convergence trends for a given selec-

tion method. For example, in all cases, multiple roulette runs yielded

the least favorable fitness (Figure S1). In addition, in most cases, multi-

ple elitism runs yielded fitness scores that were more favorable than

tournament (Figure S1). Further, the mean values at which the fitness

plateau is reached, in general, are more consistent for elitism followed

by tournament and roulette (Figure S1). On the other hand, the large

variation in mean fitness observed using roulette for evolution in

1A4G and 2P16 (Figure S1, magenta vs. black lines) suggests that mul-

tiple random seeds can, in some cases, lead to ensembles with very

different fitness properties. Therefore, multiple runs would be useful

to help gauge whether or not more favorable fitness minima can be

sampled in a given system.

4.6 | 3D structural convergence

The trends observed with regards to fitness convergence (Figure 9),

topological similarity (Figure 8), chemical properties (Figure 7), and

offspring survival (Figure 6) suggest that the ligand structures them-

selves, including their 3D spatial relationship to each binding site, will

likely be more similar when using elitism versus the other two selec-

tion methods. To help quantify structural convergence, we employed

the DOCK6 Hungarian matching similarity (HMS) scoring function for

which a value of �5 indicates perfect overlap between any two mole-

cules.67 HMS scores can be through of as an RMSD-like geometric

measure of similarity between molecules with differing topology and

numbers of atoms. Based on our experience, HMS scores of �2 and

below are indicative of reasonable-to-high “geometric” similarity.

Figure 10 plots HMS distributions derived from all pairwise combina-

tions (100 � 100 molecules = 10,000 scores) in generation

50 (Gen050, dashed) and generation 500 (Gen500, solid) for each sys-

tem and selection method. To the right of each plot are the accompa-

nying ensemble of 3D structures (N = 100 ligands each, protein

residues hidden for clarity). The initial parent at Gen 0 (crystallographic

seed ligand) is shown for comparison.

As shown in Figure 10, the ensembles generated using elitism and

tournament yield left-shifted (more negative) HMS distributions at

generation 500 (solid), compared to generation 50 (dashed), which

corresponds to higher 3D structural convergence. This behavior mir-

rors what we observed with regards to 2D topological convergence

assessed via Tanimoto scores (Figure 8, dashed vs. solid lines). In con-

trast, the HMS scores in Figure 10 for using roulette showed little dif-

ference between generations 50 and 500. At generation

500 (Figure 10 solid), use of elitism led to overall more negative HMS
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scores in the range from �4 to �2, indicating higher 3D similarity,

especially for systems 1M17 and 2P16 which show larger more well-

defined HMS peaks at �4. In contrast the HMS distributions for rou-

lette at generation 500 (Figure 10, pink lines) peak roughly around 0

or higher suggesting much lower 3D similarity.

Examination of the ligand structures themselves are in agreement

with the HMS results. For example, at generation 500 the relative

“tightness” with regards to spatial overlap across the different selec-

tion methods follow: elitism (most tight) > tournament (medium tight)

> roulette (least tight). In addition, for elitism in all four cases, and for

tournament in 2 out of 4 cases, the ensembles at generation

500 appear to be more tightly overlaid than generation 50. Elitism in

particular at generation 500 yielded such striking structural overlap

(Figure 10, blue ligands) that it appears that only a handful of mole-

cules are overlaid when in fact the plots show 100 unique ligands (see

discussion below). As expected, ligands generated using roulette

showed the least structural convergence. Under the current conditions,

depending on the desired outcome, a protocol that employed roulette

to generate diverse ensembles near the beginning of a genetic algorithm

run would be useful to help kick-start molecular evolution down differ-

ent paths. We are currently exploring protocols that allow users to

choose combinations of selection methods that can be turned on and

off at will or based on current ensemble properties.

4.7 | Chemical diversity of top scoring molecules
within a congeneric series

Although DOCK_GA was originally intended to be used for de novo

design, the results in Figure 10 also suggest that the genetic algorithm

F IGURE 9 Mean fitness scores with standard deviation, for the top 25 molecules evolved in 1A4G (NA), 1M17 (EGFR), 2P16 (FXA), and
4COX (COX2) using elitism (blue), tournament (green), and roulette (red) selection methods over 500 generations. Light colors represent the
standard deviation for the entire ensemble (100 molecules). The dashed line at �125 kcal/mol is provided as a point of reference to help visualize
convergence. Results from one seed are shown (seed 0)
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can be a useful tool for ligand refinement. As an example, Figure 11

shows a subset of results obtained for system 1M17 (EGFR) starting

from the complex with erlotinib. The positions labeled R1–R4 and X

indicate primary positions on the erlotinib scaffold modified by the

algorithm, and the shaded functional groups across each row (each

selection method) highlight differences between the top-scoring com-

pound (leftmost compound, DOCK scores in kcal/mol) and the four

next best-scored candidates. The accompanying Tanimoto coeffi-

cients quantify 2D similarity between each candidate with the top-

scoring compound from each method.

As shown in Figure 11, under the current conditions, the key qui-

nazoline scaffold of erlotinib is retained in all top-scoring molecules

across all three selection methods. At the other positions, functional

groups vary according to which method is employed. Following the

trend in tight chemical (Figure 7), topological (Figure 8), and structural

convergence (Figure 10) discussed earlier, the 5 top-scoring molecules

here from elitism (Figure 11A) differ only in their R1 position which

results in relatively small variation in Tanimoto (Tc = 0.76–0.89).

Compared to erlotinib, the groups initially at R2 and R4 were replaced

by bulkier quinoline and positively charged triazole-azepane rings,

respectively. The original quinazoline was also methylated at position

R3. Interestingly, the 5 top-scoring molecules generated with tourna-

ment (Figure 11B) showed some similarities to elitism. For example, all

of the top 5 had either a quinoline or naphthalene group at R2, and

3 of the top 5 were methylated at position R3. A charged group was

also placed at position R4 (in this case an amine substituted piperi-

dine). On the other hand, smaller functionality was placed at position

R1. Overall, the results are consistent with tournament's tendency to

yield structurally conserved molecules (Figure 10) while providing

increased chemical diversity (Figures 7 and 8). Compared to elitism,

the top 5 tournament-generated compounds showed a somewhat

wider range of Tanimoto scores relative to the top-scoring compound

F IGURE 10 Hungarian Matching Similarity (HMS) distributions for two ensembles (Generation 50 and 500) plotted as probability density
functions (GA utilities), along with their associated molecules, to assess structural (3D) convergence. Data represents all pairwise scores
(100 � 100 = 10,000 pairs) based on molecules in the ensemble at generation 50 (dashed) relative to those at generation 500 (solid) from
(A) 1A4G (NA), (B) 1M17 (EGFR), (C) 2P16 (FXA), and (D) 4COX (COX2) simulations using elitism (blue), tournament (green), and roulette (pink)
selection methods. Generation 0 shows the initial crystallographic ligand (starting molecule pose). Generation 50 and 500 each show 100 overlaid
poses. Protein residues hidden for clarity. Results from one seed are shown (seed 0)
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(Tc = 0.71–0.85). As expected, use of roulette (Figure 11C) led to the

greatest amount of chemical diversity (Tc = 0.43–0.73). In these

examples, compared to elitism or tournament, roulette led to smaller

functionality at positions R2 and R4. A bulkier 6-membered saturated

ring was also placed at position R1. However, despite the overall

greater R-group variability, the top-5 compounds obtained using rou-

lette visually appear very similar in these examples.

It is interesting to note that in 14 out of the 15 top-scoring mole-

cules in Figure 11, a positively charged amine group was added at the

R4 position. To assess if these additions and other changes

(e.g., diazoles placed at R2 using roulette) would lead to additional

electrostatic interactions with the EGFR binding site, relative to the

initial parent erlotinib, we visualized H-bonding patterns between all

molecules in each ensemble (N = 100 molecule each) with nearby res-

idues as shown in Figure 12. As expected, all three molecules pre-

served the key quinazoline ring H-bond with Met793 (Figure 12A)

made by erlotinib while yielding additional H-bonds with the target.

For example, with elitism (Figure 12B), one additional H-bond was

observed at positions Cys773. Using tournament (Figure 12C), new

H-bonds were observed at Cys773, Glu804, Phe795, and Thr854.

And for roulette (Figure 12D), new H-bonds were observed at

Asp105, Cys773, Leu745, Phe795, and Asp855. Overall, the results

highlight how different selections methods can lead to different H-

bonding patterns, and underscores how visualization of DOCK_GA

ensembles can be used to identify hotspots, which would be a useful

tool to help guide synthetic chemistry.

4.8 | Large-scale benchmarking

To assess the robustness of DOCK_GA we performed evolution start-

ing from a large group of 651 protein-ligand systems taken from our

published SB2012 testset (Figure 13). The primary goal was three-

fold: (1) evaluate if the default parameters would lead to single-

molecule evolution when initiated from a diverse group of ligands in a

wide variety of binding site environments, (2) determine how long it

would take for systems to reach the maximum specified ensemble size

of 100 molecules, and (3) assess if a relatively short run of

F IGURE 11 The 5 top scoring molecules at generation 500 (Gen500) from simulations in 1M17 (EGFR) starting from erlotinib (top) using (A)
elitism, (B) tournament, and (C) roulette selection methods. Values under each 2D picture represent fitness scores (kcal/mol) and Tanimoto
coefficients, which are computed relative to the most favorable compound (left most compound) from each simulation. Shaded groups across a
given row (selection method) highlight functional group differences at each position between each top-scoring compound with the next best-
scored candidates. Results from one seed are shown (seed 0)
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25 generations was sufficient to evolve new molecules with equal or

more favorable fitness scores when compared to the initial parent. It

is important to note that the specified “selection” method is not initi-

ated until the current ensemble size exceeds the defined maximum

value. Thus, the number of molecules obtained at different genera-

tions for the 651 systems plotted in Figure 13A are independent of

which selection method is employed. Further, it should be emphasized

that the data plotted Figure 13A represents the number of “total”
molecules retained at each generation, in contrast to Figure 6 which

plots the number of “unique” molecules.

As shown in Figure 13A, by generation 005, evolution occurred in

all but a handful of systems although no systems had yet reached

100 molecules. By generation 015 however, about 200 systems had

an ensemble of size 100. Importantly, by generation 025, 73.3% sys-

tems had reached an ensemble size of 100. Interestingly, only 1 system

out of 651 failed to yield any offspring. Examination of the output

revealed that the initial parent in system 1W9U had a relatively large

MW (674.7) and number of H-bond acceptors (N = 19) and donors

(N = 9) compared to the input parameter cutoffs (Table 1). Thus, the

only possible initial mutations that could have been accepted in this

F IGURE 12 H-bond patterns (magenta springs) in the 1M17 (EGFR) binding pocket for (A) erlotinib from generation 0 (x-ray pose) versus
ligand ensembles (100 overlaid compounds each) at generation 500 from simulations employing (B) elitism (C) tournament, and (D) roulette
selection methods. Labels indicate which amino acids and atoms are involved. Protein residues hidden for clarity. Results from one seed are
shown (seed 0)

F IGURE 13 (A) Number of
total molecules retained at
generation 5, 10, 15, 20, and
25 across 651 different protein-
ligand systems. (B) Change in
fitness between the average of the
top 25 molecules at generation

25 minus the initial parent ranked
from most to least favorable for
elitism (top), tournament (middle),
and roulette (bottom). Results from
one seed are shown (seed 0)
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case would have been deletions or substitutions that would reduce

these properties to below the specified cutoffs. In this one particular

instance, 25 generations were not sufficient. Overall, the results in

Figure 13A suggest that the tested DOCK_GA parameters (Table 1,

Table S1) are sufficient to evolve and generate offspring relatively

quickly.

Figure 13B plots the change in fitness (Δ fitness) for these

651 systems, defined here as the average fitness for the top 25 mole-

cules at generation 25 minus the initial parent (offspring_average –

initial parent). In a few cases, less than 25 molecules were generated

and in these instances all molecules were used to compute the aver-

age. The Δ fitness in Figure 13B is rank ordered independently for

each selection method, which emphasizes differences between the

methods, with negative values indicating that top-scored offspring

have more favorable scores than the initial parent. Elitism might have

been expected to yield the largest number of systems with more

favorable Δ fitness given its tendency to yield more favorable scores

as discussed earlier (Figure 9). Somewhat surprisingly however, at

generation 25, tournament yielded the greatest number of systems

with negative Δ fitness (465 systems, 71.4%) followed by elitism

(386, 59.3%) and roulette (292, 44.9%). We hypothesize that elitism

would eventually overtake tournament with longer runs and that run-

ning for additional generations would likely increase the number of

systems with negative Δ fitness. In any event, Figure 13B show that

all three selection methods are capable of producing more favorable

offspring in only 25 generations. More importantly, the considerable

number of systems successfully simulated here (N = 650 out of 651)

validates that the DOCK_GA program can be used to perform molecu-

lar evolution in a wide variety of protein-ligand systems.

Figure 14 highlights a particularly interesting example in which a

more energetically favorable offspring was generated which makes a

key interaction in the binding site not seen in the initial parent. Here,

starting from the neutral N-benzylamide parent ligand complexed with

thrombin (pdb 1MUE), an offspring in generation 24 was identified

F IGURE 14 (Top) Footprint comparison plots in thrombin showing dominant van der Waals (VDW) and electrostatic (ES) per-residue
interactions (plus remainder, REMAIN) for the initial parent from pdb 1MUE (purple), an evolved ligand taken from generation 24 (cyan) in 1MUE,
and inhibitor CVS1578 from pdb 1BA8 (orange) scored in 1MUE. Residue numbering for thrombin taken directly from 1MUE. Energies in kcal/
mol. (Bottom) Corresponding DOCK_GA poses (H-bonds in dashed magenta) and interaction energies (kcal/mol) for the three ligands in 1MUE.
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which contains a piperidine moiety that mimics the guanidine seen in

other reported inhibitors, including the FDA approved drug argatro-

ban and compound CVS1578 (pdb 1BA8). Figure 14 top panels com-

pare the molecular footprints (per-residue interaction energies) for

the parent (1MUE, magenta), the evolved ligand (Gen024, cyan), and

CVS1578 (1BA8, orange) which highlights the resulting mimicry in

terms of the electrostatic (ES) patterns at position Asp189.B (gray

arrow). Figure 14 bottom panel compares the accompanying 3D poses

for these three ligands, their H-bonding patterns, and DOCK_GA

scores which show a dramatic favorable increase in overall interaction

energy (�59.1 to �66.2 kcal/mol), as well as the ES component (�1.9

to �10.4 kcal/mol), as this particular parent evolved.

4.9 | Ensemble-based evolution

All of the validation tests presented thus far have initiated evolution

from a single parent. However, evolution can also be initiated from an

ensemble (ensemble-based evolution) which enables multiple sources

of experimental information to be used simultaneously. For example,

ensemble-based evolution could be seeded with a group of crystallo-

graphic ligands known to bind to the same protein, a group of molecu-

lar fragments, or promising results from a virtual screen. To

demonstrate this capability, 23 small molecules bound in the A-site of

the main protease (Mpro) of SARS-CoV2, taken from publicly available

crystal structures provided by the COVID Moonshot effort,82,83 were

evolved as shown in Figure 15. These ensemble-based simulations

employed the exact same conditions as the previously discussed

single-molecule runs. Readers should note that when different crystal-

lographic structures are used to construct the initial ensemble for

ensemble-based evolution, if necessary, proteins should first be

aligned to a common reference structure (typically through backbone

alignment) before extracting the ligands.

As shown in Figure 15A, molecules in the initial parent ensemble

make H-bond interactions with the backbone of Glu166, the imidazole

ring of His163 localized in the top of the A-site, and in one case the

backbone of Gly143. Interestingly, after 15 generations using elitism

(Figure 15B), the resulting molecules all made H-bonds with Gly143

and they had expanded towards the bottom of the A-site to make H-

bonds with Thr26. No elitism compounds in this generation appeared

to H-bond with His163. In contrast, evolution using roulette

(Figure 15C) maintained the initial H-bond with His163 seen in the

parents and, to a lesser extent than elitism, they also made showed

H-bonds Gly143. However, no roulette-generated molecules in genera-

tion 15 appeared to H-bond with Thr26. A few of these roulette exam-

ples interacted with Glu166 similar to the parents (Figure 15C vs. A).

The results highlight again the potential benefit of using different selec-

tion methods, to generate a variety of favorably-scored molecules, with

different H-bonding potential. In recent work reported by Zhang

et al.,88 free energy perturbation methods were used to successfully re-

design the anti-epileptic drug perampanel, a weak inhibitor of SARS-

CoV-2 Mpro, to H-bond with the Thr26 backbone at O and NH. It is

interesting to note that the offspring obtained here, after 15 generations

using elitism (Figure 15B), evolved to yield the same interactions.

5 | CONCLUSIONS

This work presents a new genetic algorithm to facilitate molecular

evolution of small organic molecules, in the context of a 3D protein-

ligand binding site, over multiple generations. Termed DOCK_GA, the

method has been implemented into the actively developed program

DOCK6 which enabled us to exploit and adapt existing DOCK func-

tions including library generation, conformational sampling, chemical

searching, and scoring. The program is organized (Figure 2) around

five algorithmic stages (Initial Generation, Crossover & Mutation, Min-

imize & Score & Prune, Fitness Evaluation, Selection). The chemical

evolution of molecules (Figure 3) is accomplished via two primary

mechanisms: crossover (breeding) which blends parents together at

overlapping compatible bonds, and mutation (deletion, addition, sub-

stitution, and replacement) which modifies functionality. A key feature

of the algorithm, used to avoid combinatorial explosion, involves spec-

ifying one of three selection types based on elitism, tournament, or

roulette selection procedures (Figure 4). To assess the performance

and behavior of DOCK_GA we employed three primary groups of

experiments based on (i) single-molecule evolution in four clinically-

relevant systems, (ii) large-scale benchmarking using 651 systems, and

(iii) ensemble-based evolution in a COVID drug target.

F IGURE 15 (A) Experimental binding
poses for 23 non-covalent molecules used
to seed ensemble-based evolution in the
A-site of Mpro of SARS-CoV2. (B) Elitism
ensemble of 100 molecules at generation
15. (C) Roulette ensemble of
100 molecules at generation 15. H-bonds
between ligands (green) and key residues
(gray) in the Mpro binding site shown in

magenta. Results from one seed are
shown (seed 0)
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In the first group of experiments, we employed single-molecule evo-

lution for 500 generations, under three different selection methods, start-

ing from crystallographic structures of zanamivir complexed with

neuraminidase, erlotinib with epidermal growth factor receptor, apixaban

with factor XA, and indomethacin with cyclooxygenase-2. Numerous

aspects were examined. In terms of mutation type success (Table 3),

across all systems and selection methods, substitutions were more fre-

quent (77%), followed by deletions (75%), additions (27%), and replace-

ments (8%). For elitism, additions were particularly low (6%), likely as a

result of the method generating larger offspring which makes additions in

future generations less likely. For the same reason, the number of survi-

vors containing a crossover (Table 3) were lower for elitism (8%), then the

overall average (36%). The number of unique offspring retained per gen-

eration (Figure 6) for tournament and roulette remained relatively stable

at 50–65 molecules while elitism showed a quick exponential drop which

plateaued at 10–15 molecules around generation 100. In terms of chemi-

cal properties (Figure 7), at generation 500, elitism yielded molecules with

larger MW, more #rotatable bonds, greater numbers of #H-bond donors

and acceptors, and much tighter distributions. Elitism also yielded more

chemically similar molecules, as judged by higher pair-wise Tanimoto

coefficients (Figure 8). In terms of fitness convergence (Figure 9 and

Figure S1), all selection methods yielded reasonably plateaued scores by

about 250 generation. As expected, elitism also yielded the most

favorably-scored molecules with much smaller standard deviations. In

terms of 3D structural convergence (Figure 10), elitism led to the highest

structural similarity among members in the final ensemble, as judged by

more negative pair-wise Hungarian matching similarity (HMS) scores. An

examination of the five top-scoring molecules from each run, for com-

pounds evolved from erlotinib (Figure 11), showed that the resulting con-

generic series from elitism yielded higher Tanimoto scores (0.76–0.89)

than tournament (0.71–0.85) or roulette (0.43–0.73). An examination of

H-bonding patterns (Figure 12) showed that roulette and tournament

yielded more diverse interactions than elitism.

In the second group of experiments, we performed large-scale

benchmarking starting from 651 complexes taken from our SB2012

test set (651 unique pdb codes), and evolved molecules under the dif-

ferent selection methods for 25 generations. As before, single-

molecule evolution was employed. The goal was to test the algorithm

with a larger more diverse dataset and to determine production effi-

ciency in terms of number of molecules generated, and range of effi-

cacy in terms of fitness, over a relatively short number of generations.

Importantly, 73.3% of the 651 systems had produced 100 offspring

by generation 25 (Figure 13A) effectively demonstrating that

DOCK_GA can be employed in a wide-variety of systems. Only one

system failed to yield any offspring. The large number of systems for

which the top-scoring compounds had more favorable fitness at gen-

eration 25 relative to the initial parents (tournament 71.4% > elitism

59.3% > roulette 44.9%) further validates the infrastructure for

molecular design (Figure 13B). For thrombin (Figure 14), we showed

an interesting example in which a ligand evolved to make a new salt

bridge as other reported inhibitors (CVS1578, argatroban).

In the third group of experiments, we performed evolution in the

main protease (Mpro) of SARS-CoV2 (Figure 15) starting from co-

crystalized ligands extracted from 23 x-ray structures aligned to a

common reference frame. The objective was to demonstrate “ensem-

ble-based evolution” in which multiple ligands are used to seed

growth. Evolution in Mpro led to molecules that expanded into the

binding site and made interactions with key residues that in some

cases were similar (roulette) or different (elitism) than the initial parent

ensemble (Figure 15). Interestingly, for elitism in particular, although

they shared some spatial overlap with the parents near the top of the

binding site, molecules evolved to make H-bond interactions with the

backbone of residue Thr26 at the bottom of the pocket in a manner

similar to a group of potent Mpro inhibitors previously reported by

Zhang et al.88 The ability to evolve new compounds against clinically

relevant targets, starting from an ensemble of previously reported

inhibitors, allows users to more easily incorporate prior experimental

binding information in their molecular design.

The outcomes of this work suggest DOCK_GA is a powerful evo-

lutionary algorithm that will be a useful tool to design new molecules

against a wide variety of clinically relevant targets. Key takeaways

include: (1) From a development perspective, the algorithm is robust as

demonstrated by the successful evolution of molecules under differ-

ent starting conditions across a large and diverse protein dataset.

(2) From a features perspective, users have flexibility with regards to

control of parent input (single molecule or ensemble), selection

method, fitness function (energy and/or similarity-based), and molecu-

lar descriptors that promote drug-likeness. (3) From a user perspective,

the program is straightforward to run. All functions are integrated into

the well-validated DOCK6 infrastructure and require only a single

executable and input file at run-time. No additional software is

required beyond that provided in the standard distribution. (4) Finally,

from an application perspective, elitism would be recommended over

roulette if users are interested in generating tightly clustered mole-

cules in terms of chemical and structural similarity with more favor-

able fitness, and vice versa, with tournament being in between.

As with all molecular modeling software, the choice of which

parameters to employ, and their specific values, can be daunting for

users. Based on the testing outlined in this work, we believe the

values in Table 1 and Table S1 are sound starting points for many

applications. Nevertheless, as noted by a reviewer, users may wish to

“tune” the input parameters to achieve a desired outcome. Some of

the most straightforward parameters to explore include varying cut-

offs that control ligand molecular weight, number of hydrogen bond

donors and acceptors, number of rotatable bonds, and formal charge.

Other parameters to explore include varying the number of genera-

tions and increasing the number of molecules retained each genera-

tion which could promote additional crossover events. Depending on

the selection method, larger ensembles could lead to greater diversity

(roulette) or faster convergence (elitism or tournament). Beyond vary-

ing input parameters, the choice of fragment libraries used for muta-

tions will have a large effect on molecular evolution. As an example,

use of smaller and more focused fragment libraries derived from pre-

viously reported kinase inhibitors could be used to guide evolution

towards compounds containing chemical moieties known to be impor-

tant for kinase activity. Finally, the choice of scoring function specified
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will have a significant effect on the search outcomes. While the pre-

sent work employed only a simple two-term function (Equation 2),

users may wish to explore including other DOCK6 functions to help

direct evolution towards a known ligand reference with activity, for

example, in terms of overlap based on molecular footprints, pharma-

cophores, Hungarian matching similarity, or combinations (see

Methods).

Ongoing work planned for future release involve adapting

DOCK_GA routines to limit which regions of a molecule can be modi-

fied, compute additional cheminformatics properties, permit evolution

of covalently bound ligands, and perform more intelligent functional

group swapping during substitution and replacement. Other planned

efforts involve developing procedures to dynamically modulate muta-

tion types and mutation rates during evolution, evaluating niching

methods89–92 to better balance individual scoring function terms for

offspring selection, and assessing the utility of using mass extinction

events to re-seed evolution upon reaching a fitness and/or similarity

convergence threshold.

As a final comment, we would emphasize that beyond suggest-

ing only a few specific molecules to synthesize, DOCK_GA can be

used as a powerful “hypothesis generator” for exploring chemical

space. For example, we have found that visualization of interaction

patterns made by an evolved ensemble is a practical way to pinpoint

how an existing compound might be modified so that the same bind-

ing site residues can be engaged in a similar manner, for example,

through salt bridges, H-bonding, hydrophobic packing, or other

means. Further, top-scoring compounds generated by DOCK_GA

can be used as input for more sophisticated atomistic simulation

methods, such as molecular dynamics, to further gauge geometric

and energetic compatibility with a target. Tutorials, input files, best

practices, and planned work for future releases of the algorithms

described in this work can be found at the Rizzo lab wiki located at

https://ringo.ams.stonybrook.edu.
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