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Light propagation on a two-dimensional curved surface embedded in a three-
dimensional space has attracted increasing attention as an analog model of four-
dimensional curved spacetime in the laboratory. Despite recent developments in modern
cosmology on the dynamics and evolution of the universe, investigation of nonlinear
dynamics of light on non-Euclidean geometry is still scarce, with fundamental questions,
such as the effect of curvature on deterministic chaos, challenging to address. Here,
we study classical and wave chaotic dynamics on a family of surfaces of revolution
by considering its equivalent conformally transformed flat billiard, with nonuniform
distribution of the refractive index. We prove rigorously that these two systems share the
same dynamics. By exploring the Poincaré surface of section, the Lyapunov exponent,
and the statistics of eigenmodes and eigenfrequency spectrum in the transformed
inhomogeneous table billiard, we find that the degree of chaos is fully controlled
by a single, curvature-related geometric parameter of the curved surface. A simple
interpretation of our findings in transformed billiards, the “fictitious force,” allows us to
extend our prediction to other classes of curved surfaces. This powerful analogy between
two a priori unrelated systems not only brings forward an approach to control the degree
of chaos, but also provides potentialities for further studies and applications in various
fields, such as billiards design, optical fibers, or laser microcavities.

chaos | curved space | transformation optics

1. Introduction

Einstein’s general theory of relativity (GR) unprecedentedly interprets gravity in a ge-
ometrical framework; namely, the presence of a massive object distorts the very fabric
of the space and time in its vicinity. Despite GR’s triumph, gravitational effects are,
in principle, too feeble for light to be perceived in a laboratory environment. One of
the analog models of GR is two-dimensional (2D) curved surfaces embedded in three-
dimensional (3D) space, whose theoretical cornerstones are the 3+1 membrane paradigm
(1) and embedding diagrams. After taking a constant time and extracting the equatorial
slice of a spherically symmetrical space, the remnant metric can be visualized through a 2D
curved surface. Ever since this innovative notion was brought up by Batz and Peschel (2),
electromagnetic (EM) dynamics and wave propagation on 2D curved surfaces have been
prosperously developed both theoretically (3–10) and experimentally (11–15). On the
other hand, GR notions could reciprocally contribute to the engineering of nanophotonic
devices (15, 16) and transformation optical designs, ranging from EM invisible cloaks (17,
18) to perfectly focusing lenses (19–21), based on manipulation of the curved geodesic
paths.

Investigation of nonlinear dynamics in the context of GR may date back to the 1960s
and has been extensively discussed in various aspects (22–24). Nonlinear dynamics, or
chaos, widely exists in diverse modern scientific disciplines. One characteristic of chaos
is the exponential sensitivity to initial conditions, with a well-publicized metaphor being
the “butterfly effect.” In the recent decades, instead of being considered a nuisance, wave
chaos has been taken advantage of to ameliorate optical resonators and laser microcavities
(25–34), such as enhancing energy storage (25), suppressing spatiotemporal lasing in-
stabilities (26), realizing high-power directional emission (27–29), etc. To this end,
information about dynamical behaviors in a 2D cavity, such as critical periodic orbits
(POs) and the volume of chaotic area in phase space, is significant. One paradigm model
is a 2D table (or flat) billiard, which is typically a closed domain, wherein particles and light
rays propagate freely, except for elastic collisions on its boundaries. Various degrees of chaos
in table billiards are realized by either deforming the boundaries (35–37) or introducing
external force (38–40). In a recent work, a novel notion, a transformed cavity, is proposed
with a nonuniform profile of a refractive index present in a deformed optical cavity (41).
Such a transformed cavity opens up a new pathway of chaos engineering.
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Fundamental questions arise in the investigation of light
chaotic dynamics on a non-Euclidean geometry, among them
the role of curvature, a new degree of freedom that is not present
in flat space. Yet, challenges exist, including the complexity of
the equations induced by the curved geometry, as well as the
ambiguity of concepts, such as the definition of boundaries and
indicators of chaos. To the best of our knowledge, the wave-
chaos idea has been carried over in a few curved elastic systems
(42–44), such as aluminum thin shells (42), yet has rarely been
explored in optics, except for a very recent study about ray chaotic
behavior on a deformed toroidal surface (45). Here, we address
this challenge by considering the analogy between a curved surface
and a 2D table billiard with nonuniform distribution of the
refractive index, on the strength of transformation optics (TO).
The mathematical underpinning of TO is the form invariance
of Maxwell equations under general coordinate transformation,
with the optical constitutive parameters of the transformed media
(i.e., engineering the permittivity ε and permeability μ tensor
explicitly) (46, 47). As we will demonstrate, this approach of
projection provides a possibility to utilize physical systems on
one surface to explore their counterparts on the other, especially
when the studies in one of the systems are demanding to
carry on.

In this work, we study classical and wave chaos on a special
type of 2D curved surfaces in 3D space, surfaces of revolution
(SORs), by investigating light propagation in its corresponding
table billiard with azimuthally symmetric nonuniform distribu-
tion of refractive index. We exemplarily choose a typical family of
SORs, the Tannery surfaces. Since such surfaces are integrable, we
consider half of the surface and its 2D nonuniform billiard, where
a circular hole is pierced to introduce chaos. We prove rigorously
that these two systems share the same dynamics by showing that
a conformal coordinate transformation preserves both geodesic
equations and wave equations. Utilizing this equivalence, we can
assess the degree of chaos in one system (the curved surface)
by probing the nature of the trajectories in Poincaré surface of
section (SOS) and measuring the Lyapunov exponent in the
other (the flat billiard). We find that the degree of chaos is fully
controlled by a single geometrical curvature-related parameter
of the Tannery surface. This is also revealed in the statistics
of eigenmodes of the Tannery surfaces, as the wave equation
is invariant for both systems. At last, we show that the above
results can be generalized to arbitrary SORs, by coming up with
a universal quantity in the 2D nonuniform billiards. This sim-
ple interpretation further demonstrates the potentialities of our
approach.

2. Results

2.1. Basic Theory. As its name indicates, an SOR can be generated
by revolving an arbitrary plane curve (known as a generatrix)
around an axis of symmetry for a circle. The line element of a
typical SOR takes the form ds2 = gαβdx

αdxβ = E (u)du2 +
G(u)dv2, with u along longitudinal direction and v, being the
rotational angle, along transverse direction, as shown in Fig. 1A.
In curved spaces, light rays propagate along geodesics, in analogy
with straight lines in free space. On the basis of geodesic equations,
an arbitrary geodesic with given initial conditions is depicted by
(for mathematical details, see SI Appendix, section 1)

dv = η
κ
√

E (u)

G(u)
√

1− κ2

G(u)

du. [1]
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Fig. 1. (A) Sketch of a typical SOR with the orthogonal curvilinear coordinates
on it. A, Inset illustrates its generatrix. (B) Tannery surface with c = 2 (Left) and
its projected billiard (Right). A typical closed trajectory is depicted by the yellow
solid line. (C and D) Truncated Tannery surfaces that have a circular hole with
radius 0.3 (dark green dotted line) (C) and radius 0.1 (orange dotted line) (D)
in their projected billiards. The equators are denoted by black dashed lines in
the projected billiards. Two typical trajectories are plotted by green and red
solid lines, respectively.

Here, η = sgn
[
(du/ds)initial

]
is determined by the initial direc-

tion, and slant κ, defined as [G(u)dv/ds ]initial, remains invariant
as a consequence of the conservation of angular momentum (9).
When it comes to waves, the time-harmonic scalar EM field
follows the massless Klein–Gordon equation
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1√
E (u)G(u)

∂

∂u

[√
G(u)

E (u)

∂Φ

∂u

]
+

1

G(u)

∂2Φ

∂v2
+ k2Φ= 0,

[2]
with k being the propagation constant.*

In this work, instead of directly investigating light propagation
on the surface, we employ an alternative method by projecting an
SOR onto a plane with distribution of refractive index, in light of
conformal TO (48, 49). This notion is mathematically underlain
by the theorem that any 2D Riemannian manifold is conformally
flat. Namely, the metric of an arbitrary 2D curved surface ds2 can
be conformally related to the metric of a flat plane ds2f through
ds2 = Λds2f , where Λ is a differentiable function (50). Interest-
ingly, the right-hand side, defined as ds ′2, perfectly describes an
inhomogeneous planar dielectric medium with spatially varying
refractive index n =

√
Λ. For SORs, thanks to their rotational

symmetry, we can naturally suppose that the projected plane
is azimuthally symmetric. Consequently, the polar coordinate is
chosen out of convenience, and the variation of refractive index
rests exclusively on the radial component. Based on the premise
that ds2 = ds ′2, an equivalence between these two systems can be
established through the coordinate mapping (51)

r(u) = A exp

[∫ u
√

E (u ′)

G(u ′)
du ′

]
, ϕ= v , [3]

with distribution of refractive index

n(u) =

√
G(u)

A
exp

[
−
∫ u

√
E (u ′)

G(u ′)
du ′

]
. [4]

Here, A is a positive integration constant, and r and ϕ are radial
and azimuth coordinates on the plane.

By virtue of this coordinate mapping, the transformed version
of Eq. 1 appears as

dϕ= η′
κ′

n(r)r2
√

1− κ′2

n2(r)r2

dr , [5]

with η′ = sgn
[
(dr/ds ′)initial

]
and κ′ =

[
n2(r)r2dϕ/ds ′

]
initial.

We prove in SI Appendix, section 2 that Eq. 5 is the very solution
of geodesic equations on the projected plane. Thus, the dynamics
of light rays are preserved in both systems. In terms of waves, Eq. 2
is transformed into

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2
∂2Φ

∂ϕ2
+ k2n2(r)Φ = 0, [6]

which is exactly the wave equation of electric field on a plane
with distribution of azimuthally symmetric refractive index n(r).
As a result, the transformation preserves the solutions of wave
equation in one system to be the eigenmodes of the other. In
SI Appendix, section 2, we generalize this result to arbitrary co-
ordinate transformation. This demonstrates that light dynamics
completely parallel in both systems. With this dynamical equiva-
lence, we can safely investigate one system to infer about the other.

When an SOR is closed (e.g., a sphere or spindle) or infinitely
extends (e.g., a cylinder or cone), its projection covers the whole

*The precise evolution of vector light fields is described in section II of ref. 2, starting from
3D Maxwell equations written in general coordinates. Specifically, for EM wave polarizing
strictly along the transverse direction, its wave equation also takes the form of Eq. 2, except
for an extra curvature-induced potential, whose effect is discussed in ref. 8.

plane. A paradigmatic example is the so-called “Tannery surfaces,”
which is an object of interest for mathematicians (52) and is going
to be the study case of this paper. The family of Tannery surfaces
can be parameterized by E (u) = (c + cos u)2, G(u) = sin2 u ,†
with c being a positive constant and, in the meantime, the single
parameter to depict this family of surfaces (for the description
of Tannery surfaces embedded in the Cartesian and cylindrical
coordinate system, see SI Appendix, section 1). It is proved that
such surfaces have a constant period function 2cπ (53). That
is, when the parameter c is an integer, all the geodesics (except
the ones along longitudinal u direction) are closed, and for a
particle that departs from an arbitrary position on the geodesic
moves along it and returns to the starting point, the accumulated
variation in coordinate v is 2cπ, as shown in Fig. 1B. In order to
limit our study to a finite area on plane, a mirror is put on the
“equator” (i.e., the latitude with u = π/2; black dashed lines in
Fig. 1 C and D) of the surface, which plays the role of a perfectly
reflecting boundary, and only the lower half of the surface is
taken. On the projected plane, the equator corresponds to a circle
with radius rB, while the lower half of the surface corresponds
to the area inside the circle, which together naturally form a
circular billiard. In what follows, coordinate r will be normalized
by rB, resulting in the billiard being unit-sized (as shown in the
right column of Fig. 1 C and D) and subsequent analyses being
dimensionless. These two systems are absolutely integrable since
the number of constants of motion (energy and orbital angular
momentum) is equal to the dimensionality of the system (54),
owing to the rotational symmetry of SORs. To introduce chaos
in this system, an off-centered, disk-shaped area is eliminated,
leaving a circular hole with a specular boundary in the billiard.
The choice of a disk shape is out of consideration of simpleness,
yet more complex shapes could be explored. The right column of
Fig. 1 C and D shows two typical holes, whose centers are located
at 0.2 (in unit of radius) from the centers of the billiards and whose
radii are 0.3 and 0.1, denoted by dark green and orange dotted
lines, respectively. By taking the coordinate transformation Eq. 3,
the correspondence of these two holes on the surface are shown in
the left column. It is seen that the refractive index approaches to
infinity at the center of the projected billiard, corresponding to the
apex of the surface in the bottom, which is basically a singularity
for light rays. We focus in the rest of the paper on the cases where
the hole includes the billiard center, resulting in the removal of
the bottom apex. Its correspondence on the surface is a boundary
unparallel to latitudes, rather than a hole.

In what follows, in order to distinguish them from their 2D
projected billiards, SORs are referred to as “3D surfaces,” based
on the fact that they are embedded in 3D space, despite being 2D
per se. Besides, unless otherwise specified, the off-centered disk
will be eliminated in the fashion of Fig. 1C.

2.2. Poincaré SOS. Classical chaotic signatures are, in principle,
derived from classical mechanics and, in our context, light ray
pictures. Unlike finite beams, light rays are exclusively defined by
their positions and directions, from which their geodesic trajec-
tories are determined. Ray trajectories become rapidly intractable
in real space after a few bounces; it is therefore more advisable
to inspect ray motions in phase space, which are composed of
two spatial dimensions and their conjugate momenta. For billiard

†More precisely, the parameterization of Tannery surfaces is E(u) =

a2 (c + cos u)2, G(u) = a2 sin2 u, where a is a constant with unit of length governing the
size of the surface. From what is demonstrated in SI Appendix, section 6, the size of the
surface does not affect the results presented in this work. Therefore in what follows, a is
taken as 1 m without loss of generality.
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systems, an effective approach to extract information from four-
dimensional phase space is to record the states of the trajectory
only when it collides on the outer boundary. This 2D section of
phase space is known as the Poincaré SOS and is conveniently
depicted in the framework of the Birkhoff coordinate, as sketched
in Fig. 2 A, 1. In practice, the trajectories between two bounces are
traced by Eq. 1. When the trajectories collide on the hole/lower
unparallel boundary, the rule of specular reflection is applied in the
2D projected billiard, after projecting the trajectories on the 3D
surface back to the inhomogeneous plane. This step saves one from
complicated or even impracticable calculation on the 3D surface
since the analytical expression of the lower unparallel boundary is
inaccessible.

When |sinχ| is large enough, trajectories propagate near the
outer boundary of the 2D projected billiard/equator of 3D surface
and are therefore free from colliding on the hole/lower unparallel
boundary. Their tangential momenta |sinχ| remain invariant,
so that in Poincaré SOS, these trajectories are represented by
horizontal straight lines. In contrast, trajectories with small |sinχ|
collide on the hole/lower unparallel boundary, resulting in their
representations ergodically and irregularly distributed in the cen-
tral part of Poincaré SOS, which therefore forms a chaotic sea.
Among these trajectories, some return to their initial conditions
after several bounces and retrace themselves repeatedly. Such POs
are represented as a succession of points in SOS, with the number
of points equal to the number of bounces on the outer bound-
ary/equator in each period. For some POs, the trajectories whose
initial conditions are slightly deviated from the critical conditions
of POs are able to survive in the vicinity of the latter. Such POs,
considered as stable POs, form regular islands among the chaotic

sea in Poincaré SOS together with their quasi-periodic orbits. As a
contrast, the other unstable POs are submerged in the chaotic sea
and can be scarcely recognized. Some typical stable and unstable
POs are illustrated by diamonds and pentagrams, respectively,
in Fig. 2 A, 2, B, 2, C, 2, and D, 2, and the corresponding
trajectories in the billiards are depicted in Fig. 2 A, 3, B, 3,
C, 3, and D, 3 with the same labels and colors. An interest-
ing feature of PO with label #1 is explicated in SI Appendix,
section 3.

A generic presentation about the Poincaré SOSs of four typical
Tannery surfaces with c = 0, 1, 2, and 5 is given in Fig. 2.
Different shapes of the surfaces are clearly exhibited in Fig. 2
B, 1, C, 1, and D, 1. Specially, when c = 0, the metric of the
surface degenerates to ds2 = cos2 udu2 + sin2 udv2, which is
equivalent to a polar coordinate if one takes sin u as the radial
component and v as the azimuth component. Thus, surface with
c = 0 corresponds to the flat billiard and serves as a reference. The
Poincaré SOSs reveal that the phase spaces of all the four surfaces
are mixed, with coexistence of both regular and chaotic trajec-
tories. One can observe that the area of chaotic sea remarkably
enlarges with the parameter c, implying an increasingly chaotic
phase-space structure of Tannery surface with greater parameter
c. Another phenomenon one may meanwhile notice is an obvious
reduction in the amount of stable POs and the area of islands,
especially in Fig. 2 B, 2, C, 2, and D, 2. These two hints suggest
an increasing proportion of trajectories transferring from regular
to chaotic and, consequently, indicate a more significant degree of
chaos. Note that this observation is true both on the 3D surface
and in the 2D billiard with refractive index landscape because of
their equivalence.

Fig. 2. Poincaré surfaces of section of Tannery surfaces with different parameter c. (A, 1) Sketch of Birkhoff coordinates. (B, 1, C, 1, and D, 1) Sketches of Tannery
surfaces with c = 1, 2, and 5, respectively. The transparent parts correspond to areas outside the projected billiard and inside the hole, which are excluded in
the study. (A, 2, B, 2, C, 2, and D, 2) Poincaré surfaces of sections of Tannery surfaces with c = 0, 1, 2, and 5, respectively. Each color represents an arbitrary
trajectory. The diamonds and pentagrams, respectively, indicate typical stable and unstable POs, whose representations in Poincaré SOS are a succession of
points. These POs in real space are exhibited in A, 3, B, 3, C, 3, and D, 3, respectively, corresponding to the points with the same label and color.

4 of 9 https://doi.org/10.1073/pnas.2112052119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112052119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112052119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112052119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112052119/-/DCSupplemental
https://doi.org/10.1073/pnas.2112052119


2.3. Lyapunov Exponent. As was mentioned, a hallmark of chaos
is the sensitivity to initial conditions, i.e., the exponential di-
vergence of two extremely nearby trajectories in phase space.
The speed of this exponential divergence is characterized by the
(maximum) Lyapunov exponent λ. Here, we adopt the method
of the “billiard map” in terms of the collisions of trajectories on
the outer boundary, instead of the “billiard flow” with continuous
time (55). In this way, the Lyapunov exponent is defined as

λ= lim
N→∞

1

N

N∑
i=1

ln
|δi |
|δ0|

, [7]

where |δi | is the distance of the two chosen trajectories in phase
space at the ith bounce. In practice, two sets of extremely close
initial conditions are randomly chosen from the chaotic area
in Poincaré SOS, and distance |δ| is collected every time two
trajectories collide on the outer boundary. Theoretically, if the
number of bounces N is large enough, Eq. 7 is supposed to
approach to a constant that is independent of the choice of initial
conditions. Technical details about the calculation of Lyapunov
exponents are specified in SI Appendix, section 4.

By this method, Lyapunov exponents of a series of Tannery
surfaces with varying parameter c and under three different means
of truncation are calculated and illustrated in Fig. 3A. Each
data point in Fig. 3A is the result of averaging over four to
six randomly chosen pairs of trajectories, where each pair of
trajectories experiences several tens of thousands of bounces on
the outer boundary/equator, and an approximate convergence
has been reached (an example of five typical pairs of trajectories
is shown in Fig. 3B). The figure manifests an overall increasing
tendency of Lyapunov exponents with increasing parameter c of
Tannery surfaces, indicating that, in general, when parameter c
increases, the speed of divergence between two close trajectories,
or the instability of the trajectories, increases, which validates
the increase of degree of chaos both on the 3D surface and in
the 2D projected billiard. Furthermore, the invariance of this
increasing tendency, despite different positions and radii of the
pierced hole in the projected billiard, attests to the universality of
this feature, as shown in Fig. 3A. Compared with the qualitative
interpretation obtained from Poincaré SOS with a coarse sampling
of parameter c, this signature brings a more quantitative insight,
which enables a finer exploration and hence reveals more details
about the dependence of chaoticity on parameter c. One example
is that an exception to this increasing trend is observed near c = 1,
elucidating that the variation of chaoticity with parameter c is not
strictly monotonous.

2.4. Statistics of Eigenmodes and Eigenfrequency Spectrum.
When it comes to quantum or wave realm, notions of phase space
and trajectories are not properly defined due to the uncertainty
principle. Therefore, signatures in classical chaos are no longer
valid, but are replaced by quantum mechanical criteria based on
the energy spectrum, energy eigenvectors, entanglement, temporal
evolution of expectation values, etc. In this section, we are going
to focus on the first two fingerprints.

We have demonstrated that the wave equation on an SOR
is identical to that in its projected billiard, bridged by the co-
ordinate transformation. Namely, the performed calculation, as
well as the concepts and phenomena in one system, can be
automatically extended to the other. Here, we obtain eigenmodes
in both systems with the help of COMSOL Multiphysics 5.2.
In practice, the simulation is conducted in the 2D inhomo-
geneous billiard because of the difficulty in constructing a 3D
surface (especially when the expression of the lower unparallel
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Fig. 3. (A) Variation of Lyapunov exponents versus the parameter c of
Tannery surfaces and three different means of truncation. The distribution
of the refractive index are illustrated in A, Inset with corresponding labels, and
the black cross denotes the center of the billiard. The red square data markers
in line ii correspond to the cases illustrated in Fig. 2. (B) The quantity λN at
Nth bounce, calculated by Eq. 7. Five pairs of extremely close trajectories are
randomly chosen at the case denoted by the pink square data marker in A,
whose initial conditions are shown in the legend with θ2 = θ1 + 10−4, pθ2 =

pθ1 + 10−4. All five pairs of trajectories converge to the same asymptotic
value, which is defined as a Lyapunov exponent.

boundary is unknown), and the eigenfunction on the 3D surface
is subsequently obtained by projection from the 2D billiard via
the coordinate transformation. Here, for the sake of consistency,
we define dimensionless eigenfrequency ω̃i = ωirB/cL from the
simulated eigenfrequency spectrum {ωi}, where cL is the speed
of light. Three typical eigenmodes in both systems are illustrated
in SI Appendix, Fig. S5.

One credible imprint of ray chaos resides in the spatial statistics
of eigenmodes (56). To be specific, the wave function of a typical
ergodic eigenmode, whose classical correspondence has a stochas-
tic motion, distributes uniformly over the whole available area of
the phase space, which is ergodically visited by its classical trajecto-
ries. Such modes are thus conjectured as a random superposition
of plane waves with different amplitudes, phases, and directions,
but the same wavenumber, manifesting an analogous pattern of
laser speckles. As per the central limit theorem, such a field is
Gaussian random, implying that the amplitude of eigenmode
follows the Gaussian statistical distribution

P (Φ) =
1√

2π 〈Φ〉
exp

(
− Φ2

2 〈Φ〉

)
, [8]
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while the probability distribution of intensity I =Φ2 is subjected
to

P (I ) =
1√

2πI / 〈I 〉
exp

(
− I

2 〈I 〉

)
, [9]

known as Porter–Thomas (PT) distribution. Fig. 4 A and B
illustrate a typical ergodic eigenmode of truncated Tannery surface
with c = 1, both on the 3D surface and the 2D projected plane.
The good agreement of its P (Φ) and P (I ) with Gaussian
and PT distribution, respectively, validates the ergodicity of the
eigenmode.

Besides ergodic modes with speckle statistics, there exists a
special class of modes with enhanced amplitude in the vicinity
of single unstable POs in the corresponding classical system. This
ubiquitous, yet remarkable, phenomenon is well known as quan-
tum scarring (57). Unlike the enhancement of eigenstate intensity
near stable POs, which are well understood by the semiclassical
theory of integrable systems, scar was initially an unexpected
phenomenon and was later found to be a significant correction
to predictions from random matrix theory and Gutzwiller trace
formula. One of the scarred modes of truncated Tannery surface

with c = 1 on projected plane and 3D surface is exhibited in
Fig. 4 E and F, superimposed by a white solid line indicating its
corresponding unstable PO. A prominent deviation of P (Φ) and
P (I ) from ergodicity can be clearly observed in Fig. 4 G and H,
respectively.

Another classic and widely recognized indicator for the ran-
domness of a quantum system is the distribution of nearest-
neighbor spacing (NNS) of the eigenfrequency spectrum (58). In a
classically integrable system, successive eigenfrequency distributes
randomly, and the NNS s follows the Poisson law

PPoisson(s) = exp(−s), [10]

with its peak located at zero. While in classically chaotic systems,
the presence of level repulsion leads NNS to best-fit Wigner–
Dyson (WD) distribution

PWD(s) =
πs

2
exp

(
−π

4
s2
)
. [11]

In contrast with Poisson distribution, where level spacing can be
zero with the highest probability, a salient consequence of level

A B C D

E F G H

0.2

0.4

0
-4 -2 0 2 4 0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14-4 -2 0 2 4
0

0.2

0.4

0.6

I
I

1500

2000

1000

500

0
0 5 10 15 20 25 0 1 2 3 4 5 6

J K

14.9 15.0 15.1

~ω

~ ω

Fig. 4. (A–H) Spatial statistics of eigenmodes. (A and B) The field distributions (amplitude) of a typical ergodic eigenmode (with dimensionless eigenfrequency
ω̃ = 29.639) of truncated Tannery surface with c = 1 in the projected billiard (A) and on the 3D surface (B). Its distribution of amplitude and intensity are plotted
in C and D, respectively, with the red solid line being Gaussian and the PT distribution as reference. The field distributions (amplitude) of a typical scarring
eigenmode (with dimensionless eigenfrequency ω̃ = 28.863) and their statistics are shown in E–H. The white solid lines in E and F indicate its corresponding
unstable PO. (J and K ) Statistics of the eigenfrequency spectrum. (J) Cumulative eigenfrequency density N(ω̃i) of the Tannery surface with c = 2 versus
dimensionless eigenfrequency {ω̃i}. (K ) Distribution of the NNS of Tannery surfaces with c = 0 (purple), 1 (blue), 2 (red), and 5 (green). The Poisson (black
dashed) and WD (black short dashed) distribution are also plotted as reference. (J, Inset, and K, Inset) Zoom-in of the areas marked by the black and red dotted
rectangles, respectively.
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repulsion is the vanishment of infinitesimal NNS, i.e., P(s)→ 0
when s → 0. This behavior can be well explained by the Bohigas–
Giannoni–Schmit conjecture (59) that spectra of time-reversal-
invariant systems reveal the same fluctuation properties as a Gaus-
sian orthogonal ensemble in random matrix theory. When the
system has mixed dynamics, its distribution of NNS is inter-
mediate between the two limiting cases. In virtue of COMSOL
Multiphysics 5.2, we also got access to the eigenfrequency spectra
and consequently performed an unfolding procedure (for more
details, see SI Appendix, section 5). The resulting distributions of
NNS of truncated Tannery surfaces with c = 0, 1, 2, 5 are plotted
in Fig. 4K. In order to eliminate the effect of an artificially
chosen interval on the distribution curve, we adopt the cumulative
distribution instead of widely used histogrammic representation.
One can clearly observe that distributions of NNS of all four cases
interpolate between Poisson and WD distributions, indicating
that these surfaces are mixing systems. Comparing the distribu-
tions of the four cases, especially in the range of small spacing
s, which is zoomed-in in Fig. 4 K, Inset, the distribution curves
gradually deviate from a Poisson distribution and incline to a
WD distribution with the increase of parameter c, manifesting a
tendency of increasing chaoticity.

3. Discussion

The above-mentioned three signatures explicitly demonstrate an
increasing tendency of chaoticity with the geometrical parameter
c. In this section, we propose a qualitative interpretation on this
phenomenon. One should note that it is the unparallel lower
boundary on the 3D surface/hole in the projected billiard, or,
namely, the breaking of symmetry, that gives birth to the chaotic
dynamics in the first place (60). On this basis, the presence of a
curved surface further alters the chaoticity. There are two parallel
approaches to conduct the analysis, either on 3D surfaces or in
2D projected billiards. When considering from the perspective
of 3D surfaces, on different SORs, trajectories follow their re-
spective geodesics, the undisturbed natural paths. Yet, the lower
unparallel boundaries, which are the reciprocal projection of the
hole in the projected billiards, have different shapes, leading to
different degrees of chaos (for details, see SI Appendix, Fig. S4,
as well as our discussion in SI Appendix, section 4). However, the
various properties of surfaces, such as the expression of generatrix,
curvature, etc., could perplex the discussion. Whereas after being
projected onto a plane, all the information relevant to chaotic
dynamics is completely and merely embodied in the distribution
of reflective index (since the location and radius of the hole are
fixed in all projected billiards with varying c), which simplifies
the problem to a great extent. Fig. 5A compares trajectories with
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Fig. 5. Fictitious force in projected billiards of Tannery surfaces with differ-
ent c. (A) Comparison of trajectories with the same initial conditions, θ = 0
and pθ = 0.8, in projected billiards of Tannery surfaces with c = 0 (green), 1
(red), 2 (blue), and 5 (orange). The star marks the position of the center of the
billiard. (B) Comparison of the four surfaces on |μ(r)|, the quantity defined to
characterize the degree of trajectories’ deflection.

identical initial conditions in the projected billiards of Tannery
surfaces with parameter c = 0, 1, 2, 5. One can observe visually
that with the presence of the nonuniform refractive index, the
trajectories deflect toward the center of the billiard, as if they were
subjected to a “fictitious force.” More importantly, in the projected
billiard with greater parameter c, the trajectories experience more
conspicuous deflections, enhancing the chance of collision on the
hole. Put in another way, a greater initial tangential momentum
pθ is required to realize the whispering gallery orbits, resulting in
a larger area of chaotic sea and consequently a greater chaotic-
ity of the system. We surmise that the degree of deflection is
proportional to the rate of variation of the refractive index and
hypothetically quantify the fictitious force to be

μ=
r

n(r)
∇n(r), [12]

with r being the radial coordinate and n(r) being the refractive
index profile. Details about construction of Eq. 12 are revealed
in SI Appendix, section 6. Owing to the azimuthal symmetry of
SORs, μ is along the radial direction. Further calculation shows
that the magnitude of μ is determined uniquely by the metric of
the surface (SI Appendix, section 7). Besides, one may observe that
the term in the absolute value sign is always negative, indicating
that in the projected billiards of any SORs, the fictitious force
always points toward the center of the billiard. Fig. 5B illustrates
the increasing trend of |μ(r)| with parameter c, which coincides
with our assumption. Our interpretation is supported by Fig. 3A,
which shows the dependence of the Lyapunov exponent with
parameter c for three different positions and diameters of the hole.
The difference between these three curves is a direct consequence
of both the pierced hole and the presence of the refractive index.
Indeed, when the hole is moved away from the center of the
billiard, or its size reduces, the billiard is farther from being
symmetric, leading to a higher degree of chaos. In the meantime,
areas with a higher refractive index are free from being eliminated
and are revealed, further amplifying this difference.

We further inspect the general applicability of quantity |μ(r)|
in SI Appendix, section 7 by exploring some other typical SORs
and comparing their |μ(r)| s with the volume of chaotic area
in their Poincaré SOSs. The results confirm the universality of
|μ(r)|. When the studied objects are generalized from Tannery
surfaces to general SORs, different SORs are parameterized by
different parameters, and even for SORs that are from the same
family, the relation between their parameters and the degree of
chaos might not be as simple as it is in Tannery surfaces: that is,
where a universal quantity could play a significant role. Another
remarkable advantage of defining |μ(r)| is that given an SOR,
one is able to approximately estimate its degree of chaos by simply
calculating its |μ(r)|, which can be directly obtained by its metric,
instead of investigating more involved signatures of chaos, as we
did earlier.

4. Conclusion

In conclusion, we have investigated photonic chaotic dynamics
(ray and wave behaviors) on both 3D uniform SORs and in
2D table billiards with a nonuniform refractive index. These two
systems are proved to be strictly equivalent for both light rays and
waves by applying the idea of a conformal mapping in TO. Such
equivalence enables these two different systems to share the same
phenomena and serve one another to solve in a simpler manner
a complex challenging problem, since a geometry can appear easy
and analytical in one system, but untraceable in the other. The
present proposal, projecting a 3D SOR onto a nonuniform table
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billiard, serves as a practical pathway to help both solve calculation
and simulation problems and provide a natural interpretation of
the role of curvature in 3D chaotic systems, which probably could
be done on the 3D SOR as well, but are much simpler and more
straightforward to investigate in the latter. Compared with 3D
surfaces, a nonuniform 2D table billiard turns out to be a more
promising candidate for experimental design and realization, on
account of the difficulty in restricting and controlling lights on
the former. Reciprocally, the landscape of the refractive index in
nonuniform table billiards can be complex, while transferring it to
its corresponding 3D SOR could greatly reduce the parameters.
Our investigation also raises an interesting proposal on the design
of the refractive index in a nonuniform billiard or cavity to
achieve expected features, taking advantage of special trajectories
or geometrical properties of its corresponding 3D curved surface.
For instance, it is still an open question for how to transfer an
arbitrarily deformed chaotic billiard into integrable, by correlating
its refractive index profile with an SOR. More underlying physics
and potential applications about this system equivalence remain
to be explored.

Although we have taken a typical family of SORs, Tannery
surfaces, as an example to study the variation of the degrees of
chaos in curved space with respect to its control parameter, the
model can certainly be generalized to arbitrary SORs. The pa-
rameter (curvature)-dependent property of chaotic dynamics on
3D SORs enlightens an efficient and neat mechanism to control

and utilize chaos and consequently opens up many perspectives,
for example, exploration and control of wave chaos in multimode
fiber amplifiers to enhance pump absorption efficiency (61, 62)
with nonuniform transverse, or the extensive study of a new
type of microcavity (27–30). Furthermore, exploration of chaotic
dynamics within the context of non-Euclidean geometry may
open a new perspective in studies of chaos in cosmology (63–65).

Data Availability. All study data are included in the article and/or supporting
information.
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