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Coronary artery disease (CAD) is the leading cause of mortality worldwide and poses

a considerable public health burden. Recent genome-wide association studies (GWAS)

have revealed >100 genetic loci associated with CAD susceptibility in humans. While

a number of these loci harbor gene targets of currently approved therapies, such as

statins and PCSK9 inhibitors, the majority of the annotated genes at these loci encode for

proteins involved in vessel wall function with no known drugs available. Importantly many

of the associated genes linked to vascular (smoothmuscle, endothelial, andmacrophage)

cell processes are now organized into distinct functional pathways, e.g., vasodilation,

growth factor responses, extracellular matrix and plaque remodeling, and inflammation.

In this mini-review, we highlight the most recently identified loci that have predicted roles

in the vessel wall and provide genetic context for pre-existing therapies as well as new

drug targets informed from GWAS. With the development of new modalities to target

these pathways, (e.g., antisense oligonucleotides, CRISPR/Cas9, and RNA interference)

as well as the computational frameworks to prioritize or reposition therapeutics, there is

great opportunity to close the gap from initial genetic discovery to clinical translation for

many patients affected by this common disease.

Keywords: genome-wide association study (GWAS), coronary artery disease (CAD), drug targets, smooth muscle

cells, vascular wall

INTRODUCTION

Coronary artery disease (CAD) is a maladaptive inflammatory disease of the coronary artery
vessel wall that remains one of the leading causes of death worldwide. It involves numerous cell
types (smooth muscle cells, endothelial cells, and macrophages) and often manifests in myocardial
infarction. Development of CAD is due to a combination of genetic and environmental factors.
Early twin studies indicated CAD heritability was ∼40-60% (1, 2). Linkage and family-based
studies identified genes with now well-established roles in disease pathogenesis, such as the LDL
receptor (LDLR) (3), apolipoprotein B (apoB) (4), and proprotein convertase subtilisin/kexin type
9 (PCSK9) (5).
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In 2007 the first genome-wide association studies (GWAS)
of CAD published the association of the 9p21 locus with both
CAD and myocardial infarction (MI) (6–8). The 9p21 locus
remains the most robust locus in the genome with respect to
CAD association. Many more CAD loci have been discovered in
subsequent GWAS over the past decade, leading to the formation
of the CARDIoGRAM (9) and C4D (10) consortia and resulting
meta-analyses (11–15). Themost recent GWASmeta-analysis for
CAD has ∼300,000 combined cases and controls and identified
almost 100 independent loci reaching genome-wide significance
(p < 5 × 10−8), and over 300 loci significant at a 5% false
discovery rate.

Despite the discovery of many new loci associated with CAD,
the current challenges are to validate the causal genes and
pathways at CAD loci and to translate this knowledge into
new therapies. In this mini-review, we highlight recent GWAS
identified non-lipid genes and pathways (with an emphasis on
vessel wall pathways) that have the potential to accelerate new
treatments for CAD (Figure 1). In addition, we provide some
genetic perspective on currently approved and future therapies,
as well as the use of genetic risk scores (GRS) to identify high
risk patients who may require these novel treatments to augment
traditional lipid-lowering therapy.

CAD GWAS GENES AND PATHWAYS

Vessel Wall Signaling
Once atherogenic lipoproteins have crossed the endothelium
and are taken up by macrophage-derived foam cells, there
is a subsequent cascade of complex signaling events in the
vessel wall. This involves a tightly orchestrated interplay of
vascular smooth muscle cells, endothelial cells, macrophages,
cytokines, and extracellular matrix proteins. Reactome pathway
gene-set enrichment analysis carried out by the CARDIoGRAM
consortium indicated that CAD genes were enriched for
pathways involved in NO/cGMP signaling, TGFβ/SMAD
signaling, PDGF signaling, extracellular matrix (ECM)
integrity/organization, and innate immunity (16). Further
integrative analyses of CARDIoGRAM summary data, tissue-
specific regulatory networks and gene expression data have
revealed interactions across CAD-relevant pathways as well as
potential druggable targets such as LUM and STAT3, which serve
as key regulators of vessel wall biology (17). Assuming that the
genes in these pathways are the most likely causal genes at the
associated loci, these results argue that vascular wall pathways
have comparable associations to the well-established lipid and
lipoprotein mediated pathways (16). In fact up to 75% of the 95
CAD loci (15) appear to be associated independently of classical
risk factors. This observation suggests that these risk factors are
intrinsic to dysregulated processes in the vessel wall.

NO/cGMP Signaling
NO/cGMP signaling is fundamental to diverse cardiovascular
physiological responses and emerging evidence suggests that
activation of this pathway is defective in the setting of
atherosclerosis and CAD. Nitric oxide (NO) is an important gas
that is synthesized by endothelial nitric oxide synthase (eNOS),

which upon activation results in paracrine signaling through the
myoendothelial junction to smooth muscle cells, subsequent
activation of soluble guanylate cyclase, cGMP production,
and cGMP-dependent protein kinase (protein kinase G; PKG)
mediated phosphorylation of downstream targets involved in
vasodilation. The 1000 Genomes based CARDIoGRAMplusC4D
(12) and recent UK Biobank-CARDIoGRAMplusC4D meta-
analysis (15) identified an association for rs3918226 at NOS3,
the gene which encodes eNOS, implicating a role in endothelial
dysfunction. An intronic variant rs7692387 in GUCY1A3,
encoding the alpha1-subunit of sGC, was associated with CAD
(11), while another variant rs13139571 was associated with
systolic (SBP) and diastolic (DBP) blood pressure (18). Recent
functional studies identified a mechanism by which the non-risk
allele at rs7692387 preferentially binds the ZEB1 transcription
factor leading to increased GUCY1A3 expression and sGC levels,
which correlated with reduced atherosclerosis severity in mice
(19). Other members of this pathway that have been linked
to CAD include recently identified PDE5A (rs7678555) (15)
and PDE3A, previously associated at 5% FDR (11), suggesting
alterations in vascular wall signaling could be rescued with
existing therapies (e.g., sildenafil, ciloztasol).

TGFβ and PDGF Signaling
The CARDIoGRAM GWAS studies have implicated several
components of the transforming growth factor beta (TGFβ)
signaling pathway in CAD. Activated TGFβ receptor I
phosphorylates receptor-regulated SMAD proteins (SMAD3
or SMAD2). These are transcriptional mediators of TGFβ
signaling that along with SMAD4 translocate to the nucleus to
regulate transcription of TGFβ target genes. The TGFβ1 and
SMAD3 genes are both associated with CAD in addition to
bone morphogenic protein 1 (BMP1), a member of the TGF
beta superfamily (20). Mechanistic studies have implicated a
functional intronic SNP in SMAD3 (rs17293632) that disrupts
binding of the AP-1 transcription factor complex underlying
this association (21, 22). The genetic association of rs36096196
at the SKI locus suggests a role for SKI, a co-repressor of
SMAD3/SMAD2 signaling in CAD (23).

The rs150512726 SNP [proxy for the recently reported SNP
rs142695226 (15)] results in a 3 amino acid deletion in the
integrin beta 5 (ITGB5) protein. ITGB5 has been shown to play
a role in activation of the latent TGFβ precursor protein outside
the cell (24). The TGFβ pathway also regulates gene expression
at the 9p21 locus. SNPs at this locus disrupt TEAD factor binding
and the TEAD3-dependent TGF beta induction of p16 in human
aortic smooth muscle cells (25).

The CARDIoGRAM studies have also identified SNPs at the
platelet-derived growth factor D (PDGFD) locus associated with
CAD at genome-wide significance. This PDGFmediated pathway
may involve many other risk-associated genes. Preliminary work
by our group has provided evidence of cross-talk with smooth
muscle cell enriched pathways using genome-wide profiling of
these cells. For example, the expression of TCF21, a transcription
factor which determines the fate of epicardial progenitor cells
during development, is increased in individuals carrying the
risk alleles, rs121902987 and rs12524865 (26). Its expression
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FIGURE 1 | Coronary artery disease loci harboring genes linked to vessel wall functions. Manhattan plot depicting genome-wide significant loci identified from the

Nelson et al. (15) meta-analysis for CAD based on a 5% false discovery rate using the pilot UK Biobank data. Loci were annotated through a combination of gene

expression, epigenomic features, eQTL, and literature based searches. Vessel wall gene symbols are shown above associations in red, with dotted orange line

representing P = 5.0 × 10−8. Pink gene symbols represent loci with either approved or evaluated treatments for CAD.

was positively regulated by PDGF-BB-PDGFRB stimulation
in human coronary artery smooth muscle cells (26). TCF21
dysregulation likely increases CAD risk by altering coronary
artery smooth muscle cell responses to vascular injury during
plaque remodeling (27, 28). Another vessel wall gene, LMOD1,
an actin filament nucleator, was shown to be downregulated in
vascular smooth muscle cells in response to PDGF treatment
and serves as a potent marker of smooth muscle cell phenotypic
modulation (29).

Extracellular Matrix Remodeling Pathways
The CARDIoGRAM consortium has highlighted numerous
extracellular matrix and basement membrane genes involved in
the pathogenesis of atherosclerosis, including COL4A1/COL4A2,
ITGB5, and FN1. A COL4A2 variant, rs4773144, was associated
with both COL4A1 and COL4A2 expression, as well as smooth
muscle cell survival, and plaque stability (30). The authors

suggest type IV collagen levels affect SMC proliferation,
migration, extracellular matrix remodeling, apoptosis, and
infiltration of immune cells through plaque remodeling. The
CAD locus MIA3 is involved in the endoplasmic reticulum
export of large cargo such as pre-chylomicrons/VLDL (31)
and collagens (including Col4a1 and Col4a2 in mice) (32).
The CAD locus SERPINH1 encodes heat-shock protein 47
(Hsp47) (33), a molecular chaperone involved in the collagen
secretion pathway. FN1 encodes fibronectin, a glycoprotein
with established roles in cell adhesion, migration, growth, and
differentiation. Though increased in atherosclerotic regions, the
role of fibronectin in development of CAD remains unclear,
with postulated roles in atherogenic lipoprotein retention,
direct adverse effects on endothelial cell function, or roles in
plaque stability (34). The TNS1 gene encodes for the tensin-1
protein that attaches the plasma membrane to the extracellular
matrix and positively regulates the small Rho GTPase, RhoA
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(35). The RHOA gene itself was identified as a genome-wide
significant locus in the latest CARDIoGRAMplusC4D meta-
analysis (15) and is predicted to interact with several other
CAD genes/pathways in smooth muscle cells and endothelial
cells including TGFβ/SMAD3 and ECM proteins, such as
collagens and fibronectin (36). RhoA also cooperates with
Rac1 and cadherin to regulate barrier function in mural
and endothelial cells (37). RhoA activation coincides with
endothelial cell inflammation, permeability, and disturbed flow
as a result of reduced PPAP2B (itself associated with CAD and
ischemic stroke) (38). Lastly, the ADAMTS7 gene, encoding a
metalloproteinase, is proatherogenic based on mouse studies,
with a direction of effect consistent with the human genetic
association data (39). In the context of its association with CAD,
it has been proposed that ADAMTS7 alters smooth muscle cell
migration and extracellular matrix composition (40).

Inflammation and Immune Pathways
The role of inflammation in CAD pathogenesis is now well-
established, yet the number of inflammatory genes mapping
to CAD-associated loci is under-represented. One of the main
CAD loci involved in inflammation is the interleukin 6 receptor
(IL6R), which binds the pro-inflammatory cytokine IL-6 and its
pathways have been causally linked to CAD using Mendelian
randomization analyses (41). Another example is the CAD-
associated CXCL12 gene, which encodes an anti-inflammatory
cytokine (also known as stromal derived factor 1; SDF-1)
that binds the chemokine (C-X-C motif) receptor CXCR4, a
G-protein coupled receptor. Given that CXCL12 is induced
immediately after vessel injury and specifically expressed in
atherosclerotic lesions, this gene has potential to serve as
a biomarker for early detection (42). The CAD-associated
SH2B3 gene encoding an adapter protein known as LNK is
involved in hematopoiesis and suppression of cytokines and
thrombopoietin signaling (43). In mice, loss of Sh2b3 was shown
to promote both atherosclerosis and thrombosis only under the
setting of hypercholesterolemia, suggesting an involvement in
platelet/leukocyte activation during atherogenesis (44). It may
also serve as an inflammatory link between vascular endothelial
cells and immune cells and therapeutic target for hypertension
and end-organ inflammation (45). Finally, the ligand VEGFA
and the VEGF receptor (FLT1) loci both associate with CAD;
inflammatory conditions in the plaque promote the release
of angiogenic factors that result in neovascularization, plaque
remodeling, and plaque instability (46).

CURRENT THERAPIES FOR CAD

Current therapies for CAD primarily focus on alleviating the
symptoms of ischemic events as well as preventing thrombosis
from ruptured plaque. Here we review the current treatments
for CAD and also provide a genetically informed perspective on
these drug targets (Table 1).

Statins
Statins represent the first line of treatment for elevated LDL-
cholesterol levels associated with hyperlipidemia and CAD. By

inhibiting HMG-coA (hydroxy-3-methylglutaryl-coenzyme A)
reductase, statins decrease the production of cholesterol in the
liver, thereby reducing its concentration in the circulation. Statins
exhibit a pleiotropic effect by attenuating other risk factors
for CAD (64). Genetic studies have identified variations in the
HMGCR gene (rs12916) consistently associated with both blood
lipids and LDL-cholesterol (52, 53), while an intergenic variant
near HMGCR is also associated with CAD in the combined
CARDIoGRAMplusC4D and UK Biobank analysis (20).

Anti-Platelet Therapies
As a prophylactic measure against thrombosis, antiplatelet drugs
are utilized to reduce the risk of myocardial infarction. Two of
the more popular antiplatelet drugs are acetylsalicylic acid (ASA)
and clopidogrel. ASA is a COX inhibitor that prevents platelet
activation by inhibiting the synthesis of thromboxane A2. On the
other hand, clopidogrel is an ADP receptor (P2Y12) antagonist
that prevents platelet aggregation and further amplification of
the activation signal through the downregulation of glycoprotein
IIb/IIIa receptor on its surface (65). While the gene targets
of these drugs (PTSG2 and P2Y12) do not harbor variants
specifically associated with CAD, some of the effector signaling
molecules in the pathway (RHOA, ITGB5, and SH2B3) indeed
have CAD associations, as described above. This may represent
an opportunity to understand some of the heterogeneity in
responses to these commonly used agents by using a pathway
approach.

ACE Inhibitors and Beta Blockers
Two classes of drugs, angiotensin converting enzymes (ACE)
inhibitors and beta blockers both function in the maintenance
of normal blood pressure. In the endothelium, ACE catalyzes the
conversion of angiotensin I to angiotensin II where the latter is
a potent vasoconstrictor. Additionally, ACE upregulation results
in the degradation of bradykinin, a vasodilatory factor involved
in the upregulation of nitric oxide and prostaglandins (66).
Given the numerous CAD associations within the NO/cGMP
pathway, the efficacy or toxicity profile of these drugs may
be influenced by individual genetic variation. Beta blockers
exert their cardioprotective effects by intervening in the
adrenergic nervous system as competitive antagonists in both
the myocardium and vasculature, depending on their selectivity
for beta1 or beta2-adrenergic receptors. Clinically, reduced
catecholamine stimulation results in decreased cardiac stress
leading to decreased heart rate and blood pressure (67, 68).
The third generation of beta blockers were shown to have
more potent blood pressure lowering effects. Although it may
be reasonable to speculate that NO mediated signaling is
involved, it was recently demonstrated that nebivolol (compared
to metoprolol) suppresses ET-1 mediated vasoconstriction to
lower BP (69). This is important given that variation at the ET-
1 gene EDN1 (rs1629862) and the ET-1 receptor type A gene
EDNRA (rs6841581) were recently identified as CAD loci (20).

Anti-Inflammatory Therapies
Therapies targeting inflammatory pathways have been
extensively explored in cardiovascular disease. Two recent

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 June 2018 | Volume 5 | Article 72

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Turner et al. GWAS and Vessel Wall Pathways

TABLE 1 | List of current target genes for management of coronary artery disease and their genetic associations.

Target (gene name) Genetic association

with CAD/lipid

trait/BP

Associated trait (lead SNP) Drug(s) Role Phase Administration

HMG-Coenzyme A reductase

(HMGCR)

Yes LDL-C (rs7703051) (47, 48)

Total cholesterol (rs10038095)

(49)

Plasma LDL-C response to

simvastatin (rs17244841) (50)

Lipid traits (rs10045497) (51)

Statins (various) Pharmacological

inhibitors

Available with

prescription

Oral

Cholesterol absorption in small

intestine

(gene unclear)

NA NA Ezetimibe (Zetia,

Ezetrol)

Pharmacological

inhibitor

Available with

prescription

Oral

ATP citrate lyase

(ACLY )

NA NA Bempedoic acid

(Esperion)

Pharmacological

inhibitor

Clinical trials

(phase 3)

Oral

ApoB-100

(APOB)

Yes LDL-C (rs1367117) (52–54)

Total cholesterol (rs1367117)

(52–54)

Lipid metabolism phenotypes

(rs1367117) (55)

Triglycerides (rs1042034) (53)

HDL-C (rs1042034) (53)

Oxidized LDL (rs676210) (56)

Lipid metabolism phenotypes

(rs676210) (55)

LDL-C (rs693) (47, 57–59)

Total cholesterol (rs693) (57)

Triglycerides (rs693) (48)

Mipomersen

(Kynamro)

Antisense

oligonucleotide

(targets mRNA)

Available with

prescription

Injection

PCSK9

(PCSK9)

Yes CAD (rs11591147) (15, 20)

LDL-C (rs11591147) (48, 49)

Repatha

(evalocumab)

Monoclonal

antibody

Available with

prescription

Injection

Praluent

(alirocumab)

Monoclonal

antibody

Available with

prescription

Injection

Bococizumab Monoclonal

antibody

Clinical trials Injection

Inclisiran Long acting small

interfering RNA

(siRNA)

Clinical trials

(phase 3)

Injection

Lipoprotein A

(Lp(a)) (LPA)

Yes CAD (rs10455872) (15)

CAD (rs186696265) (20)

LDL-C in response to statins

(rs10455872) (60)

AKCEA-Apo(a)-

LRx

Antisense

oligonucleotide

Clinical trials

(phase 2b)

Injection

ApoCIII

(APOC3)

Yes Triglyceride levels (rs76353203)

(80)

HDL-C (rs76353203) (80)

AKCEA-ApoCIII-

LRx

Antisense

oligonucleotide

Clinical trials

(phase 2b)

Injection

ANGPTL3

(ANGPTL3)

Yes Triglyceride levels (rs2131925)

(52, 53)

LDL-C (rs2131925) (52, 53)

Total cholesterol (rs2131925)

(52, 53)

AKCEA-

ANGPTL3-LRx

Antisense

oligonucleotide

Clinical trials

(phase 2)

Injection

Interleukin 1 beta (IL1B) NA NA Canakinumab Monoclonal

antibody

Clinical trials

(phase 3)

Injection

Cyclooxygenase-2 (COX-2)

(PTGS2)

NA NA Acetylsalicylic acid

(ASA, Aspirin)

Pharmacological

inhibitor (general

anti-inflammatory

effects)

Commercially

available

Oral

P2Y12 subunit of ADP receptor

(P2RY12)

NA NA Clopidogrel (Plavix) Pharmacological

inhibitor

Available with

prescription

Oral

(Continued)
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TABLE 1 | Continued

Target (gene name) Genetic association

with CAD/lipid

trait/BP

Associated trait (lead SNP) Drug(s) Role Phase Administration

Angiotensin converting enzyme

(ACE)

(ACE)

Yes Diastolic blood pressure (rs4308)

(61, 62)

ACE inhibitors Pharmacological

inhibitors

Available with

prescription

Oral

Beta adrenergic receptor(s)

(ADRB1, ADRB2, ADRB3)

NA NA Beta blockers Pharmacological

inhibitors

Available with

prescription

Oral

Rho kinase

(ROCK1, ROCK2)

NA CAD, sudden cardiac arrest

(rs6716724) (63)

Fasudil Pharmacological

inhibitor

Approved in China

and Japan

Oral

studies investigating the role of clonal expansion of
hematopoietic cells as a potential driver for age-related
onset of atherosclerosis have provided evidence that IL1β
secretion from TET2 deficient macrophages plays a role in
the acceleration of disease (70, 71). TET2 is an epigenetic
modifier that negatively regulates the expression of IL1β.
Thus, loss of function of TET2 results in the upregulation of
IL1β and IL-6 secretion from lesional macrophages (70). This
elevated level of proinflammatory cytokines was positively
correlated with increased plaque size in the aorta as well as
severity of coronary artery calcification in mice and human
patients, respectively(70, 71). Studies such as these underscore
the potential of targeting the IL1β pathway in slowing down
atherosclerosis progression.

The CANTOS (NCT01327846) clinical trial provided critical
evidence that targeting IL1β alone with the monoclonal antibody
canakinumab can reduce major cardiovascular events along
with proinflammatory cytokines (IL-6) and high sensitivity
C reactive protein in patients with atherosclerosis. Although
the intermediate dose (150mg) met the primary endpoint of
reducing nonfatal myocardial infarction, nonfatal stroke, or
cardiovascular death, a significant risk of fatal infection relative
to placebo was observed (72). In addition to the high pricing
and safety concerns, the marginal clinical benefits demand more
development in this area. Given that IL-6 is a causal risk factor
for CAD (73), anti-inflammatory therapies remain an attractive
therapeutic approach for patients that do not respond to standard
lipid lowering medication.

NEW CAD THERAPIES INFORMED FROM
GENETIC STUDIES

PCSK9 Inhibitors and Antisense
Oligonucleotides
One example of newly approved drug targets that have
origins in genetic studies is the development of monoclonal
antibodies against PCSK9. PCSK9 is a liver protease that
targets LDL receptors for lysosomal degradation. The therapeutic
potential of targeting PCSK9 was validated through Mendelian
randomization studies that correlated a deleterious mutation
in this gene with decreased risk (74). Large clinical trials
[e.g., FOURIER (NCT01764633), ODYSSEY (NCT01623115)]

demonstrated that inhibition of this enzyme reduced systemic
LDL levels to a greater extent than maximum statin therapy,
with the most recent ODYSSEY trial (NCT01663402) reporting
a reduction in both cardiovascular events and all-cause mortality
for the first time. In addition to monoclonal antibodies, antisense
oligonucleotides have also been developed against PCSK9, which
should be evaluated for clinical outcomes in the near future.

Lipoprotein A and APOC3 Antisense
Oligonucleotides
A high level of circulating lipoprotein A [Lp(a)] is considered a
risk factor for cardiovascular disease. Two SNPs, rs3798220 and
rs10455872, located within the lipoprotein A (LPA) gene correlate
with increased levels of Lp(a) and are associated with increased
risk for CAD. As one of the first therapies targeting lipoprotein
A, AKCEA-APO(a)-LRx is an antisense oligonucleotide that
binds LPA mRNA leading to its degradation. Phase 2 clinical
trial data has suggested that this approach is well tolerated
and significantly reduced Lp(a) plasma concentrations (65, 66).
Similarly, an antisense therapy was developed targeting APOC3,
a gene involved in regulating plasma triglyceride levels. The
antisense oligonucleotide therapy, volanesorsen was shown to
reduce cellular levels of APOC3 and led to an overall reduction
of triglyceride levels in phase 3 clinical trials (70, 71).

RhoA-ROCK Inhibition
The RhoA-Rock signaling pathway offers another avenue for
CAD therapeutic targets. Aberrant activation of this signaling
cascade has been implicated in vasoconstriction and endothelial
dysfunction. Given the recent CAD association (rs7623687) at
RHOA, further investigation is warranted to determine how to
specifically target this gene. One opportunity is to target the
downstream effectors, Rho-associated protein kinases (ROCK1,
ROCK2), which control actin cytoskeleton arrangement, cell
migration and contractility (75). In particular, a Rock2 inhibitor,
Fasudil, has already been tested in clinical trials as a possible
therapeutic for CAD as a vasodilatory agent through the
upregulation of nitric oxide. It is also noteworthy to mention
that Fasudil has been approved as a treatment option for cerebral
vasospasm in Japan and China (75).
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PERSPECTIVES AND FUTURE
DIRECTIONS

Genetic Risk Scores
Besides the 9p21 locus, most loci uncovered from GWAS of
CAD have small effects with odds ratios between 1.05 and 1.30.
Nonetheless, GWAS results can be utilized to generate genetic
risk scores for individuals based on the number of risk alleles
they harbor. Therefore, in addition to traditional drug treatments
such as statins, individuals that fall within the high CAD risk
range based on their genetic risk score can be selected for more
aggressive therapies and/or novel CAD treatments as mentioned
above. With more data from sources such as the UK Biobank, the
Million Veterans Project, and the NIH-funded All of Us project
on the horizon, genetic risk scores will have more clinically-
relevant predictive utility (76).

Feasible vs. Difficult Drug Targets
Since GWAS has highlighted the role of vessel wall genes
and signaling pathways in the pathogenesis of CAD, it will be
critical to apply this knowledge toward vessel wall therapeutic
development. Strategies include non-specific targeting of
the vessel wall (through upstream or downstream effector
molecules), specifically targeting plaque vasculature, or specific
cellular phenotypes (e.g., activated resident macrophages or
phenotypically modulated smooth muscle cells).

Target New Cell Types (e.g., Endothelial
Cells, Smooth Muscle Cells, Macrophages)
A CAD protective variant upstream of ADAMTS7 confers
greater protection against CAD for never-smokers compared
to those that have smoked 100 or more cigarettes in their
lifetime (77). This example highlights the importance of taking
into account environmental factors in managing treatments.
Other potential targets include the receptors for endothelin-1 on
smooth muscle cells. Many of these potential vessel wall target
proteins affect smooth muscle cell proliferation and migration,
originally believed to drive atherogenesis. The current view
suggests smooth muscle cell proliferation and migration could
be reparative and promote plaque stability (78). Once the roles
and timing of smooth muscle cell proliferation and migration
are clarified, the TGF beta and PDGF pathways may be attractive
targets due to their role in the regulation of smooth muscle cell
genes.

Machine Learning/Systems Approaches
While GWAS has uncovered invaluable insights into potential
therapies and validated existing ones, these associations require
extensive follow-up to pinpoint causal variants, genes, pathways.
More advanced algorithms such as machine learning can be
leveraged to prioritize targets with diverse data inputs such
as electronic health records, clinical notes, and -omics. These
approaches can help to systematically decrease noise, reduce
features, and identify gene sets of interest in addition to
common GWAS methods of odds ratios, p-value statistics,
and chi-square comparisons. Unsupervised learning algorithms
have the capability to provide researchers and clinicians with
an unbiased network of candidate genes that account for
the greatest variance in CAD related phenotypes. A specific
example is the use of machine learning for drug repurposing
based on finding patterns from multi-dimensional datasets.
Specific tools have been developed to provide an out-of-the-
box approach for understanding diverse text, biological, and
medical record data for non-data scientists. One such tool,
RepurposeDB, combines drug and disease information to create
a reference database for drug repositioning research (79). With
the rapidly growing costs of drug discovery/development, such
data-informed approaches can offer significant progress for the
field.

CONCLUDING REMARKS

In summary, in this brief review we bring attention to the
genetic loci discovered over the past decade which play critical
roles in the vessel wall. Many of these genes are organized into
distinct functional pathways, which will help redefine some of the
pathogenic mechanisms and prioritize those pathways for future
drug development or repurposing strategies.
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