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Abstract

FAK is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a
malignant phenotype. Except for its typical role as a cytoplasmic kinase downstream of integrin and growth factor
receptor signaling, related studies have shown new aspects of the roles of FAK in the nucleus. FAK can promote
p53 degradation through ubiquitination, leading to cancer cell growth and proliferation. FAK can also regulate
GATA4 and IL-33 expression, resulting in reduced inflammatory responses and immune escape. These findings
establish a new model of FAK from the cytoplasm to the nucleus. Activated FAK binds to transcription factors and
regulates gene expression. Inactive FAK synergizes with different E3 ligases to promote the turnover of transcription
factors by enhancing ubiquitination. In the tumor microenvironment, nuclear FAK can regulate the formation of
new blood vessels, affecting the tumor blood supply. This article reviews the roles of nuclear FAK in regulating
gene expression. In addition, the use of FAK inhibitors to target nuclear FAK functions will also be emphasized.
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Background
Numerous studies on the potential link between FAK
and different kinds of cancer have gradually revealed the
biological mechanisms by which FAK promotes the de-
velopment and progression of cancer [1]. FAK is a tyro-
sine kinase with a molecular weight of 125kD, playing a
vital role in cellular communication, especially in cell
signaling systems [2]. Wang et al. [3] revealed that in-
creased mRNA levels, protein levels, and the activation
of FAK were positively associated with cancer metastasis
and invasion and frequently inversely correlated with
better clinical cancer sample results in the detection of
human cancer samples. Relevant studies have found that
FAK was overexpressed and/or over-phosphorylated in
multiple cancer cells, responsible for cell migration [4],
survival [5], proliferation [6], and adhesion [7]. In
addition, FAK is strongly associated with the occurrence
and development of tumors [2, 8] and regarded as a
functional protein in the cytoplasm, typically functioning
in a kinase-dependent manner [9]. Firstly, FAK receives

different extracellular signals coming from cell-surface
transmembrane receptors including integrins, cytokines,
growth factors, and G protein-coupled receptors. After
that, FAK activates and triggers subsequent signaling
cascades in a variety of cellular activities [10, 11]. FAK
can also participate in the signal transduction process in
tumor vessel, mediating the vessel permeability [12–14].
The FERM domain of FAK can combine with the cyto-
plasmic region of vascular endothelial calcium mucin. It
is important for cell-cell adhesive junctional structures,
an integral part of keeping vascular integrity [15]. Fur-
thermore, FAK is essential for maintaining vascular
functions in tumor angiogenesis. Lees et al. [16] found
that FAK recovered the vascular leakage defect through
the activation of kinase domain. And it is a fact that cy-
tokines induce vascular growth factor expression by the
FAK signaling pathway. For example, via Src-FAK-
STAT3 signaling, IL-6 induces VEGF-C expressions
[17]. As a result, FAK kinase activity is required for
tumor growth [18], angiogenesis [17], and vascular per-
meability [19]. These show that FAK is a typical multi-
functional protein which integrates and transduces
signals into cancer cells via integrin or growth factor re-
ceptors. Tumor stem cells are few tumor cells which are
present in malignant cells and believed to be the source

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: yiqian2010@yeah.net; tangliling@cqu.edu.cn
2Department of Physiology, School of Basic Medical Sciences, Southwest
Medical University, Luzhou 646000, Sichuan, China
1Key Laboratory of Biorheological Science and Technology, Ministry of
Education, College of Bioengineering, Chongqing University, Chongqing
400044, China

Zhou et al. Journal of Experimental & Clinical Cancer Research          (2019) 38:250 
https://doi.org/10.1186/s13046-019-1265-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13046-019-1265-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yiqian2010@yeah.net
mailto:tangliling@cqu.edu.cn


of cancer cells. They have the ability to proliferate, self-
renew and generate heterogeneous tumor cells, main-
taining the vitality of the tumor cell population [20, 21].
Yoon et al. [22] found that FAK promoted cancer stem
cells (CSCs) renewal and drug resistance by functioning
in survival signaling. For example, FAK and the extracel-
lular signal-regulated kinase (ERK1/2) pathway are in-
volved in the regulation of growth and metastasis of
liver cancer stem cells (LCSCs) [23]. The use of the anti-
cancer drug salinomycin inhibited the activity of FAK
and ERK1/2, resulting in the increased stiffness of
LCSCs [24]. Another study has shown that changes in
the stiffness of living cells might affect numerous cellular
physiological activities [25]. FAK can affect the growth
of LCSCs through this mechanism of the regulation of
cell stiffness. Cheng et al. [26] targeted HIC1 and
RassF1A methylation, induced the transformation of
mesenchymal stem cells (MSCs) and the cell stiffness
was lost. It is suggested that Tumor cells are softer than
normal cells, mainly due to loss of cytoskeletal support
[27, 28]. And the loss of stiffness can represent a pheno-
type of tumor development which facilitates cancer cell
migration and adapts to other tissues [29, 30]. Taken to-
gether, these results indicate that FAK is closely related
to biological behaviors such as survival, migration, inva-
sion, and proliferation of CSCs. Based on those findings,
FAK can be regarded as a target for cancer therapy.
Actually, investigators have found that FAK was also

functional in the nucleus [31]. FAK can enter the nu-
cleus and regulates gene expression to influence tumori-
genesis [32]. In the nucleus, activated FAK binds to
transcription factors to regulate gene expression. In-
active FAK synergizes with different E3 ligases to pro-
mote the turnover of transcription factors [33]. FAK
affects tumor survival and growth by altering the tran-
scription [34]. In this review, some regulation modes of
nuclear FAK are discussed. We focus on nuclear FAK

regulating gene expression in different cancer cells. FAK
regulates gene expression by affecting the expression of
transcription factors. Furthermore, we emphasize that
nuclear FAK also has an important role in the study of
cancer, which is positively related to the occurrence and
development of tumors.

FAK can shuttle between cytoplasm and nucleus
The structure of FAK
In humans, FAK is composed of the N-terminal contain-
ing the FERM domain, the central kinase domain, and
the C-terminal with the FAT domain (Fig. 1) [35, 36].
The FERM domain consists of approximately 300 amino
acid residues, binding directly to the intracellular portion
of the transmembrane protein receptors [37]. The kinase
domain refers to the 390–650 amino acid region which
is highly conserved. It has at least 6 tyrosine phosphoryl-
ation sites [38, 39], which is the key to FAK signaling.
The FAT domain is responsible for interacting with pri-
mary adhesion plaque components such as Paxillin [40],
Talin [41], Grab2 [42], Rgnef/p190RhoGef [43], and vas-
cular endothelial growth factor receptor 3 (VEGFR3)
[44]. Notably, FAK contains binding sides for more than
50 proteins, permitting FAK to function as a kinase and
molecular scaffolds [45].
It was reported that FAK had nuclear export signals

(NES) in the kinase domain and nuclear localization sig-
nals (NLS) in the F2 lobe of the FERM domain [31, 46],
which led to the shuttle of FAK between the focal adhe-
sions (FAs) and the nucleus. Further analysis of NLS and
NES showed that bare alkaline residue clusters in the
surface of NLS were K190, K191, K216, K218, R221, and
K222 and the NES was composed of a leucine-rich
amino acid sequence [34]. And it was showed that FAK
had two NES sequences actually [36, 1, 47]. One was
NES1 located in the F1 lobe and the other was NES2 lo-
cated in the kinase domain. Although both of them are

Fig. 1 Schematic structure of FAK. The N-terminal FERM is shown in blue, containing three subdomains of F1, F2, and F3. The SUMOylation is
located in the FERM domain. NES1 is located in the F1 leaf and NLS is located in the F2 leaf. The kinase domain is shown in green containing
NES2 and the FAT domain is shown in yellow responsible for interacting with primary adhesion plaque components such as Paxillin and Talin.
There are proline-rich regions between the domains and they are binding sites of Src homology 3 (SH3). Significantly, there are five important
tyrosine phosphorylation sites. Among them, Y397 and Y925 are binding sites of Src homology 2 (SH2)
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conservative in the evolutionary process, only NES2 has
complete biological nuclear export activities [46, 1]. In
addition, apart from facilitating phosphatidylinositol 4,5-
bisphosphate (PIP2) lipid binding [48], the residues of
F2 lobe (KAKTLR) can also function as a nuclear
localization sequence [49]. Post-translational modifica-
tions of FAK include binding protein inhibitors of acti-
vated STAT1 (PIAS1) to the FERM domain of FAK and
the addition of a small ubiquitin-related modifier (SUMO)
to the Lys152 residue [50]. SUMOylation is always in con-
nection with nuclear import signals and the SUMO of nu-
clear FAK is related to FAK activation [51]. Under the
action of stimulation or biomolecules, such as chemical
and/or genetic stress, FAK can occur nuclear recruitment
[52, 53]. The nuclear export sequences and nuclear
localization sequences are crucial for the entry of FAK
into the nucleus and the process of FAK entering the nu-
cleus requires physiological or chemical induction.

The nuclear localization of FAK
FAK can shuttle between the cytoplasm and the nucleus.
Membrane anchors such as FAs may immobilize FAK at
the adhesion sites, keeping FAK in the cytoplasm. But
FAs such as Paxillin and Zyxin families can also migrate
to the nucleus [40, 54, 55]. Although neither protein
links DNA directly, they can serve as coreceptors of
transcription factors. Thus the interaction of FAK with
those proteins may jointly regulate nuclear translocation
of integrin adherent structures [56]. For example, the ec-
topic expression of PIAS1 promotes FAK c-terminal
protein cleavage, focal adhesion maturation, and FAK
nuclear localization in non-small cell lung cancer
(NSCLC) cells. Moreover, nuclear p125 FAK was found
to be significantly phosphorylated at the Y861 site by
specifically expressing the FAK fragments and the
amino-terminal domain FAK fragments could regulate
the nuclear localization and apoptotic in endothelial cells
[57]. Constanzo et al. [58] found that nuclear FAK activ-
ity promoted the survival and progression of NSCLC by
increasing cellular-extracellular matrix (ECM) inter-
action and DNA repair regulation. In a related study,
neural cell adhesion molecule (NCAM) induces FAK ac-
tivation and the nuclear import of the C-terminal frag-
ment and N-terminal fragment of FAK [59]. Moreover,
it is speculated that the localization of FAK in the nu-
cleus facilitates the formation of FAs complexes by inhi-
biting autophagy, thereby triggering cell proliferation
[47, 58]. It suggests that the nuclear recruitment of FAK
requires the participation of other proteins, such as
NCAM and the activation of FAK can also affect the nu-
clear recruitment and regulate DNA repair.
Scientists have found the molecular mechanisms

which stimulated FAK from the cytoplasm into the nu-
cleus [31]. Firstly, Lim et al. [34] treated cancer cells

with an apoptotic inducer of staurosporine which led to
FAK nuclear accumulation. Treatment of myocytes with
H2O2 can lead to oxidative stress, promote FAK nuclear
localization, and induce myocyte differentiation [60].
These indicate that stress signals promote FAK migra-
tion from the cytoplasm to the nucleus. Secondly, the x-
linked apoptotic protein inhibitor (XIAP) promotes FAK
localization in the FAs, which enhances the phosphoryl-
ation of FAK at pY576. Meanwhile, XIAP knockout re-
duces the phosphorylation of FAK, promoting the shear
stress-induced translocation of FAK to the nucleus [61].
The desorption of cells from the matrix may increase
the free FAK available in the cytoplasm, leading to FAK
nuclear localization by detachment from focal adhesion
[31]. Similarly, Aoto et al. [62] mutated the proline-rich
region of Pyk2. They mutated proline 859 to alanine,
prevented the binding of SH3-containing proteins, and
promoted the detachment of Pyk2 from FAs and the nu-
clear localization of Pyk2. Therefore, the decellulariza-
tion of cells from the matrix leads to FAK nuclear
localization. Thirdly, Lim et al. [63] found that kinase
depletion (KD) FAK cells had stronger FAK nuclear
localization signals than wild-type (WT) FAK. Studies
have shown that FAK inhibitors such as PF-562,271, PF-
271, Pfizer, could significantly increase the nuclear
localization of FAK [64, 65]. This result is consistent
with the previous result of kinase depletion. It is specu-
lated that activated FAK may be localized to the cyto-
plasm or adhesion preferentially, instead of the nucleus
[34]. Inhibitors can modify FAK, inhibit FAK activity
and induce it to enter the nucleus. Therefore, FAK in-
hibition promotes FAK nuclear localization. The three
different ways suggest that stress signals, the desorption
of cells from the matrix, and the inhibition of FAK may
induce FAK into the nucleus.

FAK functions in the nucleus
The function of FAK in regulating p53 pathway
FAK enters the nucleus from the FAs site via FERM
NLS. After that, FAK binds to the N-terminal transacti-
vation domain of p53 (Table 1) through its N-terminal
FERM domain, decreases the transcriptional activity of
p53 and inhibits p53 to activate its downstream gene
transcription [67]. A further research found that the
binding site of p53 for interaction with FAK was a 7-
amino-acid site in the proline-rich region in the N-
terminal domain [68]. In this progress, the inactivation
of p53 requires F1 leaf interacting with p53, KAKTLR-
mediated nuclear localization, F3 leaf connecting murine
double minute2 (Mdm2) and proteasome degradation
[31]. A Study has found that FAK negatively regulated
p53 expression in mesothelioma cell lines and NF2 regu-
lated the interaction of FAK–p53 and Mdm2–p53 [69].
The FERM domain mediates the transfer of FAK into
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the nucleus and binds to p53, which in turn binds to
Mdm2, leading to the degradation of p53 through the
ubiquitination pathway and inhibiting apoptosis. FAK
promotes p53 transformation by enhancing Mdm2-
dependent p53 ubiquitination [31, 82]. This mechanism
implies that p53 ubiquitination and Mdm2-mediated
proteasomal degradation keep p53 at a low level, pro-
moting cell survival. At this point, this is one of the
earliest kinase-independent roles, which requires only
FAK’s scaffolding function.
Nuclear FAK can regulate p53-mediated cell behavior

after binding to p53. The earlier studies have shown that
almost 50% of tumors had mutations in p53 and p53 in-
activation was a key step in tumorigenesis [83, 84]. P53
negatively affects the expression of many genes that pro-
mote cell senescence, cell apoptosis and cell death, such
as p21, Gadd45, Cyclin G, Bax, Gml, and P2xm. At the
same time, p53 inhibits the promoter activity of various
cell cycle and anti-apoptotic genes, such as Cyclin, Bax/
Bcl2, and IGF-BP3 [85]. For example, apolipoprotein B
mRNA editing enzyme catalytic polypeptide-like (APO-
BEC) is an important source of tumorigenic mutations.
Among them, APOBEC3B (A3B) expression is particu-
larly relevant to tumors, such as tumor resistance [86].
Periyasamy et al. demonstrated a negative correlation
between A3B expression and p53 expression in different
cancer types, as p53 played a direct and critical role in
inhibiting A3B expression [87]. The CXCR4 receptor

and FAK are believed to regulate the aggressive cancer
behavior [70]. Their expression is down-regulated by
p53 tumor suppressor and phosphatase and tensin
homolog deleted on chromosome ten (PTEN). And p53
and PTEN tumor suppressors are co-inactivated in pa-
tients and cause cancer metastasis [88]. A recent study
has found the mechanism of stabilizing nuclear p53. The
type I phosphatidylinositol phosphate kinase (PIPKI-α)
and its product phosphatidylinositol 4,5-bisphosphate
(PtdIns(4,5)P) can maintain the stability of nuclear p53.
The combination of PIPKI-α and p53 produces PtdIns(4,
5)P, which promotes the interaction of small heat shock
proteins with p53, thereby stabilizing the nuclear p53
[89]. P53 can also participate in the nucleolar stress
pathway [90]. The nuclear mitotic apparatus protein
(NuMA) is present in the nucleolus. NuMA can be in-
volved in DNA damage as well as p53-mediated growth
arrest and apoptosis [91]. Nuclear FAK binds to p53, re-
duce p53 levels and regulate the p53 signaling pathway
in a kinase-independent manner. And as a multifunc-
tional transcription factor, p53 tumor suppressor pro-
teins regulate cellular processes that affect proliferation,
cell cycle checkpoints, and apoptosis.

The function of FAK in regulating inflammation pathway
Inflammation can alter the expression of oncogenes and
tumor suppressor genes to promote the transition of
cells to malignant tumors. It is estimated that infectious

Table 1 Proteins interacting with nuclear FAK

Protein Outcome Significant Findings

NCAM FAK phosphorylation NCAM induces the nuclear import of the C-terminal fragment and N-terminal fragment of FAK [59]

PIAS1 Post-translational modifications PIAS1 binds to the FERM domain of FAK, affecting its post-translational modifications [51, 66]

MBD2 Dissociation from HDAC1 Activate the expression of myogenic proteins and other genes that promote muscle differentiation [60]

P53 Degradation FAK inhibits p53 to activate its downstream gene transcription [67, 68]

Mdm2 P53 ubiquitination P53 proteosomal degradation in the nucleus [31, 69]

NF2 Activation NF2 regulates the interaction of FAK–p53 and Mdm2–p53 [69]

PTEN Upregulation P53 and PTEN tumor suppressors are co-inactivated in patients and cause cancer metastasis [70]

GATA4 Degradation FAK inhabits GATA4 expression and reduces the inflammatory responses [58, 65, 71]

CHIP GATA4 ubiquitination The nuclear FAK interacts with GATA4 and the ubiquitin protein E3 ligase CHIP [58, 65, 72]

IL-33 Upregulation IL-33 regulates CCL5 expression [73, 74]

VEGFR2 Upregulation VEGFR2 promotes the formation of tumor neovascularization and tumor growth [75]

Sin3A Activation FAK participates in the regulation of Runx1 via Sin3A [76]

Runx1 Runx1 complex The formation of the transcription factor Runx1 complex [77]

MEF2 Forms complex FAK and MEF2 jointly regulate expression of Jun which is induced by load [78]

FIP200 FAK phosphorylation inhibition FIP/FAK complex is associated with FAK inactivation after cell detachment [78]

EZH2 EZH2 phosphorylation FAK affects the transcription and nuclear localization of EZH2 [79]

E3 ligase Ubiquitination Inactive FAK coordinates with different E3 ligases, promoting transcription factor turnover [65, 71]

Sam68 Activation Sam68 binds to RNA and signaling molecules to regulate multiple signaling pathways [80]

NS Activation Active FAK protects the NS from proteasomal degradation [81]

Zhou et al. Journal of Experimental & Clinical Cancer Research          (2019) 38:250 Page 4 of 11



diseases and chronic inflammation account for about
25% of carcinogenic factors [92]. For example, DNA
damage associated with inflammation in cancer stem
cells can lead to cancer development with invasive clin-
ical features [93]. The ROS/RNS caused by inflammation
not only damages DNA, but also damages other bio-
logical macromolecules such as proteins and lipids, lead-
ing to dysfunction [94]. These indicate that inflammation
is also closely related to tumor development. Inflamma-
tory factors such as TNF-α can promote the expression of
inflammatory genes through mitogen activated protein ki-
nases (MAPKs) cascade and NF-κB activation [95, 96].
Therefore, inhibiting MAPKs and/or NF-κB pathway may
significantly reduce the expression of inflammatory genes
[97]. Aulakh et al. [72] found that the inhibition of FAK
expression may effectively inhibit vascular cell adhesion
factor-1 (VCAM-1) expression. Interestingly, although the
inhibition of FAK expression blocks VCAM-1, it does not
affect NF-κB activation [10, 65]. In this process, the activa-
tion of MAPKs does not affect VCAM-1 expression and
FAK inhibition can promote the expression of GATA4
transcription factors [98]. This is mediated by the function
of the nuclear FAK scaffold that interacts with GATA4
and the ubiquitin protein E3 ligase chips. Kinase-inhibited
FAK has new developments and anti-inflammatory effects
in limiting VCAM-1 expression through the nuclear
localization and the promotion of GATA4 conversion [58,
65, 71]. This suggests that anti-inflammatory effects can
be provided by the nuclear-localized FAK inhibition and it
is important that the expressions of FAK and inflamma-
tory cytokine are independent of NF-κB activation.
At the same time, a research showed that FAK also in-

duced the expression of inflammatory genes and the
products of these genes inhibited the anti-tumor im-
munity in the microenvironment, leading to the immune
escape of tumor [99]. Firstly, researchers found that FAK
depletion or inhibition could lead to squamous cell car-
cinoma regression. Nuclear FAK induces the expression
of immunosuppressive molecules cytokines and chemo-
kines, forming an immunosuppressive microenviron-
ment, leading to tumor escape [73]. These factors drive
the depletion of CD8+ T cells and the recruitment of
regulatory T cells (Tregs) [100], resulting in the deple-
tion of antigen-induced cytotoxic CD8+ T cell activity
that allows tumor growth [101]. Tumor invasiveness has
a positive correlation with the number and size of nucle-
oli. In nucleoli, FAK binds a cancer stem cell marker
riboflavin and protects it from stress-induced degrad-
ation. A further study revealed that nuclear FAK bound
to the inflammatory factor IL-33 and regulated the ex-
pression of chemokine ligand 5 (CCL5) and growth
stimulation expressed gene 2 (ST2) [74]. IL-33 binds to
CD8 T cells, leading to tumor cells to escape the recog-
nition of CD8 T cells [102]. Deletion of CCL5 reduces

tumor-infiltrating Treg cells, resulting in regression of
FAK-WT tumors [103]. ST2 is secreted into the tumor
environment as a decoy receptor, resulting in competi-
tive inhibition of IL-33/ST2 autocrine and paracrine sig-
nals [104]. Those studies demonstrate the roles of FAK
in the nucleoli. FAK protects nucleocapsid proteins from
proteasomal degradation that is essential for breast can-
cer growth. In general, FAK-IL33 regulation is similar to
FAK-GATA4 regulation, indicating that nuclear FAK is
actually a scaffold promoting transcription factor turn-
over and regulating of inflammatory factor expression.

The potential roles of nuclear FAK
The formation of blood vessels plays an important role
in the occurrence and development of tumors [105]. A
study has confirmed that anti-tumor effects could be
achieved by inhibiting neovascularization [106]. Target-
ing tumor vascular endothelial cells to inhibit tumor
angiogenesis and block tumor blood supply has become
a research hotspot for current anti-tumor. FAK is an in-
dispensable protein in embryonic angiogenesis and regu-
lates angiogenesis in kinase-independent and kinase-
dependent manners. In endothelial cell (EC), FAK acts
in a kinase-independent manner, regulating cell survival
and barrier function. FAK deletion or inhibition of activ-
ity reduces EC proliferation and migration [107]. This
suggests that FAK acts primarily as a kinase that regu-
lates EC-mediated angiogenesis. Further mechanistic
analysis revealed that FAK could regulate the expres-
sion of vascular endothelial growth factor receptor 2
(VEGFR2). Nuclear FAK is directly involved in the
transcriptional regulation of VEGFR2 via the VEGFR2
promoter-associated RNA polymerase II complex [75,
65]. VEGFR2 is the central substance of angiogenesis.
It can bind to VEGF-C and VEGF-D, regulating vas-
cular endothelial cells and lymphatic endothelial cells,
promoting lymphangiogenesis and blood vessel forma-
tion, and regulating lymphocyte migration. This shows
that FAK is also important to maintain the tumor
microenvironment. In addition, nuclear FAK can pro-
mote the formation of tumor neovascularization and
tumor growth.
The SIN3 transcriptional regulatory protein family

member A (Sin3A) is a core component of a multipro-
tein transcriptional repressor complex [108, 109]. Nu-
clear FAK is involved in the regulation of the formation
of the transcription factor Runx1 complex by interacting
with Sin3A [76]. Runx1 regulates the expression of
insulin-like growth factor binding protein 3 (IGFBP3).
IGFBP3 is an extracellular secretory protein that binds
to IGF and regulates IGF signaling. IGFBP3 also exhibits
ligand-independent function in cultured mammalian
cells. In cancer, IGFBP3 regulates cell cycle progression,
affecting cell proliferation and tumor growth [110]. The
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roles of FAK in the nucleus are largely mediated by the
FERM domain, and the FAT domain is also involved. It
forms a complex with myocyte enhancer factor 2
(MEF2) transcription factors and upregulates transcrip-
tional activity under mechanical stress [111]. Early evi-
dence showed that FIP200 colocalized with nuclear FAK
in focal adhesions. Furthermore, the FIP/FAK complex
is associated with FAK inactivation after cell detachment
[78]. Serrels et al. [73] found that FAK activity increases
in squamous carcinoma cells compared to normal kera-
tinocytes and thus FAK nuclear localization is related to
cell transformation. And then a recent study has
found that FAK affected the transcription and nuclear
localization of zeste homolog 2 (EZH2) by regulating
the transcriptional activities of p53 and E2F2/3 [79].
In high blood pressure, FAK and FAK-related non-
kinase (FRNK) enter the nucleus. Protein kinase C
(PKC) mediates the nuclear translocation of FAK and
FRNK [112]. In the nucleus, FAK and FRNK can bind
to different nuclear proteins, such as Src mitosis-
associated protein 68 (Sam68) and fibrin, then target-
ing different nuclear regions [80]. Nucleolus is a non-
membrane nuclear structure that regulates ribosome
biogenesis and cell proliferation [113]. Proteins associ-
ated with nucleoli, such as nucleolar phosphoprotein
B23 and nuclear stabilizing protein (NS), play an

important role in genomic protection, ribosome syn-
thesis, and stem cell proliferation [114, 115]. Tancioni
et al. inhibited FAK activity and led to a decrease in
proteasome-mediated NS levels. They found the
mechanism of FAK in nucleoli by which active FAK
protected the NS from proteasomal degradation and
Akt-mTOR pathway regulated the stability of NS in
breast cancer cells [81]. In general, activated FAK in
the nucleus controls a variety of transcription factors
leading to changes in gene regulation. Meanwhile,
inactive FAK coordinates with different ubiquitin pro-
tein ligase E3 that promotes transcription factor turn-
over by enhancing ubiquitination (Fig. 2).

FAK inhibitors
There are two important topics in the field of cancer re-
search: one is tumor molecular imaging and the other is
targeted molecular therapy. According to the consensus
of many publications, FAK can be used as a promising
target for anticancer therapies [116]. Currently, targeting
FAK as a method of treating tumors mainly focuses on
the use of drugs to inhibit its kinase activity and scaffold
function. And reported FAK inhibitors are mainly small
molecule inhibitors [1]. Small chemical molecules with
good drug-forming properties can inhibit the phosphor-
ylation of FAK and block the signal transduction

Fig. 2 FAK functions in the nucleus. The activated FAK phosphorylates Rgnef and paxillin to promote focal adhesions assembly. In the cytoplasm,
FAK regulates the development of cancer. Via the FERM structure, cell de-adhesion and/or kinase inhibition can promote FAK shuttle from
cytoplasm to the nucleus. After entering the nucleus, active FAK binding to transcription factors (TFs) regulates cancer-related gene expression.
Inactive FAK coordinates with different E3 ligases promoting turnover of TFs by enhancing ubiquitination. By regulating gene expression, nuclear
FAK can be involved in the regulation of tumor angiogenesis, cell cycle, apoptosis, cell proliferation, immune escape, and tumor growth
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through the cell membrane, thereby inhibiting the prolif-
eration and spread of cancer cells [117]. Therefore, the
research on FAK inhibitors is very promising. The phar-
macodynamic activities of FAK inhibitors that have en-
tered preclinical or clinical studies can be divided into
two categories according to their mechanisms: ATP-
dependent and ATP-independent [118]. The ATP-
dependent FAK inhibitors can affect the binding of ATP
to FAK and block FAK phosphorylation. The ATP-
independent FAK inhibitors do not pass through the
ATP binding site, but directly targets the FAK site, such
as the FAK Y397 phosphorylation site [119]. Experimen-
tal results also showed that those small molecule FAK
inhibitors could inhabit cell migration [3], survival [120],
proliferation [121], and adhesion [122]. FAK inhibitors
also can inhibit nuclear active FAK phosphorylation and
regulate its related signaling pathways, such as the p53
signaling pathway, the inflammatory signaling pathway,
the tumor angiogenesis-related pathway, and the im-
mune escape signaling pathway. These pathways are
closely related to tumor survival, migration, invasion,
growth. For example, Dao et al. [123] found that 1,3,5-
triazinic inhibitors of FAK could resist angiogenesis in
HUVEC cells and have anticancer effects on various can-
cer cells. On this basis, they designed and synthesized a
new compound containing a 1,2,4-triazine core as an in-
hibitor of FAK. And the compound can effectively in-
hibit the proliferation of U-87MG and HCT-116 cancer
cells and exhibit a good anti-tumor effect [124]. In
addition, Qu et al. [125] synthesized a class of FAK in-
hibitors, named Sul-DPPYs and it could effectively in-
hibit the activity of FAK and treat pancreatic cancer as a
potent FAK inhibitor. Experiments have shown that
treatment of NSCLC cells with CXCR4 and FAK inhibi-
tors such as WZ811 and PF-573228 can inhibit their
ability to migrate and invade [70, 88]. Inducing expres-
sion of p53 and p21 in ECs by down-regulating FAK
may result in damage to angiogenesis and tumor growth
[31]. What’s more, Roslin2 or 1-benzyl-15,3,5,7-tetraaze-
tidine[3.3.1.1~3,7~] decane (R2) compounds disrupt
FAK and p53 proteins that subsequently suppress tumor
growth [85, 126]. In addition, small molecule inhibitors
can inhibit FAK-mediated immune escape [73]. VS-4718
can inhibit the expression of immunosuppressive mole-
cules such as IL-33 and CCL5, and reduce Tregs in the
tumor environment [74]. Although inhibitors inhibit
FAK phosphorylation, it is also possible to selectively in-
duce nuclear localization. For example, PF-562,271 can
block the phosphorylation of FAK at Y397 site and sig-
nificant increase the nuclear localization of inactive FAK
[64, 65]. The inactive FAK enters the nucleus and binds
to E3 ligase to regulate the expression of transcription
factors. And the mechanism of FAK kinase inhibitor tar-
geting immunosuppressive may represent an effective

immunomodulatory therapy. The development of FAK
inhibitors is currently underway, and many inhibitors
have shown therapeutic effects on cancer. Therefore, re-
search on FAK inhibitors is also one of the research hot-
spots and it is also one of the directions for the
development of anti-tumor drugs.

Conclusion
Current researches on FAK focus on the roles of FAK in
FAs. FAK is a cytoplasmic non-receptor protein tyrosine
kinase that phosphorylates different targets in cells. FAK
also has a very important position in cell signal trans-
duction. It is the center of intracellular and extracellular
signal transduction and mediates multiple signaling
pathways. FAK can be used as a platform to participate
in the assembly of protein complexes and a bridge to
participate in the signal transduction between proteins.
Similarly, FAK also plays an important role in tumor cell
signal transduction, mediating the tumor progression to
a malignant invasion phenotype. Through these kinase-
dependent mechanisms, FAK can regulate biological be-
haviors of tumor cells such as adhesion, migration, inva-
sion, proliferation and survival.
Since FAK has a nuclear export signal, a nuclear

localization signal, and the SUMOylation in the FERM do-
main related to nuclear import signals. FAK can also enter
the nucleus via biological mechanisms. Nuclear FAK con-
trols various transcriptional networks such as the p53 sig-
naling pathway, the inflammatory signaling pathway, the
immune escape, and angiogenesis, influencing multiple
cancer cell functions. The inhibition of nuclear FAK ex-
pression can affect the biological behavior of tumor cells
such as aging, apoptosis and immune escape. However,
the regulation mechanism of FAK in the nucleus remains
to be further studied. For example, FAK regulates p21
cyclin-dependent kinase inhibitor gene expression in a
kinase-dependent or kinase-independent manner, but
how FAK regulates the expression of the p21 gene in two
ways remains unclear. The molecular mechanism is still
unclear. In tumor angiogenesis, whether FAK regulates
the expression of related molecules through other path-
ways still needs to be studied. Furthermore, both FAK and
p53 can participate in the regulation of nucleolar associ-
ated proteins expression in the nucleolus. But it is not
clear whether they interact. Therefore, there are still many
problems in this field that have not yet been solved. In the
future, it is necessary to explore its molecular mecha-
nisms, which is crucial for studying the occurrence and
development of tumors. Furthermore, further study of the
roles of nuclear FAK may uncover new mechanisms that
promote tumor development.
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