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A B S T R A C T   

Background: Numerous studies have shown a strong correlation between disulfidptosis and 
various cancers. However, the expression and function of RPN1, a crucial gene in disulfidptosis, 
remain unclear in the context of cancer. 
Methods: Gene expression and clinical information on lung adenocarcinoma were obtained from 
The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. RPN1 
expression was analyzed using the Timer2.0 and the Human Protein Atlas (HPA) databases. 
Prognostic significance was assessed using Cox regression analysis and Kaplan–Meier curves. 
Genetic mutations and methylation levels were examined using the cBioPortal and UALCAN 
platforms, respectively. The relationship between RPN1 and tumor mutation burden (TMB) and 
microsatellite instability (MSI) across different cancer types was analyzed using the Spearman 
correlation coefficient. The relationship between RPN1 and immune cell infiltration was analyzed 
using the Timer2.0 database, whereas variations in drug sensitivity were explored using the 
CellMiner database. Receiver operating characteristic curves validated RPN1’s diagnostic po
tential in glioma, and its correlation with immune checkpoint inhibitors (ICIs) was assessed using 
Spearman’s correlation coefficient. Single-sample gene set enrichment analysis elucidated a link 
between RPN1 and immune cells and pathways. In addition, a nomogram based on RPN1 was 
developed to predict patient prognosis. The functional impact of RPN1 on glioma cells was 
confirmed using scratch and Transwell assays. 
Result: RPN1 was aberrantly expressed in various cancers and affected patient prognosis. The 
main mutation type of RPN1 in the cancer was amplified. RPN1 exhibited a positive correlation 
with myeloid-derived suppressor cells, neutrophils, and macrophages, and a negative correlation 
with CD8+ T cells and hematopoietic stem cells. RPN1 expression was associated with TMB and 
MSI in various cancers. The expression of RPN1 affected drug sensitivity in cancer cells. RPN1 was 
positively correlated with multiple ICIs in gliomas. RPN1 also affected immune cell infiltration 
into the tumor microenvironment. RPN1 was an independent prognostic factor for gliomas, and 
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the nomogram demonstrated excellent predictive performance. Interference with RPN1 expres
sion reduces the migratory and invasive ability of glioma cells. 
Conclusion: RPN1 exerts multifaceted effects on different stages of cancer, including immune 
infiltration, prognosis, and treatment outcomes. RPN1 expression affects the prognosis and im
mune microenvironment infiltration in patients with glioma, making RPN1 a potential target for 
the treatment of glioma.   

1. Introduction 

Malignant tumors can arise in various tissues and organs of the human body, leading to a decreased quality of life and poor 
prognosis in patients with cancer. Overcoming cancer remains a formidable challenge for humanity [1,2]. The onset and progression of 
tumors involves a multistep, multilevel process encompassing oncogene activation, gene sequence alterations, and aberrant signal 
transduction [3]. Hence, it is crucial to explore genetics-based cancer treatment approaches. 

In recent years, pan-cancer research has gradually become an important approach for exploring the intrinsic mechanisms un
derlying the onset and progression of malignant tumors. This comprehensive and multifaceted research method has deepened our 
understanding of cancer and provided strong support for the discovery of preventive and therapeutic methods [4,5]. For specific types 
of malignant tumors, especially gliomas, one of the most common primary malignant tumors of the central nervous system, pan-cancer 
research has proven to be particularly important [6]. For example, pan-cancer analysis has identified CHD5 as a potential biomarker 
for glioma [7], and pan-cancer research has shown that NUP37 is a prognostic biomarker associated with the immunosuppressive 
microenvironment of gliomas [8]. In contrast to other tumors, gliomas not only significantly impact patients’ quality of life but also 
draw attention owing to their high recurrence rate, rapid progression, and lack of effective treatment options [9,10]. Therefore, 
understanding the pathogenesis of gliomas and identifying novel therapeutic targets are crucial. In addition, in the field of tumor 
therapy, programmed cell death (PCD) has been a breakthrough in cancer treatment. 

Various forms of PCD are closely associated with tumor progression [11]. For instance, ferroptosis, a novel form of PCD that is 
iron-dependent and distinct from apoptosis, necrosis, and autophagy, plays a dual role in tumorigenesis by promoting tumor growth 
and inhibiting tumor development [12,13]. Recent research has identified a new type of PCD, disulfidptosis, a rapid death caused by 
disulfide stress resulting from excessive intracellular cystine accumulation, which leads to abnormal disulfide bonds between actin 
backbone proteins, causing disintegration of the actin network and cell death [14]. Research has shown that RPN1, a core gene 
associated with disulfidptosis, is aberrantly expressed in various cancers, including melanoma, breast cancer, liver cancer, and bladder 
cancer. Moreover, high expression of RPN1 has been linked to hepatocellular carcinoma progression. Recent studies have indicated 
that targeting RPN1 may be a viable strategy for bladder cancer treatment. Thus, RPN1 has great potential in cancer treatment 
[15–18]. 

This study analyzed the aberrant expression and mutation status of RPN1 in cancer and its impact on the prognosis and drug 
sensitivity of patients with cancer. We further investigated the influence of RPN1 on the prognosis and immune infiltration status of 

Fig. 1. Overview flowchart of the article. First, we downloaded pan-cancer-related gene expression data and clinical information. In the second 
step, we conducted a comprehensive analysis of RPN1 expression and gene mutations in pan-cancer using multiple methods, investigating the 
impact of RPN1 expression on patient prognosis, immune infiltration, and drug sensitivity. In the third step, building upon the pan-cancer analysis in 
the second step, we observed a higher significance of RPN1 results in gliomas. Therefore, we further analyzed the specific role of RPN1 in gliomas. 
Finally, we experimentally validated the influence of RPN1 on glioma cells. 
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patients with glioma and established a nomogram based on RPN1 expression to predict the prognosis of patients with glioma. 
Additionally, we validated the effects of RPN1 on glioma cell function using scratch and Transwell assays. 

2. Materials and methods 

The research flow of the article is shown in Fig. 1. 

2.1. Data download 

The gene expression matrix and clinical data for the pan-cancer analysis were sourced from The Cancer Genome Atlas (TCGA) 
database. Owing to the limited number of normal samples in TCGA database, gene expression matrices and clinical data for normal 
samples were downloaded from The Genotype-Tissue Expression (GTEx) database. 

2.2. Expression of RPN1 

The TIMER2.0 database is a tool designed to analyze tumor immune cell infiltration and gene expression. Building upon the 
foundation of the TCGA database, it offers researchers abundant bioinformatic data pertaining to tumor [19]. We used this database to 
compare the expression levels of RPN1 between tumor and normal tissues. The Wilcoxon–Mann–Whitney test was used to calculate the 
statistical differences in RPN1 expression among samples from the TCGA database. Owing to the lack of sufficient control samples for 
certain cancers in the TCGA database, the expression of RPN1 in both cancer and normal tissues was additionally validated using the 
TCGA-GTEx dataset. 

The Human Protein Atlas (HPA) database provides extensive information on human proteins at both tissue and cellular levels, 
including various data sources, such as immunohistochemistry (IHC), immunofluorescence, mass spectrometry, and cellular imaging 
[20]. We obtained IHC results for RPN1 in multiple cancers and their corresponding normal tissues from this database. 

2.3. Survival analysis 

We evaluated the role of RPN1 in overall survival (OS) across multiple cancers using univariate Cox regression analysis [21], in 
which the hazard ratio (HR) was used to assess the outcomes. We then divided the patients into two groups (high- and low-expression 
groups) based on the median value of RPN1 expression. The effect of RPN1 expression on patient prognosis was compared using 
Kaplan–Meier survival curves [22]. 

2.4. Immune infiltration of RPN1 in pan-cancer 

We determined the correlation between RPN1 expression in tumor tissues and various immune cells from the TIMER 2.0 database 
[23]. This database integrates multiple analysis tools (XCELL, QUANTISEQ, TIMER, TIDE, CIBERSORT, CIBERSORT-ABS, EPIC, and 
MCPcounter) and uses partial Spearman correlation analysis to examine the relationship between RPN1 and immune cells. Expla
nations of these tools are provided in Table 1. 

2.5. Gene enrichment analysis 

GEPIA is an online platform for the rapid analysis and visualization of gene expression data and provides information about genes 
of interest [24]. From this database, we identified the top 100 genes that were most strongly correlated with RPN1 in cancer. Gene 
Oncology (GO) and Kyoto Encyclopedia of Genomics (KEGG) analyses were performed for these genes. The results of GO analyses 
consisted of three categories: cellular components (CC), biological pathways (BP), and molecular functions (MF). p < 0.05 was 
considered statistically significant, and the results were visualized using the R package “ggplot2” to explore the potential functions of 
RPN1. 

Table 1 
Interpretation of multiple immune infiltration calculation tools.  

Tools Interpretation 

XCELL A computational tool for estimating the abundance of immune cell types based on gene expression data. 
QUANTISEQ A tool employing sophisticated algorithms to infer the relative abundance of different immune cell types within tumor tissues. 
TIMER The tool is based on gene expression data to estimate the relative abundance of various immune cell types within tumor tissues. 
TIDE A tool for predicting the responsiveness of immune checkpoint inhibitors in tumors. 
CIBERSORT A computational tool used to estimate the abundance of various cell types in complex cell mixtures. 
CIBERSORT-ABS An extended version of CIBERSORT used to estimate the absolute abundance of cell types rather than relative abundance. 
EPIC A computational tool used to estimate the abundance of immune cell types, particularly suitable for tumor samples. 
MCPcounter A computational tool used to assess the abundance of different cell types in the tumor microenvironment from gene expression data.  
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2.6. Mutations and methylation levels 

UALCAN is an online platform for analyzing and visualizing TCGA tumor data, including gene expression and methylation in
formation [25]. We used this platform to compare the methylation status of RPN1 between normal and tumor samples. 

Additionally, cBioPortal is an open platform for the interactive exploration of large-scale cancer genomic data [26]. We used this 
platform to analyze the genetic mutation status of RPN1 in tumors. According to a study conducted by Bonneville et al., we obtained the 
microsatellite instability (MSI) scores for tumor samples from TCGA database [27]. In addition, we calculated the tumor mutation 
burden (TMB) for each tumor using the “TMB” function in the R package “maftools.” Subsequently, we statistically analyzed and 
visualized the results using the R package “fmsb.” 

2.7. Drug sensitivity 

CellMiner is a cancer cell line-based database that provides extensive molecular characterization and drug response data for various 
cancer cell lines [28]. We obtained drug sensitivity data from this database and analyzed the differences in sensitivity between RPN1 
and various drugs using Spearman’s correlation coefficients. A correlation coefficient (cor) greater than 0.3 was considered significant. 
We visualized the results using the R package “ggplot2.” 

2.8. Clinical value of RPN1 for gliomas 

With significant results for gliomas in several pan-cancer studies, we investigated the role of RPN1 in the diagnosis, progression, 
and prognosis of gliomas. The training cohort (TCGA-GBMLGG) comprised 706 samples, including five non-tumor samples. Of these, 
699 samples with survival data were used for the prognosis-related analyses. Of these 699 samples, 427 were survivors (censored 
samples) and 272 were deceased. The validation cohort (TCGA-GTEx) contained 1846 samples, of which 689 were glioma samples and 
1157 were normal samples. 

We validated the diagnostic performance of RPN1 by plotting the receiver operating characteristic curves (ROC) of the training and 
validation cohorts using the R package “pROC.” Univariate and multivariate Cox regression analyses were performed to confirm 
whether RPN1 was an independent prognostic factor for gliomas. An RPN1-based nomogram was constructed to predict patients’ 
survival at 1, 2, and 3 years using “rms” (https://cran.r-project.org/package=rms) and “survival” (https://cran.r-project.org/ 
package=survival) package, and calibration curves were established to verify its performance [29]. 

2.9. Immune-related functional analysis of RPN1 in gliomas 

The association of RPN1 with several common immune checkpoint inhibitors (ICIs) was calculated using the Spearman correlation 
coefficient, and the results were plotted as a chordal plot using the R package “circlize.” Gene sets of immune cells and immune-related 
functions were downloaded from the MSigDB database. (https://www.gsea-msigdb.org/gsea/msigdb). The enrichment scores for 
immune-infiltrating cells and immune-related functions were analyzed in TCGA-GBMLGG samples using a single-sample genome 
enrichment analysis (ssGSEA) algorithm. 

2.10. Cell culture and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

HA-1800 (normal human astrocytes) and U-87 (human glioma astrocytoma cells) cells were procured from Wuhan Punuo Sai Life 
Science Co., Ltd. and cultured in DMEM (Gibco, USA) supplemented with 10 mL of fetal bovine serum (FBS). Total RNA was extracted 
using the TRIzol reagent (Sebasun, China), and cDNA was synthesized using a reverse transcription kit (Toyobo Biotechnology Co., 
Ltd., Shanghai, China). The mRNA expression levels were detected on a PCR instrument under the following conditions: 95 ◦C for 20 s, 
55 ◦C for 20 s, and 72 ◦C for 20 s for 40 cycles. The relative gene expression levels were calculated using the 2− ΔΔCT method with 
GAPDH as the internal reference. Detailed primer sequences are listed in Table 2. 

2.11. Plasmid transfection experiment 

U87 cells in the logarithmic growth phase were seeded in six-well plates at a density of 1 × 105 cells/well and cultured until 
confluency reached 80 % or higher. The cells were then divided into three groups: (1) blank group: untreated U87 cells. (2) NC group: 
The negative control plasmid (NC plasmid) was transfected into U87 cells using a transfection reagent (Lipofectamine 2000). (3) 

Table 2 
Primer sequences used in PCR experiments.  

Gene Primer sequence (5′–3′) 

GAPDH Forward TCAGCAATGCCTCCTGCAC 
Reverse TCTGGGTGGCAGTGATGGC 

C10orf55 Forward GGACCTACTGGATTATGGG 
Reverse GATGGTCTTAAAAGAACGGA  
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siRPN1 group: The siRNA plasmid was transfected into U87 cells using a transfection reagent. The sequences of the NC plasmid and 
siRPN1 plasmid are listed in Table 3. Subsequent experiments were performed using cells from all three groups. 

2.12. Scratch assays and transwell invasion assays 

ECM gel matrix (BD Biosciences, USA) was diluted to 1 mg/mL in PBS and applied at 50 μL per well onto Transwell chamber 
membranes. Cells were seeded at a density of 5.0 × 105 cells/mL in 200 μL per well in the upper chamber, while 500 μL of culture 
medium containing 10 % FBS was added to the lower chamber. After 48 h of incubation, the membrane in the bottom chamber was 
fixed with paraformaldehyde and stained with crystal violet. Subsequently, the cells were counted under a 100x microscope (the 
number of cells in the upper, lower, left, right, and middle regions and the average were calculated). 

Cells were seeded at a 5 × 105 cells/mL density per well in six-well plates. After reaching confluence, a straight line was scratched 
vertically across the well surface using a sterile pipette tip, followed by the addition of serum-free culture medium. The cells were then 
incubated at 37 ◦C with 5 % CO2, and images were captured at 24 and 48 h. 

2.13. Statistical analysis 

In this study, for continuous variable data that followed a normal distribution, we employed the t-test (Student’s t-test) to analyze 
their correlations. For data that did not meet the normal distribution criteria or for two independent samples, the Wilcox
on–Mann–Whitney test was utilized. Additionally, the Kruskal–Wallis test was used to examine correlations among more than two 
independent samples. The Spearman’s correlation coefficient was used to measure the strength and direction of the nonlinear re
lationships between two variables. A p-value below 0.05 was considered statistically significant. “*,” “**,” and “***” represent p <
0.05, p < 0.01, and p < 0.001, respectively. 

3. Results 

3.1. Expression of RPN1 in pan-cancer 

Based on RPN1 expression data from TCGA and TCGA-GTEx databases, compared with normal tissues, RPN1 expression levels were 
elevated in BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, READ, STAD, UCEC, ACC, DLBC, GBMLGG, LAML, 
OV, SKCM, TGCT, THYM, and UCS tissues. Conversely, decreased expression of RPN1 was observed in KICH and THCA (Fig. 2A–K) 
(abbreviations and full names are listed in Table 4). 

The HPA database suggests that RPN1 is expressed at high levels in normal tissues, such as the gastrointestinal tract, pancreas, and 
testis, and at low levels in muscles and soft tissues (Supplementary Fig. 1A). Simultaneously, RPN1 is also highly expressed in a variety 
of cancers, such as myeloma, ovarian cancer, skin cancer, kidney cancer, and bladder cancer (Supplementary Fig. 1B). In addition, we 
obtained IHC results for RPN1 in selected cancers and their corresponding normal tissues from this database. These results also 
demonstrate the high expression of RPN1 in LUAD, GBMLGG, COADREAD, HNSC, KIRC, LIHC, CESC, OV, and UCEC, in agreement 
with our previous findings (Fig. 3A–I). 

3.2. Survival analysis 

Univariate Cox regression analysis revealed that RPN1 was an adverse prognostic factor (HR > 1) for multiple cancer types, 
including ACC, BLCA, GBMLGG, KICH, LIHC, and PAAD. Conversely, RPN1 was a favorable prognostic factor (HR < 1) for DLBC and 
THYM (Fig. 4A). Furthermore, Kaplan–Meier survival curves demonstrated that elevated expression of RPN1 was associated with poor 
prognosis in patients with HNSC, LUAD, ACC, BLCA, GBMLGG, KICH, LIHC, and PAAD. In contrast, it was correlated with prolonged 
survival in patients with KIRC, READ, and THYM (Fig. 4B-L). The Kaplan–Meier survival curves for other cancers are not shown 
because their p-values were >0.05. These findings were highly consistent with the univariate Cox regression analysis results. 

3.3. Correlation between RPN1 and immune cell infiltration 

Cancer is typically accompanied by widespread immune system dysfunction, and tumor progression is closely associated with 
immune cell infiltration [30]. Therefore, investigating the correlation between RPN1 and immune cell infiltration in tumor tissues is 
critical to understand the immune regulatory mechanisms of cancer and discover potential therapeutic approaches. Our study found 

Table 3 
Gene sequences of transfected plasmids.  

siRNA Gene sequence（5′–3′） 

RPN1-siRNA Forward ACAUCUUUGUGUUUUUUGAACAAAG 
Reverse AGUGCGCUCGGCUUGCUUGUUUUU 

SiRNA-NC Forward UUCUCCGAACGUGUCACGUTT 
Reverse ACGUGACACGUUCGGAGAATT  
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that RPN1 was positively correlated with myeloid-derived suppressor cells (MDSCs) (Fig. 5A), neutrophils (Fig. 5B), and macrophages 
(Fig. 5C), but negatively correlated with CD8+ T cells (Fig. 5D) and hematopoietic stem cells (HSCs) (Fig. 5E). Additionally, the 
correlation of RPN1 with regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), CD4+ T cells, myeloid dendritic cells (mDCs), 
natural killer (NK) cells, and endothelial cells was diverse (Fig. 5F–K), which may be attributed to heterogeneity among different types 
of tumors and algorithmic differences in the immune calculation tools used. The significance of these findings is elaborated on in the 
Discussion section. 

3.4. Enrichment analysis 

From the GEPIA platform, we obtained the top 100 genes that were the most closely associated with RPN1 in cancer (Supple
mentary Table 1). GO analysis of these 100 genes indicated that RPN1 was predominantly enriched in endoplasmic reticulum-related 
functions (such as stress response and vesicle transport), glycoprotein metabolism, and enzyme-related functions (including oxido
reductase and protein disulfide isomerase activity) (Supplementary Figs. 2A–C). Furthermore, KEGG analysis suggested that these 
molecules were mainly involved in protein export, protein processing in the endoplasmic reticulum, various forms of N-glycan 
biosynthesis, and Vibrio cholerae infection (Supplementary Fig. 2D). Thus, RPN1 plays a role in critical cellular processes, such as 

Fig. 2. Expression levels of RPN1 in pan-cancer tissues. (A) Expression of RPN1 in cancer and normal tissues in the Timer2.0 database. (B–K) 
Comparison of the expression difference of RPN1 in normal and tumor tissues. “*” denotes p < 0.05, “**” denotes p < 0.01, “***” denotes p < 0.001. 
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Table 4 
Abbreviations and corresponding full names of tumors.  

TCGA TUMOR TCGA TUMOR 

ACC Adrenocortical carcinoma MESO Mesothelioma 
BLCA Bladder Urothelial Carcinoma OSCC Oral squamous cell carcinoma 
BRCA Breast invasive carcinoma OV Ovarian serous cystadenocarcinoma 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma PAAD Pancreatic adenocarcinoma 
CHOL Cholangiocarcinoma PCPG Pheochromocytoma and Paraganglioma 
COAD Colon adenocarcinoma COADREAD Colon and rectum adenocarcinoma 
DLBC Lymphoid neoplasm diffuse large B-cell Lymphoma READ Rectum adenocarcinoma 
ESCA Esophageal carcinoma SARC Sarcoma 
GBMLGG Glioma SKCM Skin cutaneous melanoma 
HNSC Head and neck squamous cell carcinoma STAD Stomach adenocarcinoma 
KICH Kidney chromophobe STES Stomach and esophageal carcinoma 
KIRC Kidney renal clear cell carcinoma TGCT Testicular germ cell tumors 
KIRP Kidney renal papillary cell carcinoma THCA Thyroid carcinoma 
LAML Acute myeloid leukemia THYM Thymoma 
LIHC Liver hepatocellular carcinoma UCEC Uterine corpus endometrial Carcinoma 
LUAD Lung adenocarcinoma UCS Uterine carcinosarcoma 
LUSC Lung squamous cell carcinoma UVM Uveal melanoma 
PRAD Prostate adenocarcinoma    

Fig. 3. IHC images of RPN1 protein expression levels in normal and corresponding tumor tissues. (A–I) RPN1 expression was higher in LUAD, 
GBMLGG, COADREAD, HNSC, KIRC, LIHC, CESC, OV, and UCEC. 
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protein glycosylation, endoplasmic reticulum function, protein export, and protein metabolism. These findings deepen our under
standing of RPN1’s function in cellular activities and pave the way for future cancer research and treatments. 

3.5. Genetic alterations of RPN1 in pan-cancer 

Gene mutations are essential for the occurrence and progression of cancer. Therefore, we explored the level of gene mutations of 
RPN1 in different types of cancer. The results indicated that the mutation level of RPN1 was the highest in cervical cancer, followed by 
endometrial, non-small cell lung, ovarian epithelial, and head and neck cancers (Fig. 6A). These were primarily caused by gene 
amplification and missense mutations (Fig. 6B–D). Following RPN1 mutations, there were significant increases in the mutation rates of 
SULT1D1P, LRRTM4-AS1, LINC01851, SNAR-H, LINC01565, DNAJB8, PLXND1, DNAJB8-AS1, CFAP92, and PLXNA1 (Fig. 6C). This 
suggests that these gene mutations may be involved in driving specific cellular signaling pathways of tumor occurrence, indicating the 
involvement of RPN1 in the progression of tumors with these genes. This is crucial for understanding the process of cancer occurrence 
and development and related carcinogenic mechanisms. 

Studies have shown that DNA promoter methylation is closely related to gene transcription and directly correlated with the 
occurrence and development of tumors. Characteristic methylation sites play a crucial role in the diagnosis, classification, prognosis, 
and treating tumors [31]. Therefore, we compared the methylation levels of RPN1 in normal tissues and the corresponding tumor 
samples using the UALCAN platform. Fig. 6E–S shows results with statistical differences (p < 0.05), indicating a significant decrease in 
the methylation levels of RPN1 in tumor tissues, such as KIRC, ESCA, SARC, LUAD, READ, KIRP, UCEC, LIHC, BLCA, PRAD, TGCT, 
LUSC, HNSC, COAD, and BRCA. This suggests that the expression of RPN1 in cancer may be influenced by changes in methylation 
levels, thus affecting the biological behavior of tumor cells. 

3.6. Relationship among RPN1, TMB, and MSI 

Currently, TMB and MSI are receiving increasing attention in tumor therapy. Research indicates that TMB and MSI may serve as 
potential indicators of immune response [32,33]. High TMB and MSI levels tended to result in improved immune reactivity [34]. We 

Fig. 4. Survival analysis of RPN1 in pan-cancer. (A) Forest plot of the correlation between RPN1 expression and OS in pan-cancer tissues. HR > 1 
represents that RPN1 is a poor prognostic factor for this tumor, while HR < 1 represents that RPN1 is a favorable prognostic factor. (B–C) RPN1 
expression decreased the survival of patients with HNSC and LUAD. (D–E) RPN1 expression increased the survival rate of patients with KIRC and 
READ. (F–L) Kaplan–Meier curves showed that RPN1 expression on ACC, BLCA, GBMLGG, KICH, LIHC, and PAAD decreased survival, while 
expression on THYM increased survival. 

Fig. 5. Effects of RPN1 expression on immune cells. (A–K) Relationships between RPN1 expression and immune infiltration of MDSCs, neutrophils, 
macrophages, CD8+ T cells, hematopoietic stem cells, Tregs, CD4+ T cells, DC cells, NK cells, and endothelial cells were analyzed using the TIMER 
2.0 database. Positive correlations are shown in red, negative correlations in blue, and p < 0.05 was considered significant. 
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then explored the association among RPN1 expression, TMB, and MSI in pan-cancers. Fig. 7A shows that TMB was positively associated 
with six cancers: GBMLGG (cor = 0.089, p = 0.023), LUAD (cor = 0.19, p < 0.001), COAD (cor = 0.154, p = 0.009), BRCA (cor = 0.083, 
p = 0.009), SARC (cor = 0.165, p = 0.011), and STAD (cor = 0.138, p = 0.005). The results of the correlation analyses for all cancers are 
presented in Supplementary Table 2. We observed a correlation between RPN1 and MSI. We found a significant correlation with nine 
tumors; CESC (cor = 0. 127, p = 0.027), COAD (cor = 0.192, p = 0.001), SARC (cor = 0.133, p = 0.034), STAD (cor = 0.152, p = 0.002), 
READ (cor = 0.222, p = 0.036), and BLCA (cor = 0.107, p = 0.032) showed a positive correlation, while GBMLGG (cor = − 0. 374, p <
0.001), PRAD (cor = − 0.154, p < 0.001), and THCA (cor = − 0.175, p < 0.001) showed a negative correlation (Fig. 7B–Supplementary 

Fig. 6. Genetic alterations in RPN1. (A) Analysis of RPN1 gene alterations in human tumor tissues. (B) Types of gene alterations in RPN1. (C) 
Mutation rates of relevant genes in the RPN1 gene alteration and unaltered groups. (D) Overview of the types of RPN1 gene alterations. (E–S) A 
study using UALCAN software to analyze differences in promoter methylation of the RPN1 gene in normal and primary tumor tissues. 

Y. Zong et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e31875

11

Fig. 7. (A) Radar plot of the correlation between RPN1 expression and TMB. (B) Radar plot of the correlation between RPN1 expression and MSI. 
(C–K) Drugs that increase sensitivity with elevated RPN1 expression. (L–N) Drugs with reduced sensitivity and elevated RPN1 expression. “*” 
denotes p < 0.05, “**” denotes p < 0.01, “***” denotes p < 0.001. 
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Table S3). These results confirmed the feasibility of RPN1 as an immunotherapeutic target. 

3.7. Drug sensitivity analysis of RPN1 in pan-cancer 

After discussing the potential immunotherapeutic value of RPN1, we analyzed the effects of RPN1 expression on drugs. The results 
showed that RPN1 expression increased the sensitivity to JQ-1, abiraterone, curcumin, haloperidol, indibulin, nitazoxanide, qui
zartinib, vismodegib, and XL-147 (Fig. 7C–K), whereas RPN1 expression increased the resistance to AFP464, CUDC-305, and neratinib 
(Fig. 7L-N). Many of these drugs are used for the clinical treatment of cancer, including neratinib for breast cancer and abiraterone for 
prostate cancer. 

3.8. Clinical value of RPN1 in gliomas 

In several of the aforementioned studies, glioma samples showed significant results. We focused on examining the specific link 
between RPN1 and glioma. Based on the ROC curves, in the training cohort, the area under the curve (AUC) was 0.813 (Fig. 8A), 
whereas in the validation cohort, the AUC was 0.991 (Fig. 8B). This result indicates that RPN1 has a good predictive performance for 
gliomas. In addition, using univariate and multivariate Cox regression analyses (Fig. 8F–H), we identified RPN1, Age, WHO grade, IDH 
status, and 1p/19q co-deletion as independent prognostic factors for gliomas. Based on these factors, we constructed a nomogram to 
predict the 1-, 2-, and 3-year survival probabilities of patients with glioma (Fig. 8G). For instance, in a patient with glioma with a WHO 

Fig. 8. (A–B) ROC curves of TCGA-GBMLGG and TCGA-GTEx. (C) Chord plot of the correlation between RPN1 and immunosuppressive checkpoints, 
with a positive correlation in red and a negative correlation in blue. (D) Correlation between RPN1 and immune cells in gliomas. (E) Correlation 
between RPN1 and immune-related functions or pathways in gliomas. (F, H) Univariate and multivariate regression analyses of RPN1 in GBMLGG. 
(G) A nomogram was created based on the clinical characteristics of gliomas and RPN1. (I) Calibration curves were established to verify the accuracy 
of the nomogram. 

Fig. 9. (A) Results of RPN1 expression in astrocytes and glioma cells detected using PCR. (B) Transwell assay of the three groups of cells (U87, NC, 
siRNA) to detect cell invasion. (C) Statistical results of the invasion assay for three groups of cells. (D) Results of the scratch assay for the three 
groups of cells. (E) Statistical results of the scratch assay. 
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grade of grade 3, the IDH status was classified as wild-type, and a 1p/19q co-deletion status was designated as Codel. The patient was 
70 years old and concurrently presented with a high RPN risk score. Based on composite score calculations, the patient’s total score was 
149. Consequently, the anticipated 1-year survival rate for this patient was 0.731, the 2-year survival rate was 0.420, and the 3-year 
survival rate was 0.221. Calibration curves were constructed to assess the predictive performance of the nomograms. The ideal line 
represents the prediction curve, whereas the green, orange, and blue lines represent patient survival outcomes. The closer the overlap 
between the two, the better the predictive performance, indicating that the nomogram has a good predictive performance for patient 
prognosis (Fig. 8I). 

3.9. Results of immune correlation analyses 

Immunotherapy is widely used for the clinical treatment of various cancers. The immune checkpoint blockade is a classic approach 
in immunotherapy [35]. Therefore, we analyzed the correlation between RPN1 and several ICIs using Spearman’s correlation co
efficients. The results indicate that RPN1 was positively correlated with PDCD1, PDCD2, CTLA4, HAVCR2, TNFRSF4, CD47, CD200R1, 
and TIGIT (Fig. 8C), suggesting that RPN1 may serve as a potential therapeutic target for gliomas. 

Furthermore, we used the ssGSEA algorithm to evaluate the infiltration levels of 24 immune cell types in gliomas. The results 
demonstrate that the expression of RPN1 was correlated with the infiltration of 21 immune cell types (Fig. 8D). Specifically, it showed 
significant positive correlations with macrophages, Th2 cells, activated dendritic cells (aDCs), neutrophils, eosinophils, T cells, 
immature dendritic cells (iDCs), NK CD56dim cells, and cytotoxic cells, while exhibiting significant negative correlations with plas
macytoid dendritic cells (pDCs), central memory T cells (Tcm), T follicular helper cells (TFH), γδ T cells (Tgd), effector memory T cells 
(Tem), and NK CD56 bright cells (p < 0.05, |cor| > 0.25). 

In the correlation analysis with hallmark gene sets, we found that the high expression group of RPN1 had higher enrichment scores 
in multiple gene sets (including the TNF-α Signaling via NF-κB Pathway, hypoxia, cholesterol homeostasis, mitotic spindle, IL6-JAK- 
STAT3 signaling pathway, DNA repair, G2/M checkpoint, apoptosis, PI3K-AKT-mTOR signaling pathway, mTORC1 signaling pathway, 
E2F targets, MYC targets V1, MYC targets V2, epithelial-mesenchymal transition, reactive oxygen species pathway). Conversely, in 
Wnt-β-catenin signaling pathway and Notch signaling pathway, the low expression group of RPN1 presented higher enrichment scores 
(Fig. 8E). We have elaborated on this in the Discussion section. 

3.10. Results of the experimental validation 

qRT-PCR results demonstrated that the expression level of RPN1 in glioma cells (U87) was higher than that in normal human 
astrocytes (HA-1800) (Fig. 9A). According to the results of the transwell invasion and scratch assays, the invasion and migration 
abilities of the siRNA group decreased (Fig. 9B–E). In other words, after the knockdown of RPN1 expression, glioma cell invasion, and 
migration abilities were significantly decreased. This result was consistent with the prognostic analysis, further confirming that high 
expression of RPN1 leads to an adverse prognosis. 

4. Discussion 

Abnormal cell death patterns are one of the hallmarks of cancer development, and the treatment of cancer using multiple PCD 
modalities is a popular topic in cancer research [14,36]. Several studies have shown that disulfidptosis-related genes (DRGs) are 
involved in the development and progression of various cancers [36]. The ribonucleoprotein (RPN) family is an essential regulatory 
subunit of the proteasome that affects cellular physiological and pathological processes by regulating proteasome activity, leading to 
tumorigenesis [37,38]. RPN1, a critical gene in the RPN family associated with disulfidptosis, was investigated for its potential impact 
on cancer. Our observation of aberrant expression of RPN1 in cancer and its impact on the prognosis of patients with tumors highlights 
its potential as a prognostic indicator of cancer. Consequently, we investigated the functional role of RPN1 in tumors. 

Immune cells in the tumor microenvironment are essential factors influencing disease progression and prognosis [39,40]. 
Therefore, we investigated the correlation between RPN1 expression and immune cell infiltration in tumor tissues. Notably, RPN1 was 
positively correlated with MDSC, neutrophils, and macrophages and negatively correlated with CD8+T cells and HSCs. These findings 
suggest that RPN1 affects tumor development and patient prognosis by suppressing the activity of antitumor immune cells and 
regulating the infiltration of various immune cells. These results indicate the potential significance of RPN1 in tumor immune regu
lation, offering a novel perspective for precision therapy. However, different tumor or immune-related tools can lead to errors in their 
correlation results. Therefore, it is imperative to select specific algorithms for analysis based on the tumor type and analysis target. 

Numerous studies have identified genetic modifications that are closely associated with cancer development and progression [41]. 
Therefore, we explored the potential link between RPN1 and cancer at the genetic level. Additionally, gene alterations can affect the 
approach and effectiveness of cancer treatment [42,43]. We found that the most predominant form of RPN1 mutation status in cancer 
was amplification, and amplification of the gene should be considered a hallmark of carcinogenesis [44]. In cancer cells, RPN1 pro
moter methylation tends to be reduced, which can lead to disturbed gene expression and genomic instability [45,46]. Interestingly, the 
mutation in RPN1 significantly increased the mutation rates of SULT1D1P, LRRTM4-AS1, LINC01851, SNAR-H, LINC01565, DNAJB8, 
PLXND1, DNAJB8-AS1, CFAP92, and PLXNA1. This indicates that RPN1 mutations may lead to instability in other genes that affect 
tumor development. In addition, mutations in multiple genes may have synergistic effects, leading to complex tumor characteristics. 
The simultaneous increase in mutation rates across various genes implies their potential involvement in shared signaling routes or 
biological activities. These results provide a deeper understanding of the effects of mutations in the RPN1 on tumorigenesis and 
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growth. This discovery prompted additional investigations into the correlations among RPN1, TMB, and MSI. 
Early studies have shown that MSI levels help predict immune responses in gastric and colorectal cancers and guide immuno

therapy in patients with cancer [47,48]. TMB has also been suggested as a potential immunotherapy target, and high TMB values can 
enhance the immune response and improve the survival rates of treated patients [49]. According to our findings, there was a significant 
positive correlation between the expression of RPN1 and TMB in tumors, such as GBMLGG, LUAD, COAD, BRCA, SARC, and STAD. 
Additionally, in CESC, COAD, SARC, STAD, READ, and BLCA, a significant positive correlation existed between the expression of RPN1 
and MSI. In GBMLGG, PRAD, and THCA, the expression of RPN1 was negatively correlated with MSI levels. Therefore, these results are 
important. They confirmed the importance of RPN1 in different tumor types and revealed its association with tumor immune char
acteristics. Second, these findings provide new evidence for utilizing RPN1 as a potential immunotherapy target, especially for tumors 
with high TMB or MSI positivity. Subsequently, we focused on RPN1’s responsiveness to anticancer drugs. 

Therefore, we investigated the sensitivity of RPN1 to a variety of drugs, and the results confirmed that the expression of RPN1 was 
positively correlated with sensitivity to various drugs, such as JQ-1, abiraterone, curcumin, haloperidol, nitazoxanide, quizartinib, XL- 
147, indibulin, and vismodegib. Conversely, increased RPN1 expression increased resistance to AFP464, CUDC-305, and neratinib and 
set the stage for the clinical use of these drugs. Neratinib has been highlighted in previous studies as an instructive agent for the design 
of glioma kinase inhibitors [50]. Focusing on changes in drug resistance is valuable for subsequent drug activity in antitumor therapy. 

In the pan-cancer studies described above, gliomas always showed significant results, and RPN1 was highly expressed in gliomas, 
leading to a poor prognosis. Therefore, we investigated the relationship between RPN1 and gliomas. The AUCs of the ROC curves of the 
two datasets (TCGA-GBMLGG and TCGA-GTEx) were all >0.8. This demonstrated the excellent diagnostic performance of PRN1 in 
gliomas. Univariate and multivariate Cox regression analyses indicated that RPN1 is an independent prognostic factor for gliomas. A 
nomogram constructed based on RPN1 and multiple clinical characteristics (age, WHO grade, IDH status, and 1p/19q codeletion) also 
showed excellent prognostic predictive performance. These findings suggest that RPN1 is a potential immune biomarker for gliomas. 
Therefore, we analyzed the correlation between RPN1 and gliomas. 

First, we analyzed the relationship between RPN1 expression and various ICIs including PDCD1, PDCD2, CTLA4, HAVCR2, 
TNFRSF4, CD47, CD200R1, and TIGIT. This yielded an intriguing result, as these ICIs play crucial roles in tumor therapy [35,51]. And 
RPN1 showed a highly positive correlation with these ICIs. Therefore, it is reasonable to speculate that the function of RPN1 is similar 
to those of these targets. This finding is superior to those of previous studies, including those related to glioma based on ferroptosis and 
cuproptosis [52,53]. 

Second, immunotherapeutic modulation of the glioma microenvironment has been identified as an effective intervention [54]. 
Using the ssGSEA algorithm, we determined the correlation between RPN1 and immune cells within gliomas. We observed a positive 
correlation among RPN1 and macrophages, Th2 cells, and T cells, suggesting its potential positive role in triggering antitumor immune 
responses. This reflects the promotional effect of RPN1 on immune cell activity, which may be produced by enhancing the phagocytosis 
of macrophages, stimulating Th2 immune responses, and increasing T cell activity. However, RPN1 was negatively correlated with 
pDC, indicating that high expression of RPN1 may suppress the immune response to viral infections. Additionally, its infiltration into 
Tcm, TFH, Tgd, Tem, and NK CD56dim cells showed a negative correlation, suggesting that high expression of RPN1 may also inhibit 
the migration or function of these immune cells. These findings are important for a deeper understanding of immune regulatory 
mechanisms and the development of therapeutic strategies for related diseases. The intricate role of RPN1 in the immune microen
vironment makes it a worthwhile research target and a potential focal point for future immunotherapies. Further exploration of the 
interaction between RPN1 and immune cells and the molecular mechanisms of immune evasion will provide profound insights for 
developing more precise immunotherapeutic strategies. 

Finally, we found that RPN1 expression was closely associated with various immune-related biological functions or signaling 
pathways. Notably, RPN1 was positively correlated with hypoxia-related gene sets and IL6-JAK-STAT3 signaling pathway-related gene 
sets. Hypoxia in the tumor microenvironment leads to increased tumor cell invasiveness and resistance to chemotherapy and radio
therapy [55]. In contrast, the IL6-JAK-STAT3 signaling pathway has been targeted for the treatment of glioma [56]. Several other 
immune-related gene sets (mTORC1 signaling pathway, Wnt/β-catenin signaling pathway, and DNA repair) are closely associated with 
cancer progression and treatment. These results suggest that RPN1 may regulate tumor initiation and progression through these 
pathways, providing novel insights into the treatment of gliomas. 

However, this study has some limitations. The analyses lacked depth and required a more comprehensive sample size for confir
mation. Although we used cellular experiments for validation, further functional and animal experiments are required to validate our 
results. 

In summary, this paper investigated the expression levels and mutational status of RPN1 in pan-cancer, as well as its impact on the 
prognosis, immune infiltration, and drug sensitivity of various cancers. These studies confirm that RPN1 may influence the occurrence, 
development, and prognosis of multiple cancers by affecting the immune microenvironment, thus providing new insights into cancer 
therapy. Additionally, the close correlation of RPN1 with the treatment and prognosis of gliomas suggests its potential as a promising 
target for glioma therapy. 
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GTEx Genotype-Tissue Expression 
GO Genetic Oncology 
BP Biological Pathways 
CC Cellular Component 
MF Molecular Function 
CGGA Chinese Glioma Genome Atlas 
GBMLGG Glioma 
HR Hazard Ratio 
IHC Immunohistochemical 
ROC Receiver Operating Characteristic 
HSCs Hematopoietic Stem Cells 
MDSC Myeloid-derived Suppressor Cells 
CAF Cancer-Associated Fibroblasts 
mDCs Myeloid Dendritic Cells 
ICI Immune Checkpoint Inhibitor 
DC Dendritic Cell 
DRGS Disulfidptosis-related Genes 
ssGSEA single-sample Gene Set Enrichment Analysis 
HPA Human Protein Atlas 
KEGG Kyoto Encyclopedia of Genes and Genomes 
MSI Microsatellite Instability 
OS Overall survival 
TMB Tumor Mutation burden 
Treg Regulatory T cell 
AUC Area Under Curve 
PCD Programmed Cell Death 
FBS Fetal Bovine Serum 
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NK Natural Killer Cells 
Tcm Central Memory T Cells 
pDC Plasmacytoid Dendritic Cells 
TFH T Follicular Helper Cells 
Tgd γδ T cells 
TEM Effector memory T cells 
aDCs Activated dendritic cells 
iDCs Immature dendritic cells 
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