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Abstract

One of the challenges for ‘post-genomic’ biology is the integration of data from many different
sources. Two recent studies independently take steps towards this goal for Escherichia coli, using
mathematical modeling and a combination of gene expression and protein levels to predict new
gene functions and metabolic behaviors. 
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It has become a platitude of the post-genomic era that a

deluge of data is being produced and awaits both computa-

tional/mathematical analysis and experimental verification.

There is no reason to argue with this observation, yet it

leads to two immediate follow-up questions. First, has the

genomic era come to an end already? And second, what

types of mathematical and computational models would be

most beneficial for dealing with the rich streams of data?

Two recent articles, by Reed et al. [1] and Corbin et al. [2],

answer the first question in the negative: there is still a lot

of genomic research to be done. These two articles show

that, even for one of the best studied of organisms,

Escherichia coli, there are still very many genes for which

we know little beyond their sequence and location. We don’t

know what their functions are, exactly which genes are

actively functioning at any one time, and to what degree

some might even be entirely dispensable. The experimental

approach proposed by Corbin et al. [2] sheds light on

some of these issues with a combination of two methods,

one for measuring gene expression and one for detecting

proteins in E. coli cells. In contrast, Reed et al. [1] address

the two questions with a novel and interesting application

of mathematical modeling.

The combination of the two papers is intriguing, because both

have the same purpose - annotating gene function and learning

more about intermediary metabolism - yet the two use very

different approaches to accomplish their common goal. This

independence of approaches may be useful for comparisons

or for mutual complementation of results, and could aid the

community in answering questions about the reliability of

separate approaches to interpreting genomic information. 

To assign metabolic functions to unknown genes, Reed et al.

[1] use a method that is based on a combination of mathe-

matical modeling and data mining. The authors use the

available literature and database information to construct a

large stoichiometric model of intermediary metabolism that

includes all known biochemical reactions in E. coli. A stoi-

chiometric model describes quantitatively the flow of mass

through a metabolic network. It includes one linear differen-

tial equation for each metabolite, and each of these equa-

tions consists of the sum of all fluxes leading to the

production of this metabolite minus the sum of all fluxes

degrading or consuming this metabolite. To determine the

sizes of all internal fluxes, one measures some input and

output fluxes, such as substrate uptake and lactate or carbon

dioxide excretion. Under the assumption that all reactions

are in a dynamic steady state, the fluxes at each metabolite

should be numerically balanced. Typically there is not

enough input-output information to compute all internal

fluxes, but the stoichiometry severely constrains the range of

possibilities, and optimization within this range leads to the

desired internal flux distribution (reviewed in [3,4]). 



Although the assumption of flux balance is found to be true

in the majority of cases, the authors detect notable excep-

tions and conclude that some catalytic steps must be missing

from the model structure [1]. Analysis of metabolic maps in

other organisms suggests mechanisms (enzymes and cat-

alyzed reactions) associated with the depletion of those

metabolites that accumulate in the current model, or the

production of metabolites that are not made available in suf-

ficient quantities in the model. In many cases, these mecha-

nisms have been characterized in other organisms, and often

their genes and gene sequences have been determined. This

information is used to search for similar sequences among

unknown E. coli genes and thus leads to proposals for new

annotations for formerly unidentified open reading frames

(ORFs). Thus, through the integration of metabolic data by

means of a mathematical model, inconsistencies in the

model lead to new discoveries, or at least to suggestions for

targeted experiments that would confirm or reject the

hypothesized annotation.

The metabolites reported by the current model as accumu-

lating without removal are called ‘dead-end’ metabolites [1].

The list is interesting from a biochemical point of view,

because it consists of a mixture of types of compounds. Some

of the metabolites are common, essential compounds whose

balances must be managed by the cell, such as thymine and

siroheme. The apparent accumulation of these compounds

by the model may point to incomplete biochemical data.

Data of this sort should be useful for finding omissions in the

model and for the annotation of genes. Some of the other

metabolites on the list are approaching the macromolecule

category. All reactions associated with these metabolites

would, therefore, not be expected to be present in any model

of small-molecule metabolism. Examples of these are ‘cold-

adapted KDO2 lipid A’ and a ‘peptidoglycan subunit’. Other

entries in the dead-end list may be eccentric names for

normal metabolites: for example, T-trans-aconitate instead

of the usual trans-aconitate, and D-D-Methionine instead of

either D-methionine or L-methionine. 

To assign functions to particular genes, possible connections

between ‘missing functions’ (enzymes and their reactions)

and particular E. coli gene sequences are deduced by

sequence similarity searches. This data-mining and annota-

tion step apparently used older information about E. coli

gene products and for this reason, one finds many of the pre-

dictions cogent because they exist in the current databases.

The authors list putative genes for nearly 30 functions (see

the Additional data files of [1]). We compared the predic-

tions with information in a current database [5] and found

that many of the predictions verify the approach taken

because they are essentially the same as the currently

‘known’ or ‘putative’ assignments. A few of the predictions

seem unlikely given the functions of sequence-similar pro-

teins. Some of the predictions, however, are indeed new con-

nections to uncharacterized genes that could now serve to

motivate experimental verification. On the whole, the

approach to annotation through metabolic circuitry seems to

have the capability in the future of expanding metabolic

and/or genetic knowledge and directing the experimental

verification of new functions. 

Entirely different approaches are used by Corbin et al. [2] to

characterize both protein and mRNA populations in E. coli

cultures. Proteins extracted from growing cells are visualized

using high-pressure liquid chromatography combined with

tandem mass spectrometry (HPLC-MS/MS). Over 1,100

ORFs were detected, corresponding to a quarter of all possi-

ble gene products. It is not known what fraction of E. coli pro-

teins is present in detectable amounts under the growth

conditions used, but one can safely expect that not all genes

are expressed at any one time; to detect more than a quarter

of all gene products is therefore an impressive feat. Compar-

ing these protein results with mRNA levels, measured sepa-

rately by hybridization to an Affymetrix chip, the authors find

a good correlation between the two types of measurements,

provided that the intensity of the mRNA signal does not fall

within the lowest 5% of the measured range. For lower inten-

sities, the correspondence to detected proteins is no longer

significant, an observation that might be attributable to the

fact that reliable detection of the proteins by HPLC-MS/MS

requires relatively high levels of expression [2].

The two-pronged approach of assessing proteins that are

directly involved in metabolic function versus mRNAs that

are only involved indirectly raises the question of whether

we can actually learn anything from the mRNA results that

we did not already know. The answer is that there is indeed

added value. Identification of the collection of expressed

genes in E. coli [2] allows us to ask whether the list corre-

sponds to our a priori expectations of which catabolic, ana-

bolic and macromolecular-synthesis proteins are made

under the specific growth conditions. Using a relatively per-

missive threshold one finds that about 27% of the 955 known

metabolic enzymes in the mRNA experiments are not

expressed during growth on glycerol as a carbon source. This

is not a surprise, because we know that many enzymes are

made only in response to particular growth conditions.

(Note that the computational model of Reed et al. [1] uses a

collection of 927 entities, of which 733 are enzymes and the

rest are transporters. All are presumed to be active members

of the metabolic network in the computational model [1],

although the experimental data of Corbin et al. [2] suggest

that many are repressed).

The data from the mRNA experiments reveal both previ-

ously known and unknown unexpressed genes. The known

interruption of the gatR repressor gene in E. coli strain

MG1655 is confirmed as the galactitol genes are derepressed

as expected [2,6]. The mRNA levels of the sorbitol and

mannitol degradation enzymes are derepressed [2], suggesting

that the GatR repressor is involved in the regulation of these
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other sugar alcohols as well. Another mutation, in the pyrE

gene, was not known to the authors, but it was flagged by a

derepressed mRNA signal [2]. The defect in pyrE was later

confirmed by growth-rate studies [5]. Thus, unknown genes

are readily detected experimentally.

Rich information may be extracted from the data on which

isozymes are metabolically active in the selected medium.

Although Corbin et al. [2] did not present detailed functional

analysis of gene expression, data of this kind can be

extracted. For instance, inspection of the data shows that

shikimate kinase I is expressed more than shikimate kinase

II, two of the five peptidylprolyl isomerases are most highly

expressed, and three of the four FK506/rapamycin-binding

protein-type peptidylprolyl isomerases are most highly

expressed. Two 3-oxo(acyl carrier protein)synthases, I and

III, are well expressed, but very little of isozyme II is present.

Numerous other insights of this type can be deduced directly

from the data.

An observation brought out by Corbin et al. [2] is that genes

in operons are not always coordinately expressed, because in

many cases only some, not all, members of an operon were

detected as present at the protein level (for a similar obser-

vation see [7]). This leads to the following deduction. As

enzyme activity is not a direct function of the amount of

mRNA present - because mRNA half lives can differ, transla-

tion efficiencies can differ, and specific activities of enzymes

range widely - the amount of active mRNA may be regulated

so as to produce similar enzyme activities. If true, this con-

clusion from the data of Corbin et al. [2] opens avenues of

potentially fruitful investigation.

Another direct value of the experimental results is, of course,

that the identification and quantification of proteins and

mRNAs in the cell under particular growth conditions

provide valuable in vivo input for computational pathway

models. Furthermore, the results can be used for validation

purposes, where comparisons are made between the list of

proteins found experimentally and the pathways and fluxes

included in a computational model. 

Returning to the questions posed at the beginning of this

article, one may ask whether the computational modeling

procedure [1] falls into the realm of genomic or post-

genomic research. This may sound like a purely academic

question, but it leads us to ask what is needed next in terms

of computational and mathematical analysis. Even though

the model of Reed et al. [1] is integrative, one would proba-

bly assign the particular use presented here to the genomic

era, because the model serves as a data collection and gene-

identification tool. It helps classify data in a novel fashion

by using metabolite anomalies to identify possible missing

reactions and enzymes, and suggests novel connections

between missing enzymes and their genes through

sequence analysis. This is an intriguing role for modeling,

and the approach constitutes a fine example of practical

model utilization. 

Is the model useful beyond this role? In the work of Reed et

al. [1] and the related literature [3,4] it is claimed that a large

stoichiometric model describes metabolism with sufficient

reliability to make predictions of organismal responses under

untested conditions and to serve as a basis for optimizing

E. coli strains for particular tasks of biotechnological interest.

Indeed, examples have been presented where such predic-

tions were successful [8]. Nevertheless, it must be recognized

that the mathematical structure of any purely stoichiometric

model precludes a true inclusion of kinetic and regulatory

features. Under novel conditions, the cell is likely to respond

by calling up its regulatory-control mechanisms, but this

cannot be modeled with stoichiometry alone, except that once

all regulation is done, the metabolic network should again

reside at a steady state, in which all metabolites are balanced. 

The question then becomes whether a constrained linear

optimization of a stoichiometric model would actually reach

the same balanced state that the real cell would assume

through its regulatory mechanisms. At this point, this ques-

tion cannot be answered with any generality, except that

there will almost certainly be cases where the linear predic-

tion is correct but there will also be cases where that is not

so. For instance, the cell may ‘decide’ to export unwanted

metabolites, or it may resort to pathways that are mini-

mized under normal conditions and used only under spe-

cific conditions. As an example, it would seem difficult to

predict with a stoichiometric model alone that a yeast cell

would respond to heat shock with an enormous production

of trehalose, which exists only in traces under cooler condi-

tions. Thus, there need to be additional phases of model

development and analysis on the path towards understand-

ing organismal function. 

The most obvious extension beyond stoichiometric models is

the construction of nonlinear models, which can account for

regulatory features (see, for example, [9]). These clearly

require much more input in terms of pathway information

and kinetic and regulation data but will have an improved

chance of adequately representing tested and untested

organismal behaviors. Like stoichiometric models, however,

nonlinear models will eventually also encounter the ‘curse of

combinatorial explosion’. Once these models reach a certain

size, it becomes an overwhelming task to implement them

numerically, to test the reliability of explicit and implicit

assumptions associated with the model set-up, and to inter-

pret the results. For instance, if a model contains ten para-

meters with ten possible values each, and if each model

analysis takes one second, an exhaustive evaluation would

require 317 years of computation time. Obviously, clever

coding, parallelization and other advancements will reduce

this time, but it is nevertheless quite obvious that such an

approach is bound to break down eventually.
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What is needed in addition to these direct extensions of mod-

eling and simulation is the discovery of general principles

that govern the behavior of organisms and their responses to

stimuli [10]. Such principles provide an objective rationale

for a particular design and operation of a gene-regulatory,

metabolic or physiological system and will ultimately allow

us to dissect large systems into interacting functional

modules. They will also give us confidence in predicting

responses under novel conditions, optimizing strains, or

ultimately designing new strains from scratch. Both exten-

sions, toward nonlinearities and toward the exploration of

design and operating principles, will require solid and

detailed information on the components of biological

systems. The two papers discussed here [1,2] provide some

such information and are therefore important in that they

help us, in independent ways, to make the current ‘parts

catalog’ of E. coli more complete, precise and reflective of

the contents of the cell in specified conditions.

References
1. Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-

scale model of Escherichia coli K-12 (iJR904 GSM/GPR).
Genome Biol 2003, 4:R54. 

2. Corbin RW, Paliy O, Yang F, Shabanowitz J, Platt M, Lyons CE Jr,
Root K, McAuliffe J, Jordan MI, Kustu S, et al.: Toward a protein
profile of Escherichia coli: comparison to its transcription
profile. Proc Natl Acad Sci USA 2003, 100:9232-9237. 

3. Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO: Metabolic
pathways in the post-genome era. Trends Biochem Sci 2003,
28:250-258. 

4. Reed JL, Palsson BO: Thirteen years of building constraint-
based in silico models of Escherichia coli. J Bacteriol 2003,
185:2692-2699. 

5. E. coli genome and proteome database
[http://genprotec.mbl.edu]

6. Soupene E, van Heeswijk WC, Plumbridge J, Stewart V, Bertenthal
D, Lee H, Prasad G, Paliy O, Charernnoppakul P, Kustu S: Physio-
logical studies of Escherichia coli strain MG1655: growth
defects and apparent cross-regulation of gene expression. J
Bacteriol 2003, 185:5611-5626.

7. Voit EO, Radivoyevitch T: Biochemical systems analysis of
genome-wide expression data. Bioinformatics 2000, 16:1023-
1037.

8. Edwards JS, Ibarra RU, Palsson BO: In silico predictions of
Escherichia coli metabolic capabilities are consistent with
experimental data. Nat Biotechnol 2001, 19:125-130.

9. Voit EO: Computational Analysis of Biochemical Systems. A Practical
Guide for Biochemists and Molecular Biologists. Cambridge, UK: Cam-
bridge University Press, 2000.

10. Savageau MA: Reconstructionist molecular biology. New Biol
1991, 3:190-197. 

235.4 Genome Biology 2003, Volume 4, Issue 11, Article 235 Voit and Riley http://genomebiology.com/2003/4/11/235

Genome Biology 2003, 4:235


