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SUMMARY

Biological systems often respond to a specific environmental or genetic perturbation without perva-

sive gene expression changes. Such robustness to perturbations, however, is not reflected on the cur-

rent computational strategies that utilize gene expression similarity metrics for drug discovery and

repositioning. Here we propose a new expression-intensity-based similarity metric that consistently

achieved better performance than other state-of-the-art similarity metrics with respect to the gold-

standard clustering of drugs with known mechanisms of action. The new metric directly emphasizes

the genes exhibiting the greatest changes in expression in response to a perturbation. Using the

new framework to systematically compare 3,332 chemical and 3,934 genetic perturbations across

10 cell types representing diverse cellular signatures, we identified thousands of recurrent and cell

type-specific connections. We also experimentally validated two drugs identified by the analysis as

potential topoisomerase inhibitors. The new framework is a valuable resource for hypothesis gener-

ation, functional testing, and drug repositioning.

INTRODUCTION

The phenomenon of drug promiscuity (coined as polypharmacology), whereby a single drug can bind to

multiple targets (Hopkins, 2007, 2008; Reddy and Zhang, 2013), has revealed new therapeutic indications

for marketed drugs (i.e., drug repositioning or repurposing). With recent technological advances, drug re-

purposing opportunities have been actively explored through computational strategies that use various

similarity measures to relate pharmaceutical and experimental compounds, such as chemical similarity

(Paolini et al., 2006; Keiser et al., 2009) and side effect similarity (Campillos et al., 2008). Since polypharma-

cology interactions that a drug might undergo within a cell should faithfully translate into cellular pheno-

typic responses (Feng et al., 2009; Moffat et al., 2014), similarity approaches that compare gene expression

profiles after chemical perturbations are showing considerable promise, from an initial effort to predict the

mechanism of action (MoA) of a drug (Hughes et al., 2000). The Connectivity Map (CMap), as a milestone in

this field, incorporates gene expression signatures and a rank-based pattern-matching strategy based on

the Kolmogorov-Smirnov (KS) (Massey, 1951) statistic embedded in the Gene Set Enrichment Analysis

(GSEA) (Subramanian et al., 2005) technique to connect small molecules and diseases (Lamb et al.,

2006). CMap can be tailored to interrogate MoAs from a drug network (Iorio et al., 2010), predict new ther-

apeutic indications using drug-disease relationships (Sirota et al., 2011), or map the effects of drugs on the

immune system (Kidd et al., 2016). Although the multiplexity of gene expression profiling is seemingly use-

ful, the mathematical and statistical properties of these high-dimensional data still remain poorly under-

stood (Clarke et al., 2008). In high-dimensional spaces, data points are highly correlated, often with

spurious relationships (Caldarelli et al., 2004), and distances of a data point to its nearest and farthest

neighbors are becoming almost equidistant (Beyer et al., 1999). In addition, when a cell encounters a ge-

netic or environmental stress, changes in gene expression are usually confined to a small number of genes,

establishing the robustness of phenotypic traits (Felix and Barkoulas, 2015). However, these aspects of high

dimensionality and biological robustness are mostly overlooked in state-of-the-art gene expression simi-

larity approaches. Although CMap and its extension methods have applied data reduction techniques

to a chemical perturbagen by generating a gene signature from differential expression analyses (across

cell types) (Lamb et al., 2006; Sirota et al., 2011) or by extracting an arbitrary number of genes from a ranked

list (merged across cell types) (Iorio et al., 2010; Kidd et al., 2016), the resulting metrics between perturba-

gens represent ‘‘aggregate’’ similarities in a way that disables cell type-specific discoveries. Moreover, the

extent to which the genes selected from these methods represent a chemical perturbagen is currently un-

clear, owing to the lack of systematic evaluation and comparison of these similarity metrics.
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Here, we present a new expression-based similarity framework that exploits the ‘‘perturbation intensity’’

(i.e., the difference in gene expression between perturbed and unperturbed conditions) of individual pro-

files, rather than aggregate information, to enable cell type-specific discoveries and to identify recurring

relationships through a bottom-up approach. The new intensity-based similarity metric was designed

not only to reflect the biological robustness to perturbations but also to reduce data dimensionality by sim-

ply using the genes showing the greatest changes in expression levels in response to perturbations. This

framework was applied to correlate more than 7,000 chemical and genetic perturbagens across 10 different

cell types obtained from the Library of Integrated Network-Based Cellular Signatures (LINCS) project (Sub-

ramanian et al., 2017). Importantly, clustering analyses using this intensity-based similarity metric produced

superior results more often than those using the KS statistic (the state-of-the-art similarity metric [Lamb

et al., 2006; Iorio et al., 2010; Sirota et al., 2011; Kidd et al., 2016]), GSEA method (the similarity metric

defined using the standard enrichment scores in the original report [Subramanian et al., 2005]), Pearson

correlation, or Euclidean distance (two commonly used similarity metrics [D’Haeseleer, 2005]) when

grouping a selected set of drugs with diverse MoAs.

We further employed the intensity-based similarity metric to compare perturbation pairs with similar action

restricted to one or multiple cell types and effectively recapitulated many well-known drugs as recurrently

interconnected groups according to their MoAs. Novel therapeutic indications or previously unknown con-

nectivity for marketed drugs or experimental compounds can be derived using the new metric and the re-

sults experimentally tested. For example, using our new approach, pyrvinium pamoate (an anthelmintic)

and etacrynic acid (a loop diuretic) were found to connect to a cluster of topoisomerase inhibitors and

to irinotecan (a topoisomerase inhibitor), respectively. The topoisomerase-inhibitory action of these two

drugs was confirmed in vitro, indicating their potential for repurposing as a broad-spectrum (pyrvinium pa-

moate) or specific (etacrynic acid) anticancer drug.

Our metric represents a significant improvement over state-of-the-art and commonly used gene expres-

sion metrics to capture similar perturbations corroborated through the objective evaluation and compar-

ison of clustering performance.
RESULTS

Workflow of the Intensity-Based Similarity Framework

We leveraged the perturbation intensity of gene expression datasets obtained from LINCS to define a

tunable intensity-based similarity metric for scoring large-scale perturbation-induced changes and

analyzing the similarities among perturbations (Figure 1). We considered three types of perturbations,

namely, exposure to chemical drugs for 6 hr (abbreviated as d6), exposure to chemical drugs for 24 hr

(d24), and exposure to short hairpin RNAs for 96 hr (sh96) in 10 selected cell types, because most experi-

ments from LINCS were of these perturbation types and performed in these cell types. The intensity-based

similarity metric relates any two given perturbations at the level of genes exhibiting the greatest changes in

expression (regardless of the direction of regulation) in response to a perturbation, which is slightly

different from the KS metric implemented using the same number of genes at both extremes of a ranked

list (Iorio et al., 2010; Kidd et al., 2016). Using a rank-based pattern-matching strategy, our algorithm eval-

uates the degree of overlap between a gene set of the query perturbation and the genes at the extreme of a

ranked list of perturbation intensity of the reference perturbation. The ranks of the perturbation intensity

are transformed into a sequence of scores such that, with the leading term being 1, each succeeding

term is obtained by multiplying its preceding term by a fixed, non-zero number (<1; as the geometric pro-

gression). For each of the two cases in which genes in the gene set match in the same or opposite direction

to those in the perturbation intensity, the extent of matching can be quantified as the sum of matched

entries in the geometric progression. Finally, the intensity-based similarity metric is derived by taking

the difference between these two types of matching scores (‘‘the same’’ minus ‘‘the opposite’’) over the

theoretical maximum score (i.e., the geometric series; see Transparent Methods).

Two independent parameters are introduced in the intensity-based similarity metric to select the number

of genes as a query gene set size (parameter b) and to govern the weights of ranks of the perturbation in-

tensity (parameter s, as the common ratio in the geometric progression). To determine an optimal param-

eter set, we used a gold-standard clustering (the ground truth) of a selected panel of chemical perturba-

gens with established primary MoAs manually curated from LINCS (Table S1; for the MoAs of all

chemical perturbagens used in this study, see Figure S1 and Table S2). For each chemical perturbation
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Figure 1. Workflow of the Intensity-Based Similarity Framework

We accessed gene expression profiles corresponding to thousands of chemical and genetic perturbations across multiple cell lines from LINCS. To

determine optimal parameters for the intensity-based similarity metric (query gene set size b and decay factor s), we selected 74 chemical compounds

corresponding to 10 mechanisms of action (MoAs) as the gold-standard clustering and then used majority voting to choose the most frequently occurring

parameter combination that yielded the best clustering performance from their treatments at 6 or 24 hr across 10 cell types. For each metric paired with one

clustering method, an optimal clustering was determined across a full range of number of clusters k with the best external cluster validity index F1 score.

These intensity-based metrics and resultant clusterings were further compared with other state-of-the-art and commonly used metrics. We then used the

optimal parameter set to compute pairwise intensity-based similarities for all available chemical and genetic perturbations and performed in-depth analyses

to uncover perturbation pairs recurrently or exclusively similar among multiple cell types. Experimental validation of discoveries was performed for drugs

showing immediate repurposing opportunities.
type in a cell type, which we referred to as a ‘‘context’’, we assessed the clustering performance across a

range of parameter sets based on the external cluster validity index F1 score (the harmonic mean between

precision and recall, reaching the best value at 1 and the worst at 0) (Wiwie et al., 2015). Figure 2A shows an

example clustering result for the context representing A375 cells exposed to chemical perturbations for

6 hr. Using a majority voting scheme, we selected the most frequently occurring parameter set among

the top five context-specific intensity-based clusterings across all contexts as the optimal parameter set

(b* = 100 and s* = 0.99; Figure 2B). When we varied the size of the top-scoring clusterings used for voting,

this optimal parameter set consistently received the most votes (Figure S2). However, we note that the

parameter sets yielding the best clustering results were context specific (Figure S2A), reflecting the biolog-

ical robustness to different extents across cell types (Felix and Barkoulas, 2015). The parameter sets with an

emphasis on much genetic information often received the least votes (b R 1,000 and s R 0.998; Figures

S2A–S2D), consistent with high-dimensional noise in gene expression data (Clarke et al., 2008). Alterna-

tively, when we counted the votes across the bottom-scoring clusterings, the parameter sets that applied

far less genetic information usually received the most votes (b = 10 or s = 0.9; Figure S3), indicating a

requirement of a minimum number of genes for distinguishing between chemical perturbations.

Next, we compared our intensity-based similarity metric with two state-of-the-art metrics based on the KS

statistic (Lamb et al., 2006; Iorio et al., 2010; Sirota et al., 2011; Kidd et al., 2016) or GSEA method
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Figure 2. Parameter Optimization, Comparison, and Performance Evaluation

(A) Top 10 intensity-based clusterings along with a comparison of the best clusterings produced by similarity metrics

using the KS statistic, GSEA, Pearson correlation, or Euclidean distance in the context of d6 perturbation in A375 cells. For

presentation purpose, we show the results using the gene set sizes of 100 and 250 for KS and GSEA metrics. HC-avg,

hierarchical clustering using average link. HC-ward, hierarchical clustering using Ward link. PAM, partitioning around

medoids; AP, affinity propagation; EBC, exemplar-based agglomerative clustering.

(B) Summary of majority voting results in choosing the best parameter combination for the intensity-based similarity

metric. Red box indicates the parameter set that received the most votes in this scheme.

(C) Best F1 scores for clusterings across all contexts (n = 20) using intensity-based metric across all parameter sets or with

the optimal parameter set or using KS, GSEA, Pearson-based, or Euclidean-based metric (Wilcoxon two-sided paired

signed-rank test for the intensity-based metric compared with [cf.] the other metrics).

(D) Area under the receiver operating characteristic curve (AUROC) performance using the intensity-basedmetric with the

optimal parameter set with respect to the 74-drug gold-standard clustering for each context.

(E) Best AUROC scores across all contexts (n = 20) achieved by the intensity-based metric, or by the KS, GSEA, Pearson-

based, or Euclidean-based metric (Wilcoxon two-sided paired signed-rank test for the intensity-based metric compared

with [cf.] the other metrics).

*p < 0.05; **p < 0.01; ***p < 0.001; #p < 1 3 10�4.
(Subramanian et al., 2005) and two commonly used metrics derived from Pearson correlation or Euclidean

distance (D’Haeseleer, 2005) (see Transparent Methods). For KS and GSEA metrics, we considered a range

of set sizes for each of the top- and bottom-ranked genes used for their matching algorithms. Across

all contexts, the intensity-based metric consistently achieved higher F1 scores than the KS (p < 0.01, Wil-

coxon two-sided paired signed-rank test, n = 20), GSEA (p < 0.001), Pearson-based (p < 1 3 10�4), or
iScience 7, 40–52, September 28, 2018 43



Euclidean-based metric (p < 1 3 10�4; Figure 2C). Despite the context-specific preference for parameter

sets, the optimal intensity-based metric still exhibited superior performance than both Pearson- (p <

0.05) and Euclidean-based metrics (p < 1 3 10�4) and than some of the KS or GSEA metrics obtained

with a fixed gene set size (p < 0.05 or 0.01; Figure 2C). For each context, the top five intensity-based clus-

terings had significantly higher F1 scores than all other common clusterings in general (Figure S4). How-

ever, we note that all intensity-based clusterings within each context produced a broader range of F1

scores than those using the KS, GSEA, or Pearson-based metric, but they still had significantly higher F1

scores than those using the Euclidean-based metric (Figure S4). In addition to the F1 score, we also

used each metric with respect to the gold-standard clustering to obtain an area under the receiver oper-

ating characteristic (ROC) curve (AUROC) as another performance measure (here, representing the ability

of a similarity metric to classify drugs into clusters according to their MoAs, reaching the best value at 1 and

the worst at 0, with 0.5 generated from random prediction). Of 20 context-specific maximum AUROC

scores, nine were achieved by the intensity-basedmetric, seven by the KSmetric, three by theGSEAmetric,

one by the Euclidean-based metric, and none by the Pearson-based metric (Figure S5). Consistent with

the F1 scores, the intensity-based metric exhibited superior AUROC performance than the GSEA (p <

0.05, Wilcoxon two-sided paired signed-rank test, n = 20), Pearson-based (p < 1 3 10�4), and Euclidean-

based metrics (p < 1 3 10�4) but not the KS metric (p = 0.368), which was slightly compromised for the

optimal intensity-based metric (Figures 2D and 2E). In addition, we emphasize that the similarity values

themselves produced by a given metric do not correlate with the performance of the metric. For example,

among the top metrics in Figure 2A, the KS or GSEA metrics (gene set size = 100 or 250) tended to yield

overall higher similarity values than the intensity-based metrics (b = 50 or 100 and s = 0.9, 0.99, or 0.995;

Figure S6), but achieved relatively lower F1 scores than those intensity-based metrics (Figure 2A).

We also evaluated the robustness of the intensity-based, KS, and GSEA similarity metrics to the gene set

size (i.e., the query gene set size b for the intensity-based metric with a fixed decay factor s, or the set size

for each of the top- and bottom-ranked genes for the KS or GSEAmetric). In general, all of these three sim-

ilarity metrics were insensitive to variation in the gene set size (Figures S7 and S8).

Given that ‘‘one-step clustering’’ of gene expression profiles is usually unstable (Li et al., 2010), we repeated

the analysis for parameter tuning and performance evaluation with resampling of 75% of chemical pertur-

bagens. We found that the selected optimal parameter set (b* = 100 and s* = 0.99; Figure 2B) received the

most votes in 27% rounds of the resampling analysis (Figure S9A), ascertaining the general suitability of this

parameter set for clustering analysis. For F1 score performance, the intensity-based metric consistently

performed better than the KS or GSEA metric with p < 0.05 (Wilcoxon two-sided paired signed-rank

test, n = 20) in >80% rounds of the resampling analysis and also than the Pearson- and Euclidean-based

metrics with p < 0.001 in 100% of the analysis (Figure S9B). Consistent with F1 score performance, the in-

tensity-based metric exhibited superior AUROC performance than the KS metric with p < 0.05 in �40% of

the analysis, the GSEA metric with p < 0.05 in >60% of the analysis, and the Pearson- and Euclidean-based

metrics with p < 1 3 10�4 in �100% of the analysis (Figure S9C). Notably, the intensity-based metric was

able to achieve significantly higher AUROC performance than the KS metric frequently in the resampling

analysis (p < 0.05; Figure S9C), albeit failing to reach statistical significance in the one-step, gold-standard

clustering analysis (p = 0.368; Figure 2E). These data corroborated the ability of intensity-based metric to

consistently yield better performance than the KS, GSEA, Pearson-based, or Euclidean-based metric for

the clustering analysis.

To streamline the systematic analysis, we used the optimal intensity-based metric to compute all pairwise

similarities for three perturbation types in 10 cell types (Table S3). For each perturbation type, positive and

negative heuristic similarity cutoffs were estimated from the empirical cumulative distribution function

(CDF) of perturbation similarity values across cell types, corresponding to CDF values of 0.999 and

0.001, respectively (Figure 3A). We consider these heuristic similarity cutoffs to be very conservative,

because the positive heuristic cutoffs were far beyond any matched cutoff defined by Youden’s index (You-

den, 1950) from the ROC generated by the optimal intensity-based similarity metric for each context (Fig-

ure S10). Notably, some perturbation pairs with similarity values above the positive heuristic cutoffs were

observed in up to 10 cell types, whereas most perturbation pairs with similarity values below the negative

heuristic cutoffs were exclusive to one cell type (Figure 3B). This gives us an impression about the nature of

the perturbations that similar responses to perturbations are often observed irrespective of the cell iden-

tity, whereas opposite effects between perturbations exhibit cell type specificity. Consistent with this
44 iScience 7, 40–52, September 28, 2018



Figure 3. Distribution of Intensity-Based Similarity Measures

(A) Empirical cumulative distribution function (CDF) plots of intensity-based similarities for each perturbation type.

(B) The number of cell types in which a perturbation pair was qualified for each perturbation type.
observation, the expected small-molecule connections were recovered by intensity-based similarities

when we queried the LINCS dataset using independently derived perturbation intensities of correspond-

ing small molecules (Figure S11).

Recurrent Perturbation Pairs across Multiple Cell Types

We next sought to identify perturbation pairs that showed recurrent positive or negative similarities across

many cell types and could share mechanistically related actions independent of the cell of origin. To this

end, we developed a strategy that combines the intensity-based similarities and a rank-based statistical

approach (Jacobsen et al., 2013) modified ad hoc to evaluate the recurrence of similarities across multiple

cell types, generating a recurrent similarity score (RSS) for each perturbation pair considered (see Trans-

parent Methods; Figure S12). Using these RSS scores (false discovery rate < 0.001), together with the heu-

ristic similarity cutoffs (by considering perturbation pairs that were qualified in at least three cell types, Fig-

ure 3B), we identified 698 recurrent relationships among 203 d6 perturbagens, 399 recurrent relationships

among 197 d24 perturbagens, and 575 recurrent relationships among 346 sh96 perturbagens (Figures S13–

S15 and Tables S4, S5, and S6). Most of these recurrent relationships were recovered in the analysis with

resampling of 60% of cell types (Figure S16). Owing to the scarcity of perturbation pairs qualified with

the negative similarities in more than one cell type, no recurrent relationship with negative association

was found for any perturbation type.

To explore the recurrent connections between chemical perturbagens, we combined the d6 and d24

recurrent relationships (i.e., ‘‘d6 + d24’’) as a recurrent drug network (Figure 4). We observed that

many widely used compounds and approved drugs were recapitulated as discrete groups according

to their MoAs. For example, the histone deacetylase inhibitors vorinostat, panobinostat, and dacinostat

were all placed in a single group, as were the cardiac glycosides (digoxin, digitoxin, and ouabain), anti-

microtubules (vinblastine, vincristine, and vinorelbine), heat shock protein 90 (HSP90) inhibitors (geldana-

mycin, tanespimycin, and NVP-AUY922), and lipid-lowering statins (lovastatin, simvastatin, and atorvasta-

tin). Topoisomerase inhibitors were, nevertheless, found in two separate groups (amsacrine, etoposide,

and irinotecan in one group, and doxorubicin, daunorubicin, and mitoxantrone in the other). We also

note some temporal differences in the drug-drug associations. For some drug classes, recurrent con-

nections did not appear at 6 hr until 24 hr, suggesting delayed drug responses (e.g., statins and
iScience 7, 40–52, September 28, 2018 45



Figure 4. Recurrent Similarity Score (RSS) Analysis

Chemical perturbation pairs recurrently similar across cell types are shown as a drug RSS network (merging d6 and d24 perturbations; see Table S10 for

network communities and their enrichment analyses). A primary MoA was assigned to each chemical perturbagen, as represented by color coding on the

darker side of each icon and the associated text inset. The box below summarizes the total number of occurrences for each primary MoA in the network.
antimicrotubules; Figures S17A and S17B). In contrast, associations between protein synthesis inhibitors

and cardiac glycosides were recurrent at 6 hr but not at 24 hr, indicative of initially similar pathways

diverging later, consistent with the ability of cardiac glycosides to inhibit general protein synthesis (Perne

et al., 2009) (Figure S17C). However, most connections (73%, 806 of 1,097) were between drugs of

different MoAs, opening up many possibilities for drug repositioning. For example, a subnetwork of

the potent protein kinase C (PKC) inhibitor staurosporine comprised substantial associations with other

kinase inhibitors (e.g., cyclin-dependent kinase inhibitors, c-Jun N-terminal kinase inhibitors, topoisom-

erase inhibitors; Figure S17D), consistent with its well-reported polypharmacology profile (Collins and

Workman, 2006; Reddy and Zhang, 2013). By contrast, pyrvinium pamoate, a US Food and Drug
46 iScience 7, 40–52, September 28, 2018



Administration-approved anthelmintic, was part of a connected component overrepresented by topo-

isomerase inhibitors (Figure S17E), suggesting a repurposing opportunity for cancer therapy. Function-

ally related genes might also be reflected on the recurring pairs of genetic perturbations; for example,

AURKA (aurora kinase A) knockdown was recurrently similar to knockdown of other genes involving

AURKB (Figure S17F), consistent with their coordinated role in mitosis (Goldenson and Crispino, 2015)

and reported functional similarity (Fu et al., 2009; Hans et al., 2009).

For each recurrent network (d6, d24, sh96, or d6 + d24), we applied unsupervised Markov clustering (En-

right et al., 2002) to identify perturbation communities, and determined their enrichments for each of

the Molecular Signature Database (Subramanian et al., 2005) gene set collections (Tables S7, S8, S9, and

S10). From analyses using hallmark gene sets, several drug communities were statistically enriched for

the tumor necrosis factor a-dependent nuclear factor-kappa B (NF-kB) signaling, hypoxia, p53 pathway,

apoptosis, mammalian target of rapamycin complex 1 signaling, and unfolded protein response, whereas

most genetic perturbation clusters impinged on the KRAS and NF-kB pathways (Figure S18; hypergeomet-

ric p < 0.001). Remarkably, drug communities composed of miscellaneous MoAs also displayed functional

enrichments. For example, a cluster of 27 drugs containing the PKC inhibitor staurosporine (cl2) was spe-

cifically enriched for a KRAS signaling hallmark (p = 1.01 3 10�6; Figure S18A). By contrast, another cluster

of 31 drugs (cl1) showed multiple hallmark enrichments (Figure S18A) and might engage in cytosolic tRNA

aminoacylation (p = 9.85 3 10�9; Figure S19A). The drug cluster consisting not only of topoisomerase in-

hibitors but also of the anthelmintic pyrvinium pamoate (cl10) was particularly enriched for p53 direct effec-

tors (p = 7.03 3 10�16 for PID_P53_DOWNSTREAM_PATHWAY; Figure S19A). Interestingly, three genetic

perturbation clusters (cl5, cl27, and cl28) revealed the enrichments for ATP-binding cassette (ABC) trans-

porters that efflux various small molecules and metabolites from cells (Fletcher et al., 2010) (p = 4.34 3

10�64 for KEGG_ABC_TRANSPORTERS; Figure S19B), of which one cluster (cl27) contained a knockdown

of TIMP4 (TIMP metallopeptidase inhibitor 4), the overexpression of which has been shown to increase

ABCB1 and ABCG2 transcripts (Lizarraga et al., 2016). Of the drug communities, 76% were significantly en-

riched for at least one of the immunologic signatures (Figure S20; p < 0.0001), consistent with the profound

influence of chemical perturbations on the immune system (Kidd et al., 2016).

Perturbation Pairs with Cell Type Specificity

We also explored the cell type specificity of perturbation similarities using an analogous definition of a

metric based on information entropy (Schug et al., 2005) (see Transparent Methods). For each perturbation

type (d6, d24, or sh96), we calculated the similarity specificities for all available perturbation pairs. We

found that most perturbation pairs exhibited low specificity for a particular cell type (Figure S21), consistent

with the nature of perturbations to induce similar effects across many cell types (Figure 3B). Using the cor-

responding CDFs of the similarity specificities, we identified 1,148 highly specific similarity (HSS) pairs for

d6, 204 HSS pairs for d24, and 269 HSS pairs for sh96 (Tables S11, S12, and S13; a network for d24 is shown in

Figure 5). A substantial proportion of HSS pairs was associated with negative similarity scores (32%, 51%,

and 83% for d6, d24, and sh96, respectively), consistent with their cell type-exclusive distributions (Fig-

ure 3B). For chemical perturbagens, the HSS relationships included almost entirely different MoAs (99%

and 96% for d6 and d24, respectively), suggesting that certain molecular contexts, rather than solely

MoAs, dominated cellular responses and consequences following these perturbations.

Validation of Discoveries with Repurposing Potential

We performed in vitro experiments to validate one recurrent (from RSS) and one cell type-specific (from

HSS) relationship with great promise for repurposing in oncology: pyrvinium pamoate (Thorne et al.,

2010; Chen et al., 2017) and etacrynic acid (Lu et al., 2009). From the recurrent drug network, pyrvinium pa-

moate was recurrently similar to a cluster of topoisomerase inhibitors, suggesting a likely antineoplastic

activity against a broad spectrum of cancers. In contrast, the loop diuretic etacrynic acid was exclusively

connected to the topoisomerase inhibitor irinotecan in MCF7 cells (similarity = 0.48), but not in the other

cell lines screened (similaritiesz0; Table S12), indicating cell type-specific toxicity. Using proliferation and

clonogenic assays, we confirmed the widespread cytotoxic effects of pyrvinium pamoate inMCF7 and A549

cells (two human cancer cell lines included in this study) as well as in H1299 and H1975 (two other human

non-small-cell lung cancer cell lines not included in this study), and also confirmed the selective killing of

etacrynic acid in MCF7 but not in A549 cells (Figures 6A and 6B). Western blot analysis further demon-

strated that pyrvinium pamoate and etacrynic acid induced DNA damage responses, such as increased

gH2AX (i.e., phosphorylated histone variant H2AX on serine 139) and p53 induction (Figure 6C), in the
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Figure 5. Highly Specific Similarity (HSS) Analysis

Chemical pairs of d24 perturbation with cell type specificity are displayed as a d24 HSS network. A primary MoA is assigned to each chemical perturbagen

and color coded on the darker side of each icon and the associated text inset. The box below summarizes the total number of occurrences for each primary

MoA in the network.
drug-sensitive cell lines. The levels of TOP2A (DNA topoisomerase II alpha) and its major phosphorylation

site in the catalytic domain on serine 1106 (TOP2A Ser1106) (Chikamori et al., 2003) were slightly elevated

by these agents to various extents (Figure 6C), consistent with trapping of TOP2A-DNA covalent com-

plexes by known TOP2 poisons (Nitiss, 2009).
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Figure 6. Experimental Validation

We verified that the US Food and Drug Administration-approved anthelmintic drug pyrvinium pamoate and the loop diuretic etacrynic acid showed RSS and

HSS connections to topoisomerase inhibitors, respectively.
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Figure 6. Continued

(A) Cell viability assays using MTS dye for pyrvinium pamoate in MCF7 and A549 cells (in this study) as well as H1299 and H1975 cells (not in this study) and

etacrynic acid in MCF7 cells (effective) and A549 cells (ineffective) at indicated dosage and time duration. Error bars, SEM. Three technical replicates were

performed for each of the three independent biological replicates.

(B) Clonogenic assays for pyrvinium pamoate (10 mM) or etacrynic acid (100 mM) in cell lines as indicated for 14 days. Error bars, SEM. Three technical

replicates were performed for each of the three independent biological replicates (two-sided unpaired Student’s t test p values).

(C) Western blot analyses revealed that pyrvinium pamoate (10 mM) and etacrynic acid (100 mM) induced DNA damage responses in drug-sensitive cell lines.

H1299 cells harbor homozygous partial deletion of TP53 and therefore do not express p53 protein. Shown are representative results from one of three

independent experiments.
DISCUSSION

We developed an intensity-based similarity metric using the genes exhibiting the greatest changes in

expression in response to perturbation. This new metric surpassed the state-of-the-art KS metric and other

commonly used metrics in a clustering task of given known drugs, suggesting that expression intensity is a

reliable proxy to represent a perturbation. In contrast to those studies that apply the KSmetric to an aggre-

gate ranked list across multiple cell types or tissues (Lamb et al., 2006; Iorio et al., 2010; Sirota et al., 2011;

Kidd et al., 2016), our framework considers the intensity-based metric at the single-condition level, which

enables cell type-specific discoveries and the identification of recurring relationships through a bottom-up

approach. In lieu of a heuristic search from a narrow window of possible gene set sizes used for their match-

ing algorithms (Iorio et al., 2010; Kidd et al., 2016), our framework provides a strategy using a predefined

ground truth clustering to interrogate the optimal parameters for the intensity-based similarity metric

(b and s) across a broad range of parameter space.

The intensity-based similarity metric, similar to the KS and GSEA metrics, offers an advantage over the

Pearson-based or Euclidean-based metric when it is only possible to use a small number of the most influ-

ential genes in a given unknown condition, even though there seems to be a minimum number of genes to

adequately distinguish between chemical perturbations (R50; Figure S3). Owing to the lack of a way to

define a gold standard for genetic perturbations, we did not explicitly tune the intensity-based similarity

metric for the genetic perturbation. Despite this, some of the known functionally related genes can still

be revealed by using the optimal intensity-based similarity metric derived for the chemical perturbation.

The superior clustering performance achieved by the intensity-based similarity metric indicates that the

way we created this metric is more compatible with the pervasive robustness to perturbation in biological

systems (Felix and Barkoulas, 2015) and the dimensionality reduction scheme for exploring gene expres-

sion data (Clarke et al., 2008). However, compared with KS and GSEAmetrics, the intensity-based similarity

metric produced a broader range of F1 scores and seemed to be more sensitive to the choice of clustering

method (Figure S4). This, together with the poor performance for the intensity-based similarity metric with

minimal genetic information (�10 genes; Figure S3) suggests that the KS or GSEA metric might be more

appropriate in the cases when only tens of genes are available for a condition.

The temporal differences observed in some drug connections pose a potential limitation to the gene

expression similarity. Cellular responses to specific chemical perturbagens might only become apparent

(for antimicrotubules and statins) or may be unambiguous (between cardiac glycosides and protein synthe-

sis inhibitors) after prolonged treatment. In these cases, attempts to capture drug MoAs by using the

phenotypic effects on gene expression at early time points might be frustrating. Nonetheless, this can

be seen as an added benefit of the gene expression similarity for improving our knowledge of the molec-

ular events behind chemical perturbations.

A substantial fraction of the recurrent connections spanned promiscuous small-molecule kinase inhibitors,

consistent with the polypharmacology interactions for this drug family (Paolini et al., 2006; Knight et al.,

2010). Enrichment analysis further indicated that such polypharmacological communities were significantly

enriched for functionally distinct pathways and processes. These findings have potential clinical signifi-

cance in that even somemarketed drugs sharing the sameMoAs were associated with disparate biological

clusters, which in turn might correlate with therapeutic responses. For example, the majority of drugs that

target topoisomerase II (TOP2) were found in two drug communities: one includes most anthracyclines as a

promiscuous cluster, whereas the other contains the epipodophyllotoxins such as etoposide and other

TOP1 inhibitors (Figure 4). This discrepancy may support the hypothesis that anthracyclines mainly act

against targets other than TOP2 (Gewirtz, 1999), which is consistent with the clinical rationale for combining
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etoposide and an anthracycline through its ‘‘beneficial’’ polypharmacological interactions (Nitiss, 2009),

but probably the anthracycline-induced cardiotoxicity is a consequence of ‘‘harmful’’ off-target activities

(Gewirtz, 1999; Nitiss, 2009). However, the extensive use of these current TOP2-targeting drugs is limited

due to the increased risk of developing secondary malignancies (Nitiss, 2009); there is an urgent need to

identify novel TOP2-targeting drugs with greater potency, but fewer undesirable effects, and a new way

to incorporate them into clinical regimens.

Previous studies have shown that pyrvinium pamoate (Thorne et al., 2010; Chen et al., 2017) and etacrynic

acid (Lu et al., 2009) exert anticancer activity by targeting the Wnt signaling pathway. Through systemati-

cally analyzing gene expression similarities, we emphasize that these drugs show their capabilities to

induce DNA damage responses via topoisomerase inhibition. A careful evaluation of the polypharmacol-

ogy and toxicity profiles of these compounds is required to address the opportunities for clinical develop-

ment as improved TOP2-targeting agents.

Overall, we believe that our intensity-based similarity framework and the new similarity metric represent a

significant step forward in the field of gene expression similarity. We have suggested a generally applicable

parameter set for the intensity-based similarity metric for analyzing chemical perturbations, although it can

even be fine-tuned in many relevant tasks for context-specific purpose. Moreover, data from our unbiased

analysis are a useful resource for many repurposing opportunities that could potentially lead to some fast-

track approvals for clinical use in the future.

Limitations of the Study

Although we have demonstrated that the intensity-based, KS, andGSEA similarity metrics are generally robust

to variations in the gene set size (Figures S7 and S8), the intensity-based metric was found to achieve relatively

poorperformancewhenan insufficiently small amountof genetic informationwasused (b=10ors=0.9, among

all parameter sets considered; Figure S3). This suggests that the KS orGSEAmetricmight bemore appropriate

than the intensity-basedmetric in cases inwhichonly about 10genes are allowed.Nevertheless, theuseof gene

expression similarity fordrug repurposing relies on thecellular phenotypic responses to chemical perturbations;

therefore, apotential caveat couldbe that someof thecompoundmechanismsarenotable tobe faithfully trans-

lated into the transcriptional changes in cells assayed at given time points.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figures 

 

Figure S1. Frequencies of primary MoAs of LINCS compounds, related to Figure 1. 

See Table S2 for detailed descriptions. 

 



 
 

 

 

Figure S2. Votes for the best parameter set for the intensity-based metric across context-specific 

clusterings, related to Figure 2. 

Shown are the votes among the best (A), top three (B), top five (C), top 10 (D), top 15 (E), top 20 (F), top 25 

(G), or top 30 (H) context-specific intensity-based clusterings across all contexts, in which the parameter set 

(or sets) that received the most votes was boxed by a red rectangle. 

 



 
 

 

 

Figure S3. Votes for the worst parameter set for the intensity-based metric across context-specific 

clusterings, related to Figure 2. 

Shown are the votes among the worst (A), bottom three (B), bottom five (C), bottom 10 (D), bottom 15 (E), 

bottom 20 (F), bottom 25 (G), or bottom 30 (H) context-specific intensity-based clusterings across all con-

texts, in which the parameter set (or sets) that received the most votes was boxed by a blue rectangle. 

 



 
 

 

 

Figure S4. Comparison of F1 scores of intensity-based and common clusterings for each context, 

related to Figure 2. 

With five biomedical clustering methods, F1 scores of intensity-based clusterings within the top five, using 

the optimal parameter set (n = 5), or across all parameter sets (n = 200) were compared with KS or GSEA-

based clusterings within the top five, using a fixed query gene set size (n = 5), or across all gene set sizes 

considered (n = 45) and compared with common clusterings using the Pearson (n = 5) or Euclidean (n = 5) 

metric by one-sided Mann–Whitney U tests (with −log10(P-value) represented by the corresponding colored 

box at the bottom of each plot). Box plots depict the interquartile range (IQR) and whiskers represent 1.5× 

IQR. *P < 0.05. 

 



 
 

 

 

  

Figure S5. Comparison of AUROC performance among intensity-based and common metrics with 

respect to the gold-standard clustering, related to Figure 2. 

For each context, an ROC curve was drawn using the intensity-based metric (I; light red lines) with all other 

parameter sets, KS (K; yellow lines) or GSEA (G; aquamarine lines) metric with all query gene set sizes con-

sidered, Pearson (P; dark gray line) metric, or Euclidean (E: light gray line) metric accompanied by a range 

of AUROC values in each parentheses, and the metric that achieved the best AUROC value was indicated 

by a hash (#). 

 



 
 

 

 

Figure S6. Similarity heat map of the gold-standard drugs for each intensity-based metric with a 

fixed parameter set (b and σ) and for each KS or GSEA metric with a fixed gene set size in the con-

text of d6 perturbation in A375 cells, related to Figure 2. 

For each similarity heat map, the drugs were ordered with MoAs being the same as in Figure 2A. 

 

 



 
 

 

 

Figure S7. Robustness analysis of F1-score performance of the intensity-based, KS, and GSEA met-

rics to the gene set size, related to Figure 2. 

For each context, the value in each cell represents the median F1 score among the clusterings produced by 

the five clustering methods for a given metric (an intensity-based metric with fixed b and σ, or a KS or GSEA 

metric with a fixed set size). 

 



 
 

 

 

Figure S8. Robustness analysis of AUROC performance of the intensity-based, KS, and GSEA met-

rics to the gene set size, related to Figure 2. 

 

 



 
 

 

 

Figure S9. Resampling analysis for the parameter tuning and performance evaluation, related to Fig-

ure 2. 

(A) Occurrences of parameter sets that received the most votes for the best set in a total of 100 rounds of 

the resampling analysis. 

(B) Comparison of F1-score performance between the intensity-based metric with the KS, GSEA, Pearson-

based, and Euclidean-based metrics in a total of 100 rounds of the resampling analysis (Wilcoxon two-sided 

paired signed-rank test). 

(C) Comparison of AUROC performance between the intensity-based metric with the KS, GSEA, Pearson-

based, and Euclidean-based metrics in a total of 100 rounds of the resampling analysis (Wilcoxon two-sided 

paired signed-rank test). 

 



 
 

 

 

  

Figure S10. Similarity cutoffs defined by Youden’s index using the optimal intensity-based similarity 

metric with respect to the gold-standard clustering, related to Figure 3. 

 



 
 

 

 

Figure S11. Validation of the intensity-based similarities using independently derived perturbation 

profiles to query the LINCS database, related to Figure 3. 

Shown are the intensity-based similarities (using optimal intensity-based similarity metric) between a query 

chemical perturbation in a cell type (with a GEO accession number) and the reference chemical perturba-

tions in a cell type (LINCS) as indicated. The top 10 similar reference compounds (red points) are listed be-

low, with a hash (#) indicating the same reference compound as the query. For each plot, a horizontal dash 

gray line indicates the similarity cutoff defined by the Youden’s index in the corresponding context as in Fig-

ure S10. 

 

 



 
 

 

 

Figure S12. Quantile–quantile (Q–Q) plot for the chi-squared test statistics of the perturbation pairs 

used for RSS analysis, related to Figure 4. 

For each of the d6 (A–F), d24 (G–L) and sh96 (M–R) perturbation types, we used the relative ranks of inten-

sity-based similarities to generate a Q–Q plot for the chi-squared test statistics of the perturbation pairs 

available in n = 5 (A, G, M), 6 (B, H, N), 7 (C, I, O), 8 (D, J, P), 9 (E, K, Q), or 10 (F, L, R) cell types, respec-

tively (corresponding to chi-squared distribution with 10, 12, 14, 16, 18, or 20 degrees of freedom, respec-

tively). For each plot, we drew a red line that passes through the 100th and 900th permilles (i.e., 1000-quan-

tiles). 

 



 
 

 

 

Figure S13. d6 RSS network, related to Figure 4. 

Displayed are d6 chemical perturbation pairs that were recurrently similar across cell types (FDR < 0.001; 

Table S4; see Table S7 for network communities and their enrichment analyses). A primary MoA is assigned 

to each chemical perturbagen and color-coded on the darker side of each icon as well as in the text inset. 

The right box summarizes the occurrences of primary MoAs in the network. 

 



 
 

 

 

Figure S14. d24 RSS network, related to Figure 4. 

Displayed are d24 chemical perturbation pairs that were recurrently similar across cell types (FDR < 0.001; 

Table S5; see Table S8 for network communities and their enrichment analyses). A primary MoA is assigned 

to each chemical perturbagen and color-coded on the darker side of each icon as well as in the text inset. 

The box below summarizes the occurrences of primary MoAs in the network. 

 



 
 

 

 

  

Figure S15. sh96 RSS network, related to Figure 4. 

Displayed are sh96 genetic perturbation pairs that were recurrently similar across cell types (FDR < 0.001; 

Table S6; see Table S9 for network communities and their enrichment analyses). 



 
 

 

 

Figure S16. Resampling analysis for the recurrent perturbation pairs, related to Figure 4. 

For recurrent perturbation pairs in each of the d6 (A), d24 (B), and sh96 (C) perturbation types, the percent-

ages of cases in which they were recovered in the resampling analysis (as robustness; y-axis) were plotted 

against their real RSS scores (i.e., those from the RSS analysis when 100% of cell types were used; x-axis). 

For each plot, the robustness at 50% recovery is indicated by a horizontal dash gray line, above which the 

proportion of pairs (orange) is shown. 



 
 

 

 

Figure S17. Subnetworks related to RSS analyses, related to Figure 4. 

(A) A connected component involving lipid-lowering statins in the drug RSS network (merging d6 and d24 

chemical perturbation networks). 

(B) A connected component involving most antimicrotubules in the drug RSS network. 

(C) A subnetwork spanning protein synthesis inhibitors and cardiac glycosides in the drug RSS network. 

(D) A subnetwork of the PKC inhibitor staurosporine in the drug RSS network. 

(E) A connected component involving the anthelmintic pyrvinium pamoate in the d24 RSS network. 

(F) A subnetwork of the shAURKA perturbation in the sh96 RSS network. 

 

 



 
 

 

 

Figure S18. Enrichments of hallmark gene sets for RSS network communities, related to Figure 4. 

Significant enrichments (corrected hypergeometric P < 0.001) of hallmark gene set collections from MSigDB 

for drug (A) and sh96 (B) RSS network communities (Tables S9 and S10). For each drug community, the 

number of drugs and the composition of MoAs are shown. 

 

 



 
 

 

 

Figure S19. Enrichments of canonical pathways for RSS network communities, related to Figure 4. 

Significant enrichments (corrected hypergeometric P < 0.001) of canonical pathways from MSigDB for drug 

(A) and sh96 (B) RSS network communities (Tables S9 and S10). For each drug community, the number of 

drugs and the composition of MoAs are shown. 

 

 



 
 

  

Figure S20. Enrichments of immunologic 

signatures for drug RSS network commu-

nities, related to Figure 4. 

Shown are significant enrichments (corrected 

hypergeometric P < 0.0001) of immunologic 

signatures from MSigDB (Table S10) with the 

number of drugs and the composition of 

MoAs for each drug community indicated be-

low. 

 



 
 

 

  

Figure S21. Similarity specificities of perturbation pairs, related to Figure 5. 

Empirical density functions (A) and CDFs (B) against similarity specificities are shown for each perturbation 

type. 

 



 
 

 

Transparent Methods 

Data acquisition and preprocessing. We accessed LINCS (Subramanian et al., 2017) (Library of 

Integrated Network-based Cellular Signatures) L1000 gene expression datasets (level 3, normalized 

using invariant set scaling followed by quantile normalization; http://www.lincscloud.org/, now avail-

able at Gene Expression Omnibus; downloaded on 18 September 2014), which comprises 1,328,098 

perturbation profiles for 77 cell types. All associated metadata were retrieved via Lincscloud API 

(http://api.lincscloud.org/, now replaced by https://clue.io/api) using R package ‘rjson’ (version 

0.2.14). To facilitate similarity computations and to avoid redundancies, we reduced each probe-wise 

expression vector (dimension = 22,268; Affymetrix Human Genome U133A Array) to a gene-wise 

expression vector (dimension = 12,494) by taking the median of each gene with multiple probes in 

reference to R package ‘hgu133a.db’ (version 2.14.0).  

 We considered the following three types of perturbation: exposure to chemical drugs for 6 hours 

(abbreviated as d6); exposure to chemical drugs for 24 hours (d24); and exposure to short hairpin 

RNAs (shRNAs) for 96 hours (sh96). The following 10 selected cell types were analyzed: NPC (a 

human induced pluripotent stem cell-derived neural progenitor cell line); HA1E (a human kidney 

epithelial immortalized cell line); MCF7 (a human breast adenocarcinoma cell line); A549 and 

HCC515 (two human non-small cell lung adenocarcinoma cell lines); HT29 (a human colorectal ad-

enocarcinoma cell line); HepG2 (a human hepatocellular carcinoma cell line); PC3 (a human prostate 

adenocarcinoma cell line); VCaP (a human metastatic prostate cancer cell line); and A375 (a human 

malignant melanoma cell line). All expression profiles were log2-transformed. The names of the per-

turbagens were set to those listed under the field ‘pert_iname’ in the metadata. For chemical perturb-

agens, we excluded names that were unclear in their meanings and might be unfamiliar to general 

users outside the Broad Institute; these names started with ‘BRD-’, ‘SA-’, ‘BG-’, ‘ARG-’, ‘Broad-

Sai-’, ‘FU-’, ‘JAS07-’, ‘KU-C’, ‘KUC’, ‘RAN-’, ‘SD-’, ‘ST-0’, ‘ST-2’, ‘ST-4’, ‘TL-’, ‘TUL’, ‘VU-’, 

‘WZ-4-’, ‘DAC-’, or ‘WY-01’. The total number of non-redundant perturbagens analyzed in each cell 

type are summarized in Table S3, corresponding to a union of 3,332 chemical and 3,934 genetic 

perturbagens. We manually curated primary mechanisms of action (MoAs) for all chemical perturb-

agens with associated LINCS metadata and MoA tag descriptions (Figure S1 and Table S2). 

 

Intensity-based similarity metric. We used perturbation intensity (i.e., the gene expression differ-

ence between perturbed and unperturbed conditions) and rank-based scoring functions with two tun-

able parameters to define an intensity-based similarity metric, inspired by the general observation 

from a biological perspective that a given perturbation should only affect a restricted panel of 

genes (Felix and Barkoulas, 2015). We therefore proposed that the most extremely perturbed genes 

compared to the unperturbed counterpart might be appropriate and sufficient to represent a given 

perturbation. For each perturbation u treated in a given cell type with N detection instances (one 

detection instance indicates one well of measurement in a 384-well plate for fluorescence detection 



 
 

 

and the corresponding experiments may be performed in technical and biological replicates), we com-

puted the ‘perturbed profile’ du: 
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where r and e are expression vectors of the perturbation instance j and the corresponding control on 

the same plate of j, respectively. This perturbed profile represents the average perturbation intensity 

from available experiments in a way that reduces cross-plate batch effects, the extent of which became 

increasingly perceptible for some perturbations with multiple experimental replicates. Note that for 

most perturbations in a given cell type, experiments were performed in only one biological replicate 

with no more than three technical replicates, together with cross-plate batch effects, making it im-

practical to run standard differential expression analyses on LINCS data. Next, we derived an expres-

sion intensity rank vector ρu, where the 1st most perturbed entry (regardless of the direction of gene 

regulation) is assigned 1, the 2nd most perturbed entry is assigned 2, and so on. This intensity rank 

allowed us to define a gene set size b that could be tuned to yield a query gene set B in which |B| = b. 

That is, the number of the top most perturbed genes for B could be fixed at b = 10, 50, 100, 500, 1,000, 

5,000, 10,000, or 12,494 (the maximum size) with a corresponding query vector θu for each sample 

u for which the selected entries (within B) are assigned 1 (up) or −1 (down) and the unselected (out-

side B) are assigned 0. Then, for any two perturbations u and v when v was used as a query, we 

computed the forward and reverse match scores fwdu←v and revu←v (of v to u), respectively, as follows: 
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where G is the gene space (|G| = 12,494), ⟦∙⟧ returns 1 if the expression inside gives a TRUE value 

and returns 0 otherwise, sgn(∙) is the sign function, du[g] is the entry of the perturbed profile du cor-

responding to the gene g, θv[g] is the entry of the query vector θv corresponding to the gene g, and 

the other tunable parameter decay factor σ to adjust the weights of ranks for σ fixed at 0.9, 0.99, 0.995, 

0.998, or 0.999. Subsequently, we derived the directional similarity score of v to u as simu←v = (fwdu←v 

− revu←v)/S, where S is the theoretical maximum match score (i.e., the sum of the geometric progres-

sion σ0, σ1,..., σb−1 as the geometric series). Under this scenario, a +1 similarity score represents the 

perfect forward match whereas −1 represents the perfect reverse match. Similarly, we defined the 



 
 

 

similarity score of u to v (when u was used as a query), where simu←v ≠ simv←u. In this way, an undi-

rected similarity score for any two perturbations v and u was obtained by averaging their directional 

similarity scores as simu↔v = (simu←v + simv←u)/2. 

 

Parameter optimization, comparison, and performance evaluation. We leveraged a ground truth 

clustering of a selected panel of chemical perturbagens with well-established primary MoAs (n = 74, 

but not all of these perturbagens were available in a given cell type at 6 or 24 h; thus, the exact number 

was variable; Table S1) to determine the optimal intensity-based similarity metric and facilitate the 

comparison among the intensity-based and all other similarity metrics. 

 For comparison, we considered four types of gene expression similarity metrics defined by the 

Kolmogorov–Smirnov (KS) statistic (Massey, 1951) (as the state of the art (Lamb et al., 2006; Iorio 

et al., 2010; Sirota et al., 2011; Kidd et al., 2016)), Gene Set Enrichment Analysis (GSEA) method 

(in which exponent = 1 was used for the standard enrichment score (Subramanian et al., 2005)), Pear-

son correlation, and Euclidean distance (two in common use (D'Haeseleer, 2005)). All these metrics 

were defined at the level of the ‘perturbed’ profiles du and dv for any two perturbations u and v. For 

KS and GSEA metrics, we considered a range of set sizes at 10, 50, 100, 150, 200, 250, 500, 1,000 

and 5,000 for each of the top- and bottom-ranked genes used for their matching algorithms; a metric 

was then defined by taking the difference of the matching scores between these two extremes (‘top’ 

minus ‘bottom’) over a value of 2 (the maximum of the difference when a perturbagen uses its ranked 

list to query itself, as did in those state-of-the-art studies (Iorio et al., 2010; Sirota et al., 2011; Kidd 

et al., 2016) except CMap (Lamb et al., 2006), which takes the largest value (≤ 2) among the absolute 

values of all possible differences produced when a gene signature is used to query the entire database). 

 For each similarity metric (intensity-based, KS, GSEA, Pearson, or Euclidean), the clustering 

performance was evaluated using the external cluster validity index F1 score based on a mapping 

approach to define true positives, true negatives, false positives, and false negatives (Wiwie et al., 

2015). We explicitly considered the following five biomedical clustering methods: hierarchical clus-

tering (HC) using average (HC-avg; using hclust in R base) or Ward (HC-ward; using agnes in R 

package cluster version 1.15.2) linkage; partitioning around medoids (PAM; using pam in R package 

cluster version 1.15.2); affinity propagation (AP; using apclusterK in R package apcluster version 

1.4.3); and exemplar-based agglomerative clustering (EBC; using aggExCluster in R package apclus-

ter version 1.4.3), with default function arguments. For each context (a perturbation type in a cell 

type) and each ‘metric–method’ setting (one metric plus one clustering method), we computed F1 

scores for all possible clusters across a full range of number of clusters k = 2,..., n – 1 (where n is the 

number of drugs in the ground truth clustering) and determined an optimal clustering by picking the 

k with the best F1 score. We then prioritized these intensity-based clusters and all other clusters sep-

arately according to F1 scores and visualized these results with clusters of each clustering color-coded 

in a way that starting from the last row, the color consistency was maximized to the first row (i.e., the 

best of the intensity-based clusterings; Figure 2A provides an illustrative example of d6 perturbation 



 
 

 

type in A375). 

 An optimal parameter set (b*, σ*) for the intensity-based similarity metric was determined by 

majority voting of occurrences of parameter sets among the top five intensity-based clusterings (in-

cluding equal rank whenever possible) across 20 contexts (two perturbation types plus 10 cell types; 

Figure 2B). We also examined the voting results when varying the number of the top-scoring (Figure 

S2) or the bottom-scoring (Figure S3) intensity-based clusterings used for voting. 

 We first compared intensity-based clusterings with all other clusterings using these F1 scores. 

We extracted the highest F1 score for each context from clusterings using the intensity-based (across 

all parameter sets or using the optimal parameter set), KS or GSEA (across all gene set sizes or using 

a fixed gene set size), Pearson-based, or Euclidean-based metric and tested the statistical significance 

of their distributions across all contexts using Wilcoxon two-sided paired signed-rank tests (intensity-

based over the others; Figure 2C). For each context, we also assessed whether the F1 scores of the 

intensity-based clusterings within the top five, using the optimal parameter set, or across all parameter 

sets were significantly higher than other clusterings using one-sided Mann–Whitney U tests (Figure 

S4). Next, we compared the intensity-based similarity metric with all other similarity metrics using a 

strategy based on the area under the receiver operating characteristic (ROC) curve (AUROC) with 

respect to the ground truth. For each context, we varied the threshold τ on a selected metric such that 

a perturbation pair with the similarity value beyond τ indicates that they are in the same cluster, 

whereas a value below τ not is in the same cluster; thus, we generated a ROC with an associated 

AUROC score. We aggregated the results using the optimal intensity-based metric across all contexts 

(Figure 2D) or each metric for each context (Figure S5, in which a hash (#) indicates the metric that 

achieved the best context-specific AUROC). We also extracted the highest AUROC score for each 

context achieved by the intensity-based, KS, GSEA, Pearson-based, or Euclidean-based metric and 

tested the statistical significance of their distributions across all contexts using Wilcoxon two-sided 

paired signed-rank tests (intensity-based over the others; Figure 2E). 

 For each context, we assessed the robustness of intensity-based, KS, and GSEA similarity met-

rics to the gene set size (i.e., the query gene set size b for the intensity-based metric with a fixed decay 

factor σ, or the set size for each of the top- and bottom-ranked genes for the KS or GSEA metric) 

based on the F1-score (Figure S7) and AUROC (Figure S8) performance. For the analysis using F1-

score performance, we used the median F1 score among the clusterings produced by the five cluster-

ing methods for a given metric (an intensity-based metric with fixed b and σ, or a KS or GSEA metric 

with a fixed set size) in each context. 

 To examine whether the results of the analysis for parameter tuning and performance evaluation 

were robust against chemical perturbagens, we repeated the analysis with resampling of 75% of chem-

ical perturbagens for 100 times. For parameter tuning for the intensity-based metric, in each round of 

the resampling analysis, votes for parameter sets were collected among the top five intensity-based 

clusterings across all contexts (as did in Figure 2B), and the parameter set that received the most votes 

was counted (more than one parameter set is possible if votes are equal in each round). The occurrence 



 
 

 

of each parameter set that received the most votes in a total of 100 rounds of the resampling analysis 

is summarized in Figure S9A. For performance comparison, in each round of the resampling analysis, 

the best F1 scores for clusterings across all contexts (as did in Figure 2C) or the best AUROC scores 

across all contexts (as did in Figure 2E) achieved by the intensity-based metric were compared with 

those by the KS, GSEA, Pearson-based, or Euclidean-based metric using Wilcoxon two-sided paired 

signed-rank tests. The resulting P-values of the tests on the F1-score and AUROC performance from 

a total of 100 rounds of the resampling analysis are summarized in Figure S9B and S9C, respectively. 

 

Similarity cutoffs. We used the optimal parameter set (b*, σ*) to compute pairwise intensity-based 

similarities for all available perturbations in LINCS. For each perturbation type (d6, d24, or sh96), 

we binned similarity values into bins at 0.001 resolution (i.e., rounded to the nearest three decimals) 

and plotted the empirical cumulative distribution function (CDF) of these bins within each cell type 

or across all cell types (Figure 3A). This overall CDF (across all cell types) was then used to derive 

a positive (sim+
d6, sim+

d24, or sim+
sh96) and a negative (sim−

d6, sim−
d24, or sim−

sh96) heuristic similarity 

cutoffs such that the positive value is the binned similarity value where CDF is greater than or ap-

proximately equal to 0.999 and the negative value is the binned similarity value where CDF is less 

than or approximately equal to 0.001. For each d6 or d24 perturbation type in a given cell type, we 

also determined a similarity cutoff defined by Youden’s index (Youden, 1950) (i.e., sensitivity + spec-

ificity – 1) of the ROC curve by associating the intensity-based similarities with the ground truth 

clustering as a comparison to its corresponding positive heuristic similarity cutoff (Figure S10). 

 To explore the ability of the intensity-based similarity metric to recover small-molecule connec-

tions between LINCS and other resources, we computed the perturbation intensities of some chemical 

perturbagens independently derived from Gene Expression Omnibus (GEO) to query the LINCS da-

tabase. We used the GEO datasets with the following accession numbers: GSE69845 (vorinostat at 6 

h in MCF7 cells), GSE69849 (vorinostat at 6 h in Ishikawa cells), and GSE28662 (triptolide at 2, 4, 

and 6 h in MCF7 cells). For each dataset, we converted the probe set IDs into the gene symbols while 

taking the median expression values for each gene with multiple probes. The query results are shown 

in Figure S11. 

 

Recurrent similarity score (RSS) analysis. We used a strategy combining the intensity-based simi-

larities and a modified Fisher’s method (Jacobsen et al., 2013) ad hoc to infer recurrent perturbation–

perturbation relationships. Given a perturbation pair (j, μ) available in cell type c, we first fixed j and 

computed the relative rank of its similarities to all other perturbations containing μ as follows: 
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where Lj,c is the ordered (from negative to positive) vector of similarities involving perturbation j 

(excluding itself) in cell type c and rμ,j,c is the rank for perturbation μ in the vector Lj,c such that rμ,j,c 

is uniformly distributed on the interval (0, 1). Under the null hypothesis that no negative score exists 

between perturbations μ and j across all n cell types (n = 10), we would expect twice the negative 

natural logarithm of the product of these uniformly distributed relative ranks to approximately follow 

a chi-squared distribution with 2n degrees of freedom as follows (Figure S12): 
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In this way, the chi-squared test gives a one-sided P-value called p−. Alternatively, we could test the 

hypothesis at another side using the inverted rank (|Lj,c| − rμ,j,c + 1), giving another statistic called p+. 

These two, one-sided P-values, p− and p+, were multiplied by 2 to adjust for multiple testing. Finally, 

for a given perturbation pair (j, μ) available in at least half of the cell types (≥ 5 in this case), we could 

define a recurrence score RECj→μ (when fix j and see μ) as the signed logarithm of these P-values as 

follows: 
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Note that the rank of the similarity value of the perturbation pair (j, μ) in the context of j (i.e., fix j 

and see μ) should be different from that in the context of μ (i.e., fix μ and see j). Therefore, a recurrence 

score associating a perturbation pair (j, μ) in the context of μ could also be defined such that RECμ→j 

≠ RECj→μ. To resolve multiple testing problems, we used the Benjamini–Hochberg method to correct 

P-values as false discovery rates (FDRs) for all perturbation pairs. A recurrent similarity score (RSS) 

for any two perturbations j and μ was then defined as RSSj,μ = (RECj→μ + RECμ→j)/2. A perturbation 

pair (j, μ) is considered recurrently similar if (1) both FDRj→μ and FDRμ→j < 0.001, and (2) simj↔μ > 

the positive heuristic similarity cutoff (sim+
d6, sim+

d24, or sim+
sh96) or < the negative heuristic similar-

ity cutoff (sim−
d6, sim−

d24, or sim−
sh96) in at least three cell types. We performed analyses of RSS scores 

separately for each perturbation type (d6, d24, or sh96), and all recurrently similar perturbation pairs 

are provided in Tables S4–S6 and visualized using Cytoscape (version 3.0.2) in Figures S13–S15 (d6 

plus d24 were merged as in Figure 4). 

 To assess the robustness of the recurrent perturbation pairs against cell types, we resampled 60% 



 
 

 

of cell types and repeated the RSS analysis for 100 times for each perturbation type (d6, d24, or sh96). 

A recurrent perturbation pair (j, μ) is recovered in one round of the resampling analysis if both FDRj→μ 

and FDRμ→j < 0.001. The robustness of a given recurrent perturbation pair is then defined as the ratio 

of the number of cases in which they are recovered over the number of tested cases (Figure S16). 

 To detect perturbation communities in each recurrent network (d6, d24, sh96, or ‘d6+d24’), we 

used a Markov cluster algorithm (MCL (Enright et al., 2002); using mcl in R package MCL version 

1.0 with default function arguments while addLoops = TRUE), which simulates random walks on a 

given adjacency matrix. The resulting clusters were labeled according to the number of perturbagens 

in descending order. We then exploited a strategy based on hypergeometric tests to assess enrichments 

in each of Molecular Signature Database (MSigDB (Subramanian et al., 2005); version 5.0) gene set 

collections across all perturbation clusters. For each perturbation u (of d6, d24, or sh96), we defined 

an average perturbed profile d̅u across l cell type-specific perturbed profiles available (l ≤ n where n 

= 10 is the total number of cell types) as d̅u = (Σ
l
i=1du

(i)
)/l. For a chemical perturbagen with both d6 and 

d24 data in the recurrent drug network, we took the mean of its average perturbed profiles in d6 and 

d24. Next, for a given perturbation cluster, we computed the cluster average perturbed profile as the 

mean of all average perturbed profiles of involved perturbations, from which the most extremely 

perturbed genes (here, top 100) were used for the enrichment analysis. We then performed hyperge-

ometric tests on enrichments for any MSigDB collection of interest across all perturbation communi-

ties in each recurrent network separately and adjusted the P-values using the Benjamini–Hochberg 

correction. All perturbation communities and their enrichment results for each recurrent network are 

provided in Tables S7–S10. To visualize enrichment results, we selected perturbation clusters and 

gene sets with at least one significant enrichment (corrected P < 0.001 in Figures S18 and S19, and 

P < 0.0001 in Figure S20 for presentation purposes) and then defined ubiquitous gene sets as having 

significant enrichments in at least 50% of considered perturbation clusters. The ubiquitous gene sets 

and perturbation clusters were ordered by the counts of valid enrichment P-values and, if counts were 

equal, they were ordered by the sum of magnitudes of −log10(P-value). The remaining non-ubiquitous 

gene sets were grouped according to which perturbation cluster had the most significant enrichment 

P-value. For each enriched chemical perturbation cluster, we showed the proportion of MoAs and 

indicated a predominant MoA (accounting for > 50% of MoAs in the cluster) when possible. 

 

Highly specific similarity (HSS) analysis. For each perturbation pair available in at least half of n 

cell types (n = 10; ≥ 5 in this case), we defined a similarity specificity score as specificity(X) = 1 – 

(entropy(X)/log2(l)) where X is the similarity vector [s1, s2,..., sn] (a NA value was assigned to an entry 

without available experiments to define the similarity in that cell type), entropy(∙) is the Shannon 

entropy such that entropy(X) = 1 – Σpi × log2(pi) in which pi = |si|/Σ|si| for i = 1,..., l, and l is the number 

of available similarity values in X (i.e., non-NA entries; n/2 ≤ l ≤ n). We then used these similarity 

specificity values (binned at 0.001 resolution, i.e., rounded to the nearest three decimals) to generate 

an empirical CDF from which a similarity specific cutoff was derived as the binned value where CDF 



 
 

 

is greater than or approximately equal to 0.999 (Figure S21). A perturbation pair is considered highly 

specific if the following conditions were met: (1) measurements occurred in at least half of cell types; 

(2) a similarity value was greater than the positive or less than the negative heuristic similarity cutoff 

in the dominant cell type as the HSS; and (3) its specificity was greater than the similarity specificity 

cutoff. We performed HSS analyses separately for each perturbation type (d6, d24, or sh96), and all 

highly specific perturbation pairs are summarized in Tables S11–S13 with a d24 HSS network visu-

alized in Figure 5. 

 

Experimental validation. Cell culture and chemicals. MCF7, A549, H1299, and H1975 cells were 

purchased from American Type Culture Collection (ATCC). Cells were cultured in Dulbecco's Mod-

ified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and incubated at 

37 °C in humidified atmosphere with 5% CO2 and routinely passaged when 90–95% confluent. Cells 

tested negative for mycoplasma. Pyrvinium pamoate (P0027), etacrynic acid (SML1083), and crystal 

violet (C3886) were purchased from Sigma-Aldrich. DMEM (12800), FBS (A3160601), and trypsin-

EDTA (15400054) were obtained from Thermo Fisher. MTS (G1111) was ordered from Promega. 

Antibodies against γH2AX (9718, Cell Signaling), p53 (sc-126, Santa Cruz), TOP2A (ab74715, 

Abcam), p-TOP2A (Ser1106; ab75765, Abcam), and β-actin (MAB1501, Merck) were purchased 

from commercial vendors. Horseradish peroxidase-conjugated secondary antibodies were obtained 

from Abcam. Enhanced chemiluminescence reagent was ordered from Bio-Rad. 

 MTS assay. Cells (2 × 103 per well) were seeded in a 96-well plate for 24 h followed by indicated 

chemical treatments. At the endpoint, 20 μL MTS solution was added per well. The plate was incu-

bated for 2 h at 37 °C with 5% CO2 before measurement of the absorbance at 490 nm (A490) using a 

ELISA reader (Bio-Rad). Data are represented by A490 values with background correction and nor-

malized with the corresponding control group (DMSO) as 100%. 

 Clonogenic assay. Cells (3 × 104 per well) were seeded in a 6-well plate for 24 h followed by 

the indicated chemical treatments for 72 h. The remaining cells were then trypsinized and seeded in 

a new 6-well plate (500 per well) for 14 days. The colonies were fixed with 100% methanol overnight 

and stained with 1% crystal violet solution. 

 Western blot analysis. Cells were lysed in buffer containing 50 mM Tris-HCl (pH 7.4; Bioman), 

150 mM NaCl, 1% NP40, 0.1% SDS (Bioshop), and 0.5% sodium deoxycholate (Sigma) with a pro-

tease inhibitor (16012540, Bioshop) and protein phosphatase inhibitor cocktail (FC0050-0001, Bi-

onovas) immediately added before use. After sonication, protein concentrations were determined us-

ing the BCA method (23225, Thermo Fisher). Each sample with equal protein concentrations was 

subjected to SDS-PAGE and transferred to a PVDF membrane. Nonspecific binding was blocked 

with 5% nonfat milk. After immunoblotting with the desired primary antibodies, membranes were 

incubated with appropriate secondary antibodies. Protein bands were detected using ECL reagent. 
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