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USP32 regulates late endosomal transport
and recycling through deubiquitylation of Rab7

Aysegul Sapmaz1'2'3, llana Berlin"23, Erik Bos3, Ruud H. Wijdeven1'2'3, Hans Janssen', Rebecca Konietzny4'6,
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Jacques Neefjes'?3 & Huib Ovaa'??3

The endosomal system is a highly dynamic multifunctional organelle, whose complexity is
regulated in part by reversible ubiquitylation. Despite the wide-ranging influence of ubiquitin
in endosomal processes, relatively few enzymes utilizing ubiquitin have been described to
control endosome integrity and function. Here we reveal the deubiquitylating enzyme (DUB)
ubiquitin-specific protease 32 (USP32) as a powerful player in this context. Loss of USP32
inhibits late endosome (LE) transport and recycling of LE cargos, resulting in dispersion and
swelling of the late compartment. Using SILAC-based ubiquitome profiling we identify the
small GTPase Rab7—the logistical centerpiece of LE biology—as a substrate of USP32.
Mechanistic studies reveal that LE transport effector RILP prefers ubiquitylation-deficient
Rab7, while retromer-mediated LE recycling benefits from an intact cycle of Rab7 ubiquity-
lation. Collectively, our observations suggest that reversible ubiquitylation helps switch
Rab7 between its various functions, thereby maintaining global spatiotemporal order in the
endosomal system.
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ARTICLE

he endocytic pathway guards cellular homeostasis through

a combination of controlled interactions with the extra-

cellular world and regulated disposal of obsolete or
harmful materials'. Originating at the cell periphery, this pathway
operates via a complex network of progressively maturing carrier
vesicles?. As early endosomes (EEs) move towards the interior of
the cell, they acquire late endosomal (LE) characteristics and
become poised to deliver select cargoes for degradation in the
lysosome?. To protect the endosomal system from the ravages of
toxic lysosomal contents, the LE has evolved a gatekeeper func-
tion predicated on packaging cargoes destined for degradation
into intraluminal vesicles (ILVs). The resulting multi-vesicular
body (MVB) serves both as a platform for commitment of cargoes
for degradation and as the last point of retrieval. In this way, the
MVB constitutes the control center of the endosomal system,
with its morphologic and functional integrity bearing directly
upon the vesicular network as a whole.

Despite—or perhaps precisely because of—its central position
within the endosomal system, cargo and membrane dynamics at
the MVB are highly complex, and the manner in which different
sorting and trafficking pathways are integrated to best serve its
many functions is poorly understood. Over the years, reversible
post-translational modification with ubiquitin, orchestrated
through the opposition between ligases and deubiquitylating
enzymes (DUBs)>%, has become recognized as a powerful tool for
spatial and temporal control of multi-protein complex assembly’
central to endosome biogenesis and function®. This concept is
best illustrated by the profound dependence of endosomal sorting
complexes required for transport (ESCRT) on various ubiquitin
signals, including ubiquitylation of cargoes as well as ESCRT
proteins themselves®!0, Cargo sorting to various destinations
is further linked to vesicle trafficking carried out by small
membrane-associated GTPases. These molecular switches, cou-
pled to discrete vesicular maturation states, direct endosomal
transport, fusion, and fission events!!2, ensuring that this
diverse system of vesicles moves and functions in an orderly
fashion. Ubiquitylation of several endosomal GTPases has been
reported, including EE-bound Rab5!? and LE/MVB-associated
Rab7!4. Particularly in the case of Rab7—the principal director of
membrane traffic to and from proteolytic compartments!>—the
way(s) in which addition and removal of ubiquitylation inform
various functions of this GTPase remain obscure. Once Rab7
takes residence on the limiting LE membrane, it can recruit a
variety of effector proteins to facilitate diverse processes. These
effectors include Rab7-interacting protein (RILP) utilized for
anterograde vesicle transport (toward the nucleus)!® and pleck-
strin homology domain-containing family M member 1, along
with the associated homotypic fusion and protein sorting com-
plex, for fusion!7-18, In addition to transport, Rab7 can also direct
recycling from the LE membrane to the trans-Golgi network
(TGN) and the plasma membrane by cooperating with the ret-
romer complex!®20. This begs the question of how Rab7 toggles
between anterograde transport and recycling without plunging
the MVB into chaos.

In this study, aiming to decipher this conundrum, we consider
whether yet undiscovered layers of regulation of ubiquitin
dynamics at the MVB membrane influence key decisions in this
organelle’s biology. Ubiquitylation of Rab7 has recently been
shown to promote its association with the retromer and result in
extension of tubules from the limiting membrane of the MVB in
opposition to ILV formation!4. Notably, however, no DUB has
previously been reported to target Rab7. In a depletion screen
for human DUBs affecting surface expression of the LE cargo
receptor major histocompatibility class II (MHC-II), we identify
USP32 as a powerful regulator of late compartment localization,
morphology, and function. Using proteome-wide ubiquitin

remnant profiling, we reveal Rab7 to be a key substrate of USP32
and go on to show that USP32 supports Rab7 functions in
transport and recycling from the MVB by two different
mechanisms. Taken together, our results underscore the nuanced
ways in which reversible ubiquitylation can contribute to the
ordered complexity of endosomal membrane dynamics.

Results

DUB screen for endosomal regulators identifies USP32. In
pursuit of ubiquitin-dependent mechanisms in the regulation of
endosomal processes, we performed a small interfering RNA
(siRNA)-based screen for DUBs affecting surface levels of MHC-
II receptor—a molecule known to traverse the endosomal tract,
accumulating in MVBs?!—in human melanoma MelJuSo cells
(Fig. 1a). A number of DUBs previously implicated in endosomal
organization and cargo trafficking were picked up with this
approach??-24, including a key endocytic regulator USP8§2°:26,
depletion of which resulted in lower levels of MHC-II at the cell
surface (Fig. la). After USP8, the top hit incurring diminished
MHC-II surface levels was USP32 (Fig. 1a, Supplementary Fig. 1a,
b)—a DUB from the same catalytic family whose cellular function
was yet to be described. We hypothesized that DUBs whose loss
results in lower receptor surface levels are likely to constitute
regulators of endocytic traffic downstream of internalization.
To identify these, we further selected our DUB hits on the basis
of two intracellular criteria: alterations in (i) distribution and
(i) size of endosomes (Supplementary Fig. 1c, d), taking advan-
tage of the expansive endosomal system in MelJuSo cells, neatly
organized into a crowded perinuclear (PN) vesicle cloud and
a sparse peripheral contingent?4. Once again, a striking pheno-
type was observed with knockdown of USP32 characterized
by profound dispersion and swelling of endosomes carrying
MHC-II (Fig. 1b-d; Supplementary Fig. 1c, d). Swollen MHC-II
endosomes were predominantly late in character, as evidenced
by their positivity for the LE marker CD63 (as opposed to the
EE marker EEAl), but also contained mannose-6-phosphate
(M6PR) receptor (Fig. 1b-d; Supplementary Fig. 1e), which cycles
between endosomes and TGN?7-28. Taken together, altered loca-
lization, size, and cargo profile of endosomes affected by the
absence of USP32 pointed to broad-spectrum defects in the late
compartment.

To test the functionality of the endocytic pathway and its
proteolytic competency under suppression of USP32 activity,
we examined ligand-mediated trafficking and degradation of
the epidermal growth factor (EGF) receptor (EGFR). In HeLa
cells treated with control siRNAs, following ligand stimulation,
activated EGFR trafficked predominantly to the PN cloud?4,
where efficient maturation of its carrier endosomes occurs
(Fig. 2a, ¢). These attributes were disrupted under conditions of
USP32 knockdown, as evidenced by dispersion of the endosomal
compartment induced by EGF stimulation (Fig. 2a, b) and
redistribution of mature EGF-positive structures (i.e., those
overlapping with the LE marker CD63) towards the periphery
of the cell (Fig. 2a-c). Because proteolytic endosomes and
lysosomes are known to largely reside in the PN region??, we
hypothesized that, in the absence of USP32, encounter of
activated EGFR with the principal proteolytic enzyme cathepsin
D could be hampered. Indeed, a large proportion of EGF-positive
endosomes were devoid of cathepsin D in cells depleted of
USP32, unlike those in control cells (Fig. 2d, e). Consequently,
ligand-mediated degradation of EGFR was strongly inhibited by
loss of USP32, leading to prolonged receptor activation (Fig. 2f, g;
Supplementary Fig. 2). Taken together, these results implicate
USP32 activity in the regulation of the endosomal system’s
architecture, dynamics, and function.
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Fig. 1 Deubiquitylating enzyme (DUB) screen reveals USP32 as a regulator of endosome biology. a Small interfering RNA (siRNA)-based screen for DUBs
affecting major histocompatability class Il receptor (MHC-II) surface levels. MelJuSo cells transfected with siRNAs targeting all human DUBs were
analyzed for surface expression of peptide-loaded MHC-II by flow cytometry using monoclonal antibodies (L243-Cy3). Z-scores of DUBs whose depletion
resulted in elevated (Z > 3) or diminished (Z < —3) levels of MHC-II on the cell surface are plotted, n = 3 biologically independent samples. Effect of USP32
depletion is highlighted by a red box. b Effect of USP32 loss on the size and distribution of endosomes. Representative confocal overlays of fixed MelJuSo
cells transfected with either control (siCtrl) siRNA or oligo #2 targeting USP32 (siUSP32_2) and immunostained against MHC-II (green) and vesicular
markers or cargoes (magenta) are shown. EEAT: early endosome (EE) marker, CD63 late endosome (LE)/multi-vesicular body (MVB) marker, mannose-6-
phosphate receptor (M6PR): trans-Golgi network (TGN) cargo. Transferrin receptor (TrfR): recycling endosome (RE) marker; PM: plasma membrane. Cell
and nuclear boundaries are demarcated with dashed white lines, scale bars =10 um. Zooms Z1-Z3 are placed within a schematic of cargo flow.

¢ Percentage cells harboring enlarged MHC-II-positive vesicles, n =3 independent experiments. Immunoblot of USP32 protein expression in response to
depletion using two independent siRNA oligos (siUSP32_1 and siUSP32_2) is provided with actin as loading control. d Vesicle dispersion expressed as
fractional distance of MHC-II pixels (black open circles) along a straight line from the center of nucleus (0) to the PM (1.0). Red lines: mean, n=2
independent experiments. Total number of cells analyzed per condition appears above each bar/scatter. Bar graphs report mean of independent sample
values (black circles), error bars reflect s.d. All significant values were calculated using Student’s t test: **p < 0.01, ***p < 0.001, NS = not significant.
See also Supplementary Fig. 1
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Fig. 2 Loss of USP32 disrupts cargo trafficking and lysosomal proteolysis. a-e Effect of USP32 depletion on ligand-mediated trafficking and degradation of
epidermal growth factor (EGF) receptor (EGFR). a Representative confocal z-projections of fixed Hela cells transfected as indicated, starved and stimulated
with 100 ng/mL EGF-555 (white) for 120 min. Perinuclear (PN) and peripheral (PP) insets show overlays of EGF (green) with immunostained CD63
(magenta). b EGF-positive pixel distribution expressed as fractional distance along a straight line from center of nucleus (0) to the PM (1.0). Red lines:
mean, n = 2 independent experiments. ¢ Colocalization of EGF with CD63 in PN (left), PP (middle), and overall (right) in control cells (siCtrl, white bars) vs.
those depleted of USP32 (siUSP32_2, gray bars), n= 2 independent experiments. d Representative confocal images of fixed Hela cells transfected as
indicated, starved and stimulated with EGF-555 (white) for 120 min. PN and PP insets show overlays of EGF (magenta) with immunostained cathepsin D
(green). e Colocalization of EGF with cathepsin D in control cells (siCtrl, white bars) vs. those depleted of USP32 (siUSP32_2, gray bars), n = 3 independent
experiments. All colocalization plots report Mander's overlap quantified from multicell images (black circles). Cell and nuclear boundaries are depicted in
dashed magenta and white lines, respectively. Scale bars =10 pm. f, g Effect of USP32 depletion on ligand-induced degradation of EGFR. f Lysates from
Hela cells transfected as indicated, serum starved, and stimulated with EGF (25 ng/mL) for 0, 30, 60, or 120 min were analyzed by immunoblot against
total EGFR (rabbit anti-EGFR) and phosphorylated (pY) EGFR (mouse anti-phosphotyrosine 4G10), with actin as a loading control. g Total (left graph,
relative to t =0) and activated (right graph, pY relative to t =30) EGFR remaining at 120 min following stimulation in control cells (siCtrl) vs. those
depleted of USP32 using different siRNA oligos (siUSP32_2 and siUSP32_3 + 4), n =3 independent experiments. Bar graphs report mean of independent
measurements (black circles), error bars reflect £s.d. Total number of cells analyzed per condition appears above each bar/scatter. All significance
calculated using Student's t test: *p < 0.05, **p < 0.01, and ***p < 0.001. See also Supplementary Fig. 2
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USP32 is a membrane-associated catalytically active DUB. To
understand the how USP32 functions in endosome biology, we
began by investigating its cellular localization. Endogenous as well
as ectopically expressed USP32 was found to associate with the
perinuclear TGN and highly dynamic peripheral vesicles (Fig. 3a;
Supplementary Fig. 3a, b and Movies 1, 2). We therefore exam-
ined the interplay between the LE and TGN as a function of
USP32. While in normal cells frequent transient interactions

between these compartments were readily observed (Supple-
mentary Movie 3 and 4), loss of USP32 caused TGN-derived
membranes to remain stuck on enlarged acidified endosomes
(Supplementary Movie 5, 6). Similar findings were observed for
depletion of USP8 (Supplementary Movie 7, 8), which has pre-
viously been implicated in regulating LE-to-TGN traffic®. The
vesicular pathway connecting the LE with the TGN is central to
the biogenesis of proteolytic organelles and is frequented by the
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Fig. 3 Catalytic activity of USP32 supports endosomal system'’s architecture. a Localization of USP32 to the trans-Golgi network (TGN). Left panels:
representative confocal images of fixed MelJuSo cells stably expressing TGN46-GFP (green) and immunostained against endogenous USP32 (magenta).
Cell and nuclear boundaries are demarcated with dashed white lines, scale bars =10 um. Right panels: Electron micrographs of sections co-labeled with
anti-USP32 (10 nm gold) and anti-GFP (15 nm gold), scale bar = 0.25 um. See also Supplementary Fig. 3 and Movies 1-8. b Top panel: schematic
representation of USP32 domain organization: EF, calcium-binding domain; DUSP, domain found in ubiquitin-specific proteases (USP); UBL, ubiquitin-like
domain; USP, catalytic domain harboring the principal catalytic residue C743. Bottom panel: in vitro cleavage of di-ubiquitin linkages (M1, K6, K11, K27,
K29, K33, K48, and K63) by the catalytic domain (CD) of USP32. See also Supplementary Fig. 4. ¢ DUB activity-based probe assay performed on lysates
of HEK293T cells expressing USP32-HA or catalytic mutant C743A-HA in the absence (—) or presence (+) of Cy5-Ub-Prg probe. Reaction products
were analyzed using in-gel fluorescence scanning followed by immunoblot against HA; * indicates USP32-HA labeling. d, e Rescue of USP32 depletion
phenotypes of LE enlargement and dispersion by re-expression of siUSP32_2-resistant USP32-HA vs. C743A-HA relative to empty vector.

d Representative confocal images of fixed MelluSo cells transfected as indicated and immunostained against major histocompatibility class Il (MHC-II)
(green) and HA (magenta) are shown with the corresponding zooms. Cell and nuclear boundaries are demarcated with dashed white lines. Arrows point to
HA-positive puncta juxtaposed to endosomes, scale bars =10 um. e Enlargement and dispersion of MHC-II-positive vesicles reported as % cells. Bars
depict mean of n = 3 independent experiments (black circles), error bars reflect +s.d., total number of cells analyzed per condition appears above each bar.
Immunoblot against USP32 is shown with actin as a loading control. All significance was calculated using Student's t test: ***p < 0.001, NS = not significant
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proteolytic enzyme carrier mannose-6-phosphate receptor
(M6PR)3%31. In control cells pulsed with an antibody recognizing
ME6PR, efficient trafficking to the PN region was observed during
the chase period. By contrast, in cells depleted of USP32, anti-
M6PR remained dispersed in vesicular structures (Supplementary
Fig. 3¢, d), implying a defect consistent with mislocalization of
M6PR to enlarged endosomes described in Fig. 1b, d. Taken
together with perturbations in trafficking and downregulation of
EGFR (Fig. 2), these results position USP32 at a crossroads of
multiple vesicular pathways converging at the MVB.

To begin dissecting the nature of USP32 DUB function and its
role in endosome biology, we performed biochemical character-
ization of USP32 catalytic activity. Both the full-length enzyme
and its C-terminal fragment harboring the USP domain readily
cleaved mono- and di-ubiquitin substrates in vitro (Fig. 3b;
Supplementary Fig. 4a, b)32. Although USP32 was recently
reported to interact preferentially with K6- and K29-linked
ubiquitin chains33, our analysis of all ubiquitin linkage types (M1,
K6, K11, K27, K29, K33, K48, and K63) did not reveal striking
cleavage preferences by this DUB (Fig. 3b; Supplementary
Fig. 4b). As expected, wild-type USP32, but not its catalytic
mutant C743A, ectopically expressed in mammalian cells, labeled
with a DUB activity-based probe (Fig. 3c), and this catalytic
determinant proved necessary to afford rescue of USP32

depletion with respect to both size and localization of endosomes
carrying MHC-II (Fig. 3d, e). Unable to rescue loss of the
endogenous enzyme, catalytically inactive USP32-C743A loca-
lized to discrete patches on enlarged MHC-II vesicles (Fig. 3d, e),
suggesting that its activity likely targets endosomal constituents.

LE GTPase Rab7 is a substrate of USP32. To identify relevant
USP32 substrates, we performed proteome-wide ubiquitome
analyses under conditions of varying USP32 abundance. Stable
isotope labeling of amino acids in cell culture (SILAC), followed
by purification using antibodies recognizing Lys-e-Gly-Gly rem-
nants of ubiquitylated proteins subjected to trypsin digestion34,
was used to profile and compare ubiquitomes derived from
different samples (Fig. 4a). Two complimentary perturbations
were tested: (i) depletion and (ii) overexpression of USP32
(performed in MelJuso or HeLa cells, respectively). Given our
interest in endosomes, we focused further analysis of the data sets
on proteins known to function in this pathway. Interestingly,
changes in the ubiquitylation status of the LE master regulator
small GTPase RAB7A, henceforth referred to simply as Rab7,
were detected in response to altered USP32 abundance. Elevated
ubiquitylation of its lysine 191 was observed with USP32 deple-
tion using the SILAC strategy (Fig. 4b; Supplementary Fig. 5a),
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Fig. 4 Ubiquitome analysis reveals small GTPase Rab7 as a substrate of USP32. a Schematic representation of stable isotope labeling of amino acids in cell
culture (SILAC)-based quantitative mass spectrometry (LC-MS/MS) workflow used to compare ubiquitylated proteomes of b control MelJuSo cells (siCtrl,
green) vs. those where USP32 was knocked down (KD, siUSP32_2, magenta) and ¢ Hela cells overexpressing (OE) USP32-HA (magenta) vs. vector
control (green). Cell growth media types: KORO, light; K4R6, medium; K8R10, heavy. IP: immunoprecipitation, m/z: mass to charge ratio. b, ¢ Volcano
plots comparing abundance of detected peptides carrying a GlyGly (GG) modification expressed as Log 2 ratios of b USP32 knockdown (siUSP32_2, KD)
vs. control (siCtrl, CTRL), n=1 SILAC sample set independently validated using label-free quantitation (LFQ) with n = 2 biologically independent samples
or ¢ USP32-HA overexpression vs. vector control (Ctrl), n=1 SILAC sample set. Small GTPases implicated in vesicular traffic whose modified peptides
were detected are labeled according to their respective Log 2 ratios: magenta >1; green <—1; blue between —1 and 1, not significant. Analysis was performed
using MaxQuant and Perseus software tools as described in the Methods under ubiquitome analysis. All mass spectrometry (MS) data can be accessed
via the PRIDE repository (PXD011899). d Ubiquitylation status of GFP-Rab7 vs. GFP-Rab5 as a function of USP32 catalytic activity. GFP-Rabs,
immunoprecipitated (IP) from HEK293T cells coexpressing HA-Ub and either USP32, C743A, or neither, was assessed by immunoblot against HA; WCL:

whole cell lysate. See also Supplementary Fig. 5
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and this alteration was confirmed in a label-free setting (PRIDE
dataset identifier PXD011899). Conversely, ubiquitylation on the
same residue diminished in the presence of overexpressed USP32
(Fig. 4¢). To confirm Rab7 as a bona fide substrate of USP32, we
performed an array of validation experiments. A discrete pattern
of mono- and/or di-ubiquitin conjugates was observed on a
proportion of affinity isolated GFP-Rab7 ectopically expressed in
the presence of HA-tagged ubiquitin (HA-Ub). This modification
strongly diminished upon coincubation with purified USP32, but
not its family member USP30 (Supplementary Fig. 5b-d).
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Furthermore, coexpression of GFP-Rab7 in cells with wild-type
USP32, but not its enzymatically dead mutant C743A, ablated
ubiquitylation on GFP-Rab7 when compared to vector control
(Fig. 4d; Supplementary Fig. 5e). In contrast to Rab7 (and in
agreement with the proteomic analysis above), no deubiquityla-
tion of GFP-Rab5 by USP32 was observed under the same
reaction conditions (Fig. 4d; Supplementary Fig. 5e).

USP32 promotes endosomal transport via the Rab7/RILP axis.
Having established that USP32 can deubiquitylate Rab7 in vitro
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Fig. 5 USP32 regulates the Rab7-positive endosome. a Effect of USP32 depletion on Rab7-positive and Rab5-positive endosomes. Top panels:
representative confocal images of endogenous Rab7 (white). Boxed region perinuclear (PN) and peripheral (PP) zoom overlays of Rab7 (green) highlight
colocalization with late endosome (LE) marker LAMP1 (magenta). Bottom panels: representative confocal images of endogenous Rab5 (white). Boxed PN
and PP region overlays of Rab5 (green) highlight colocalization with EE marker EEAT (magenta). Cell and nuclear boundaries depicted in dashed magenta
and white lines, respectively. Scale bars =10 um. b Rab pixel distribution expressed as fractional distance along a straight line from center of nucleus (0) to
the PM (1.0). Red lines: mean, n = 2 independent experiments. ¢ Alterations in LE morphology in response to USP32 depletion as visualized by correlative
light and electron microscopy (CLEM). Overlays of GFP-Rab7 fluorescence (green) and transmission electron micrographs (TEM) are shown, scale bars =
0.25 um. d Comparison of GFP-Rab7-positive LE profiles in control cells (siCtrl, black line) vs. those depleted of USP32 (siUSP32_2, red line), x-axis: LE
diameter in um, y-axis: number of LE profiles. See also Supplementary Fig. 6. e LE enlargement (white bars) and/or dispersion (gray bars) in MelluSo cells
depleted of the indicated GTPase (% cells), n= 4 or 5 independent experiments as indicated. See also Supplementary Fig. 7a. f Effects of USP32 depletion
on cellular abundance of endogenous Rab7, as assessed by immunoblot. g Analysis of membrane-bound vs. cytosolic fractions of GFP-Rab7 stably
expressed in MelluSo cells with actin and transferrin receptor (TrfR) as loading controls for the cytosolic and membrane fractions, respectively. h Ratio of
membrane-bound/cytosolic GFP-Rab7 in control cells (siCtrl, white bars) vs. those depleted of USP32 (siUSP32_2, gray bars) normalized to siCtrl, n=3
independent experiments. i Schematic illustration of consequences of USP32 depletion on Rab7 membrane-to-cytosol equilibrium. Bar graphs report mean
of independent measurements (black circles), error bars reflect +s.d. Where applicable, total number of cells analyzed per condition appears above each

bar/scatter. All significant values were calculated using Student's t test: *p < 0.05, ***p <0.001, NS = not significant

and in situ, we sought to understand the interplay between USP32
and Rab7 in endosome biology. Depletion of USP32 incurred
dispersion and swelling of vesicular structures decorated with
endogenous Rab7 (Fig. 5a, b; Supplementary Fig. 5f), similar to
the effects observed for MHC-II and CD63 (Fig. 1b-d). These
phenotypes were not seen for endosomes marked by Rab5
(Fig. 5a, b; Supplementary Fig. 5g). Besides the obvious increase
in size (Fig. 5c, d; Supplementary Fig. 6a), Rab7-positive LEs
affected by loss of USP32 appeared to exhibit abnormal
intraluminal content (Supplementary Fig. 6b), consistent with
aberrant delivery/retrieval of materials to/from the MVB. Addi-
tionally, depletion of Rab7 itself was associated with both mis-
localization and enlargement of vesicles carrying MHC-II (Fig. 5e;
Supplementary Fig. 7a), implying that Rab7 and USP32 regulate
a common biological process. By contrast, loss of Rab5 did not
result in swollen MHC-II endosomes (Fig. 5e; Supplementary
Fig. 7a), indicating that late compartment swelling is not a general
phenotype of endosomal Rab deficiency. Notably, depletion of
USP32 did not alter cellular abundance of endogenous Rab7
(Fig. 5f), indicating that the phenotypes caused by USP32 loss
are not due to ubiquitylation-dependent degradation of its
substrate. On the other hand, silencing USP32 resulted in the
accumulation of membrane-bound Rab7, as evidenced by ele-
vated membrane-to-cytosol ratio relative to the control (Fig. 5g,
h). This suggested that deubiquitylation of Rab7 by USP32 pro-
motes release of Rab7 from the membrane to the cytosol, where a
new functional cycle of this Rab can commence (Fig. 5i).

Based on the observations described above, we hypothesized
that diminished availability of cytosolic Rab7 could inhibit Rab7-
dependent LE dynamics. We therefore followed the behavior of
Rab7-positive endosomes as a function of USP32 in living cells.
As expected, under control conditions, vesicles carrying GFP-
Rab7 partitioned between a crowded and relatively immobile PN
vesicle cloud and a sparsely populated but highly motile
peripheral fraction (Fig. 6a—c; Supplementary Movie 9). Loss of
USP32 disrupted this PN/PP dichotomy and resulted in an
inhibition of LE motility (Fig. 6a—c; Supplementary Movie 10). To
test whether these abnormalities arise from insufficient deubi-
quitylation of Rab7, we examined the ability of its ubiquitylation-
deficient mutant to rescue the above phenotype. In addition to
mutating USP32 target residue K191 to R, we also mutated
neighboring K194 to avoid potential “hopping” of ubiquitin
conjugation. The resulting GFP-Rab7-2KR exhibited appreciably
less ubiquitylation as compared to its wild-type counterpart and
was largely insensitive to coexpression of USP32 (Supplementary
Fig. 7b, c¢). Expression of GFP-Rab7-2KR partially relieved
disturbances to the LE compartment organization (dispersion)

and dynamics (motility) sustained under USP32 depletion, as
evidenced by the restoration of the PN pool of Rab7-positive
LEs and improvement in their motility (Fig. 6a—c; Supplementary
Movies 11, 12).

We also noticed that in the absence of USP32 knockdown,
expression of GFP-Rab7-2KR exaggerated PN clustering of LEs
(Fig. 6a—c), implying that ubiquitylated Rab7 may limit minus-
end-direct LE transport. In other words, LE transport toward
the nucleus could be preferentially mediated by non-ubiquitylated
Rab7. To test this, we examined whether modulating ubiquityla-
tion on Rab7 influences interactions with its effector RILP, known
to recruit the dynein motor to LE membranes for transport
toward the microtubule minus end (ie. into the PN region).
Indeed, RILP co-isolated better with Rab7-2KR as compared
to wild-type Rab7 (Fig. 6d, e). On the other hand, depletion
of USP32 slightly diminished complex formation between RILP
and wild-type Rab7 (Fig. 6f; Supplementary Fig. 7d). Taken
together, these findings demonstrate that RILP favors Rab7 whose
C-terminal lysine(s) are not modified with ubiquitin, providing
a rationale for how Rab7 mutant lacking these moieties can
partly restore LE localization and dynamics in cells compromised
for USP32.

USP32 promotes membrane recycling from the Rab7 endo-
some. Among many roles of Rab7 at the LE/MVB??, facilitated by
its canonical effectors such as RILP, this GTPase is also known to
partner with the retromer complex to regulate recycling away
from late compartments3©-38, In agreement with a previous
report3?, we found that USP32 interacts with VPS35, the principal
cargo-selective component of the retromer, and partly localizes to
structures positive for both VPS35 and Rab7 (Supplementary
Fig. 8a, b). Additionally, silencing either VPS35, or its retromer
partner VSP26, recapitulated LE dispersion and swelling observed
with disruption of USP32 activity (Fig. 7a, b) similar to the effects
observed for silencing of Rab7 (Fig. 5e; Supplementary Fig. 7a).
As in the case of Rab7, depletion of USP32 had no effect on
protein levels of either VPS35 or VPS26 (Fig. 7¢) and, taken
together with the observations above, signaled that the retromer
complex and USP32 likely function in the same pathway with
respect to membrane dynamics at the LE/MVB.

We next examined whether USP32 regulates the interplay
between Rab7 and the retromer complex on endosomes.
Depletion of USP32 gave rise to swelling of the VPS35-positive
vesicular compartment and accumulation of VPS35 on endo-
somes carrying MHC-II (Fig. 7d, e), suggesting that increased
ubiquitylation on Rab7 stabilizes VPS35 on endosomes. This
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supposition was reinforced by the observation that in cells
depleted of endogenous Rab7, endosomes marked by GFP-Rab7-
2KR exhibit less contact with structures harboring VPS35, as
compared to those with wild-type GFP-Rab7 under the same
conditions (Supplementary Fig. 8c-e). To probe whether
ubiquitylation of Rab7 affects its relationship with VPS35, we
fused a promiscuous biotin ligase domain BirA*’ to the N
terminus of Rab7 or its mutant 2KR (following the GFP tag) and
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co-expressed these fusion constructs with RFP-VPS35. Following
biotin addition, biotinylation of VPS35 was detected in the
presence of GFP-BirA-Rab7 above the GFP-BirA control (Fig. 7f),
which diminished when GFP-BirA-2KR was expressed instead
(Fig. 71, g). Conversely, depletion of USP32 improved biotinyla-
tion of VPS35 in the presence of GFP-BirA-Rab7 (Fig. 7h;
Supplementary Fig. 8f). In the same experiment, labeling of
endogenous USP32 with biotin was also observed, demonstrating
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Fig. 6 Deubiquitylation of Rab7 by USP32 promotes late endosome transport. a Late endosome (LE) organization and dynamics as a function of Rab7
ubiquitylation status. Top panels: representative confocal images of live MelJuSo cells stably expressing GFP-Rab7 or GFP-Rab7-2KR (GFP-2KR) (white)
taken at the start of time-lapse, t = 0. Scale bars =10 um. Bottom panels: vesicle displacement rates depicted on a rainbow color scale (blue: immobile; red:
maximum mobility per time interval) tracked over 250 s at 5s per frame. Cell and nuclear boundaries are depicted in dashed white lines, boxed zoom-ins
highlight select perinuclear (PN) and peripheral (PP) regions. b Vesicle dispersion expressed as fractional distance of GFP pixels along a straight line from
center of nucleus (0) to the PM (1.0). Red lines: mean, n = 2 independent experiments. ¢ Quantification of vesicle motility calculated using TrackMate for
Fiji (for details see the Methods section), n =3 independent experiments. Plots report mean velocities of Lysotracker-positive structures calculated
from multicell time-lapses of control cells (siCtrl, open circles) vs. those depleted of USP32 (siUSP32_2, closed circles). See also Supplementary Fig. 7b, ¢
and Movies 9-12. d-f Co-immunoprecipitation (Co-IP) of Rab7-interacting protein (RILP) with GFP-Rab7 as a function of Rab7 ubiquitination status.

d Immunoblots of Co-IP from HEK293T cells transfected and treated as indicated. e Quantification of Co-IP for HA-RILP with GFP-Rab7 (white bars) vs.
GFP-2KR (gray bars), n =3 independent experiments, is shown along with a schematic summary. f Quantification of Co-IP for HA-RILP with GFP-Rab7
from control HEK293T cells (siCtrl, white bars) vs. those depleted of USP32 (siUSP32_2, gray bars) normalized to control, n = 3 independent experiments.
See also Supplementary Fig. 7d. Bar graphs report mean of independent measurements (black circles), error bars reflect +s.d. Where applicable,

total number of cells analyzed per condition appears above each bar/scatter. All significance was calculated using Student's t test: *p < 0.05, **p < 0.01,

***p <0.001, NS = not significant

that USP32 is in complex with Rab7 (Supplementary Fig. 8f).
Collectively, these findings suggest that ubiquitylated Rab7
attracts VPS35 more so than its unmodified counterpart, and
that in the absence of deubiquitylation by USP32, the retromer
remains stuck on the Rab7-positive compartment.

If ubiquitylated Rab7 draws in the retromer machinery, we
expected that lack of cognate deubiquitylation would then delay
fission of tubules recycling from Rab7-positive compartments.
Zooming in on the time-lapses of GFP-Rab7/-2KR cells, we noted
that in the absence of USP32 buds and tubules emanating from
GFP-Rab7-positive LEs frequently failed to separate from their
parent endosome—a phenotype rarely observed in control cells
(Fig. 8a; Supplementary Movies 13, 14). Notably, neither failure
in tubule resolution (Fig. 8b; Supplementary Movies 15, 16), nor
morphological aberrations of MVBs incurred in the absence of
USP32 (Fig. 8¢, d; Supplementary Fig. 9a, b), could be rescued by
GFP-Rab7-2KR. Moreover, problems with tubule fission in cell
expressing this Rab7 mutant were even observed in the presence
of USP32 (Fig. 8b; Supplementary Movies 15, 16), implying that
ubiquitylation-deficient Rab7 is unable to support normal
membrane retrieval from the MVB. Collectively, these results
illustrate that both elevated as well as insufficient levels of Rab7
ubiquitylation disrupt membrane retrieval from the LE. Taken
together with the observations on endosomal transport (Fig. 6),
these findings support a model wherein deubiquitylation of Rab7
by USP32 exerts multifaceted control over membrane dynamics
at the LE/MVB by promoting their intracellular motility as well as
enabling efficient recycling from these organelles (Fig. 9).

Discussion

Ubiquitylation provides key signals in endocytosis by directing
cargoes for lysosomal degradation and modulating the func-
tionality of sorting machineries*!. In turn, deubiquitylation offers
a necessary counterforce, imparting spatiotemporal controls to
these dynamic processes®2. Strikingly, out of nearly 100 human
DUBs, only a handful have been implicated in the endocytic
pathway®3. To evaluate whether additional DUBs are entrusted
with its upkeep, we performed a depletion screen, leading to the
identification of USP32 as a potent regulator of the endolysoso-
mal compartment. In cells lacking USP32, these vesicles exhibit
an array of architectural and functional defects, including aber-
rant localization, structure, and motility, as well as compromised
resolution of recycling tubules and attenuated cargo proteolysis.
Collectively, these deficiencies exemplify the multifaceted impact
of USP32 on membrane traffic and underscore the utility of
reversible ubiquitylation in the regulation of dynamic cellular
processes.

To determine the role of USP32 in endocytosis, a relevant
substrate of its DUB activity needed to be identified. Cellular
ubiquitome profiling revealed deubiquitylation of Rab7 by USP32
on K191, located in the solvent-exposed flexible C-terminal
region of the molecule. Despite the centrality of Rab7 to late
endosome biology and prior knowledge of its ubiquitylation on
K191444>, the consequences of this modification for Rab7 func-
tion have not been previously described. We now show that
ubiquitylation of Rab7, accumulated under conditions of USP32
depletion, inhibits LE motility and disrupts PN organization of
the late compartment. These phenotypes appear to stem from the
inhibition of Rab7-mediated minus end-directed transport, as its
effector RILP, responsible for recruiting the dynein motor, prefers
a Rab7 mutant lacking K191 (along with its neighbor K194). The
same mutant restores LE motility and PN localization of Rab7-
positive vesicles in the background of USP32 deficiency, lending
further support to the notion that (C-terminal) ubiquitylation of
Rab7 negatively impacts its function(s) in LE transport. Addi-
tionally, while USP32 does not appear to affect the overall
abundance of Rab7, its loss leads to the expansion of membrane-
associated Rab7 fraction. Together, these observations implicate
reversible Rab7 ubiquitylation in the fine-tuning of transport
complex assembly and modulation of this GTPase’s availability
for different functional states, as discussed below.

Besides its key role in transport, Rab7 also curates recycling
from the LE in collaboration with the retromer. While Rab7 is
known to recruit the retromer complex toward the LE
membrane3®-37, how these interactions are regulated to produce a
recycling vesicle remains unclear. It was recently suggested that
ubiquitylation of Rab7 on K38 positively affects retromer-
associated tubulation of LE membranes!'4. Structurally, N and C
termini of Rab7 (based on its yeast counterpart Ypt7) are closely
juxtaposed in space*®#7, which may allow modifications acquired
on K38 and K191 to collaborate. It has also been proposed that
coordinated cargo sequestration onto tubules ultimately displaces
Rab7 from the membrane, resulting in fission of recycling vesicles
from the mother endosome®8. Given that USP32 associates with
the retromer component VPS35%, it stands to reason that this
DUB’s activity may impinge at the Rab7/retromer juncture.
Indeed, we find that depletion of USP32 traps VPS35 on enlarged
LEs and inhibits resolution of buds and tubules emanating from
the Rab7-positive endosome, implying that deubiquitylation
serves to promote fission of these structures. Furthermore, unlike
in the case of LE transport, effects of USP32 loss on the recycling
from the Rab7 compartment could not be rescued by the
ubiquitylation-compromised Rab7-2KR mutant. Moreover, even
in the presence of USP32, cells expressing Rab7-2KR experience a
defect in tubule resolution, supporting a model wherein
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ubiquitylation and subsequent deubiquitylation of Rab7 work in
concert to mediate efficient recycling from the LE membrane.
Two other DUBs—USP8 and USP7—have also been implicated
in various aspects of retromer-associated extraction of cargoes
from endosomes?>4°, Our study reveals an additional regulatory
mechanism for this complex and dynamic process, exemplifying
the diversity of spatiotemporal regulation through reversible
ubiquitylation.

Collectively, our findings establish USP32 as a key component
of the molecular repertoire entrusted with guarding the health of
the endolysosomal system. Through investigating the effects of
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USP32 on its substrate Rab7, we show that Rab7-associated
endosomal processes depend not only on its GTP-based state but
also on its modification(s) with ubiquitin. In addition to Rab7-
driven processes of transport and recycling, the severe nature of
USP32 loss-of-function phenotypes leaves open the possibility
that additional facets of endosomal traffic and membrane
dynamics could be affected. Recently, a number of studies have
implicated USP32 in the pathogenesis of various cancers, as well
as Parkinson’s disease®?—>3. Since the latter, in particular, is
associated with defects in endosomal membrane dynamics®4, our
study may set the groundwork for understanding and ultimately
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Fig. 7 USP32 promotes retrograde trafficking by way of the retromer complex. a Effects of VPS35 and VPS26 depletion on the size and intracellular
distribution of late endosomes (LEs). Representative confocal images of fixed MelluSo cells transfected as indicated and immunostained against major
histocompatibility class Il (MHC-II) (white) are shown with the corresponding immunoblot analyses; targeting small interfering RNA (siRNA): (+); control
siRNA: (=). Cell and nuclear boundaries are depicted in dashed magenta and white lines, respectively. b Percent cells harboring dispersed (gray bars) and/
or enlarged (white bars) MHC-Il-positive vesicles in response to VPS35 and VPS26 depletion, n = 3 independent experiments. ¢ Effects of USP32 depletion
on cellular abundance of endogenous VPS35 and VPS26, as assessed by immunoblot. d, e Effects of Rab7 ubiquitylation status on the retromer
compartment. d Representative confocal images of fixed MelluSo cells transferred with the indicated siRNAs and immunostained for endogenous VPS35
(white). Boxed perinuclear (PN) and peripheral (PP) region overlays of VPS35 (magenta) with MHC-II (green) highlight retromer/LE interactions. Cell and
nuclear boundaries depicted in dashed magenta and white lines, respectively. e Colocalization between VPS35 and MHC-II in control cells (white bars) vs.
those depleted of USP32 (gray bars). Plots report Mander's overlap calculated from multicell images (black circles) taken from n =3 independent
experiments. See also Supplementary Fig. 8a-e. f-h Effect of Rab7 ubiquitylation status on its interaction with VPS35 as measured by proximity-based
labeling with biotin. f Biotinylation of RFP-VPS35 in the presence of free GFP-BirA (—), GFP-BirA-Rab7 (WT) vs. GFP-BirA-2KR (2KR) assayed in
HEK293T cells. g Biotinylation of RFP-VPS35 by GFP-BirA-Rab7 (white bar) vs. GFP-BirA-2KR (gray bar) above GFP-BirA background control, n=3
independent experiments. h Quantification of endogenous VPS35 and RFP-VPS35 biotinylation (combined) by GFP-BirA-Rab7 above GFP-BirA control in
control Hela cells (siCtrl, white bar) vs. those depleted of USP32 (siUSP32_2, black bar), n =5 independent experiments. Bar graphs report mean, error
bars reflect +s.d. See also Supplementary Fig. 8f. All significant values were calculated using Student's t test: **p < 0.05, ***p < 0.001, NS = not significant.

Sale bars =10 pm

targeting the involvement of USP32 in this context. On the other
hand, association of USP32 with diverse ailments suggests far-
reaching cellular activities, possibly independent of Rab7, and
elucidating these in the future could provide new avenues for
drug discovery.

Methods

Cell culture and transfections. MeljuSo (human melanoma) cells, kindly pro-
vided by Prof. G. Riethmuller (LMU, Munich), were cultured in Iscove’s modified
Dulbecco’s medium (IMDM) (Gibco) supplemented with 7.5% fetal calf serum
(ECS, Greiner). Human HEK293T (Cat# ATCC® CRL-3216™) and HeLa (Cat#
ATCC® CCL-2™) cell lines purchased from ATCC were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco) supplemented with 7.5% FCS. MelJuSo
cell lines stably expressing GFP-TGN46%4 or GFP-Rab7 were generated by clonal
expansion. All the cell lines used in the study were maintained at 37 °C and 5%
CO,, routinely scrutinized using morphology analysis and surface marker
expression and tested for mycoplasma.

For siRNA transfections, all oligos used in this study were purchased from
Dharmacon. Custom siRNA oligos used to target USP32 were as follows: sense-
siUSP32#1 CCAGUAAAGGCUACAUCAU and sense-siUSP32#2
GCCUCAGUUACGUGAAUAC®®. Additionally, the following pre-designed
siRNAs were used: siUSP32 pool of 4 (siGENOME Cat# MQ-006080-03-0002),
siUSP32_P1 (Cat# D-006080-05-0002), siUSP32_P2 (Cat# D-006080-22-0002),
siUSP32_P3 (Cat# D-006080-23-0002), and siUSP32_P4 (Cat# D-006080-24-
0002). siRab7 pool of 4 (siGENOME, Cat# MQ-010388-00-0002), siVPS26
(SMARTpool: siGENOME, Cat# M-013195-02-0005), siRab5 (SMARTpool:
siGENOME Cat# M-004009-00-0005), and siVPS35 (SMARTpool: siGENOME,
Cat# M-010894-00-0005). Rab7-UTR (sense-siRab7-UTR GCUUGGAGAGCU
CGGGAGAUU) was also used where indicated. Silencing was performed in
MelJuSo and HeLa cells as follows: for 24-well plate format, 50 uL siRNA (500 nM
stock) were incubated with 1 pL Dharmafect reagent 1 (Dharmacon) diluted in 49
pL medium without supplements (total volume of 100 uL transfection mix) with
gentle shaking for 20 min at room temperature (RT). A total of 15-25 x 103 cells
resuspended in 0.4 mL of growth medium without antibiotics from 37.5 x 103 cells
per mL suspension were added to transfection mixes to a total volume of 0.5 mL
per well and cultured for 3 days prior to further analysis. The reaction was scaled
using the same component ratios as follows: 35 mm dish—0.4 mL transfection mix
plus 1.6 mL cell suspension, 10 cm dish—2.0 mL transfection mix plus 8-10 mL cell
suspension.

For DNA transfections, MelJuSo and HeLa cells were seeded to achieve 40-50%
confluency the following day. Cells were transfected using Effectene (Qiagen, Cat#
301427) according to the manufacturer’s instructions and cultured for 18-24 h
prior to further analysis. HEK293T cells were seeded into 60 mm dishes to achieve
50-60% confluence the following day and transfected using PEI (polyethylenimine,
Polysciences Inc., Cat# 23966) as follows: 500 uL DMEM medium without
supplements was mixed with 36 uL PEI and 12 ug DNA, incubated at RT for 20
min, and added drop-wise to the cells for culturing for 18-24 h prior to further
analysis.

DNA constructs. USP32-GFP construct® was used as a template to amplify
USP32 for cloning into mGFP-N1 and 2xHA-N1 mammalian expression vectors
using BamHI/Sall restriction sites. For in vitro protein expression, USP32 full-
length (FL) and catalytic domain (CD) were cloned into pFastBacNKI-His-3C-
LIC-amp using ligation-independent cloning®®. HA-Ub%7, GFP-Rab7!6, HA-

RILP%8, and TGN46-GFP2# constructs have been previously described. Catalytically
inactive mutant USP32-C743A and C-terminal ubiquitylation-deficient mutant
GFP-Rab7-2KR were generated by site-directed mutagenesis (see below). GFP-
Rab5 was amplified by PCR using primer containing BamHI/HindIII restriction
site and cloned into Bgll/HindIII in pEGFP-C1. Plasmid pmr101A-hVPS26
(#17636, Addgene) was used as a template to amplify VPS26 and clone into mRFP-
N1 vector using BamHI/Sall restriction sites. VPS35 was amplified by PCR and
cloned into mRFP-C1 and mHA-C1 vectors using Asp718/BamHI restriction sites.
Rab7 and 2KR mutant were sub-cloned from pEGFP-C1 into pEGFP-BirA™-C1
vector using HindIII restriction. pEGFP-BirA™-C1 was generated by sub-cloning
the BirA" from pCDNA3.1 MCS-BirA"! (#36047, Addgene) using a mega primer
approach®. GFP-BirA” fragment was generated by two-step PCR and cloned into
PEGFP-C1 vector using Nhel/BglII restriction sites. For simplicity in labeling, BirA”
is referred to simply as BirA throughout the text and figures.

For site-directed mutagenesis, a mixture containing template DNA, 1x Pfu
buffer, 10 mM dNTPs, 125 ng forward and reverse primers containing the desired
mutation(s), 1 uL Turbo Pfu Polymerase (Agilent), 50 ng template DNA were
mixed with autoclaved MilliQ water up to 50 pL reaction volume, and subjected to
PCR using the following program: 95 °C for 2 min (95 °C for 50s; 60 °C for 1 min;
68 °C for 2 min/Kb)x18 cycles; 68 °C for 20 min; 4 °C forever. Forty microliters of
amplified product was incubated with 1 uL Dpnl (Thermo Fischer Scientific) for 2
h at 37°C and transformed into competent DH5a. All modified constructs were
verified by sequencing. For primer sequences refer to the Supplementary Table 1.
All primers were purchased from Sigma-Aldrich.

Antibodies and fluorescent dyes. The following antibodies against human
antigens were used for confocal microscopy: mouse anti-USP32 A-10 (Santa Cruz
Biotechnology, Cat# sc-374465; 1:100), rabbit anti-human HLA-DR (1:300) for
MHC-112!, mouse anti-TrfR (Invitrogen, Cat# 905963A; 1:100), mouse anti-EEA1
(BD Transduction Laboratories, Cat# 610457; 1:100), mouse anti-CD63 NKI-C3
(1:100)%, rabbit anti-VPS26 (Abcam, Cat# ab181352; 1:100), goat anti-VSP35
(Abcam, Cat# ab10099; 1:50), mouse anti-CI-M6PR (Abcam, Cat# ab2733; 1:100),
rabbit anti-Rab7 (Cell Signaling, Cat# 9367s; 1:100), rabbit anti-Rab5 (Cell Sig-
naling, Cat# 3547s; 1:100), mouse anti-LAMP1 (Santa Cruz Biotechnology, Cat#
sc-20011; 1:100), rabbit anti-cathepsin D (Abcam, Cat# ab75852, 1:50), and rat
anti-HA (Roche, Cat# 3F10, 1:300). For detection by confocal microscopy, primary
antibody incubation 1h at RT was followed by incubation with appropriate sec-
ondary goat anti-mouse Alexa 488/568/646 (Thermo Fisher Scientific, Cat# A-
11001/A-11004/A-21236, respectively), goat anti-rabbit Alexa 488/568/647
(Thermo Fisher Scientific, Cat# A-11036/A-31571/A-21245, respectively), donkey
anti-mouse Alexa 488/647 (Thermo Fisher Scientific, Cat# A-21202/A-31571,
respectively), donkey anti-rabbit Alexa 488/647 (Thermo Fisher Scientific, Cat# A-
21206/A-31573, respectively), donkey anti-goat Alexa 568 (Thermo Fisher Scien-
tific, Cat# A-11057), and donkey anti-rat Alexa 568 (Biotium, Cat# 20092) in a
1:300 dilution. Lysotracker DeepRed (Thermo Fisher Scientific, Cat# L12492,
1:10,000) was used for detection of acidified compartments by confocal microscopy
in live samples. One hundred nanograms per milliliter final concentration of EGF-
Alexa 555 (100 pg, Thermo Fisher Scientific, Cat# E35350) was used in endocytosis
assays. The following antibodies were used for detection of endogenous and
overexpressed proteins by Western blot analysis in a 1:1000 dilution: mouse anti-
USP32 (A-10) in (Santa Cruz Biotechnology, Cat# sc-374465), rabbit anti-VPS26
(Abcam, Cat# ab181352), goat anti-VSP35 (Abcam, Cat# ab10099), mouse anti-
VPS35 (Santa Cruz Biotechnology, Cat# sc-374372), mouse anti-CI-M6PR
(Abcam, Cat# ab2733), rabbit anti-cathepsin D (Abcam, Cat# ab75852), rabbit
anti-EGFR (Millipore, Cat # 06-847), mouse anti-phosphotyrosine (4G10 Milli-
pore, Cat# 05-321), rabbit anti-mGFP®!, mouse anti-HA (HA.11 (16B12), Covance,
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Cat# MMS-101R), and anti-mRFP®!. Mouse anti-B-actin (Sigma-Aldrich, Cat#
A5441) was used as a loading control in a 1:10,000 dilution for Western blot.
Secondary IRDye 680LT donkey anti-goat IgG (H + L) (LI-COR, Cat# 926-68024,
1:20,000), IRDye 800CW goat anti-rabbit IgG (H + L) (Li-COR, Cat# 926-32211,
1:5000), IRDye 800CW goat anti-mouse IgG (H + L) (Li-COR, Cat# 926-32210,
1:5000), IRDye 680LT goat anti-rabbit IgG (H + L) (Li-COR, Cat# 926-68021,
1:20,000), and IRDye 680LT goat anti-mouse IgG (H + L) (Li-COR, Cat#
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926-68020, 1:20,000) were used for detection using the Odyssey Classic imager
(LI-COR).

siRNA-based DUB screen. All human DUBs were individually depleted from
MelJuSo cells by transfection with pools of siRNAs in 96-well format as follows: 96-
well plates—20 pL transfection mix plus 80 uL cell suspension. After 72 h, cells
were analyzed for surface expression of peptide-loaded MHC-II by flow cytometry

| (2019)10:1454 | https://doi.org/10.1038/s41467-019-09437-x | www.nature.com/naturecommunications 13


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-019-09437-x

Fig. 8 USP32 regulates extraction of membranes from Rab7-positive endosomes. a, b Bud/tubule resolution from Rab7 endosomes as a function of USP32.
Select confocal frame zooms taken from time-lapses of live control (siCtrl) vs. USP32-depleted (siUSP32_2) MelluSo cells stably expressing (a) GFP-Rab7
or (b) GFP-2KR (green) labeled with Lysotracker (magenta) are shown. Large arrows point to emerging buds (B) and tubules (T), small arrows point to
nascent vesicles formed as a result of fission (F). Quantification: number (#) of resolved (white) and unresolved (black) buds and tubules observed, n =2
independent experiments. Scale bars =5 um. See also Supplementary Movies 13-16. ¢ Alterations in late endosome (LE) morphology in response to USP32
depletion as visualized by correlative light and electron microscopy (CLEM). GFP-Rab7-2KR (GFP-2KR) fluorescence (green) and transmission electron
micrographs (TEMs) are shown; scale bars = 0.25 um. d Comparison of GFP-Rab7-2KR-positive LE profile in siCtrl (black line) and siUSP32_2 (red line); x-
axis: LE diameter in um; y-axis: number of LE profiles. See also Supplementary Fig. 9
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Fig. 9 Model of USP32 function in Rab7-mediated transport and recycling. a In the presence of USP32: non-ubiquitylated Rab7 can efficiently mediate

minus end-directed transport, while C-terminal ubiquitination of Rab7 enables the switch to other functions, such as recycling from the late endosome/
multi-vesicular body (LE/MVB). In turn, deubiquitylation of Rab7 by USP32 promotes fission of recycling tubules from the mother endosomes and release
of Rab7 from the membrane (*refers to GDI (GDP Dissociation Inhibitor) associated with Rab7 upon release). b In the absence of USP32: lack of Rab7
deubiquitylation results in failure to resolve recycling tubules and inhibits liberation of Rab7 for subsequent functional cycles. (—): microtubule minus end,
leading towards the perinuclear region; (4): microtubule plus end, leading towards the cell periphery

using L243-Cy3 monoclonal antibody. The data were normalized and converted (Menzel Gléser, Cat# MENZCB00130RAC) and transfected as indicated. Fixation

into Z-scores?3. Those DUBs whose depletion was found to perturb MHC-II was performed in 3.7% formaldehyde (acid-free, Merck Millipore) in phosphate-
surface levels at or above the chosen Z-score threshold of +3 were subsequently buffered saline (PBS) for 20 min. After washing 3x with PBS, samples were per-
analyzed for intracellular MHC-II phenotypes by microscopy scored on two cri- meabilized using 0.1% Triton X-100 (T8787, Sigma-Aldrich) in PBS for 10 min,
teria: (i) size and (ii) distribution of vesicles carrying MHC-II. Those DUB hits, followed by two washes with PBS. After permeabilization, cells were blocked with
which showed vesicle enlargement and/or redistribution, were followed upon with 5% (w/v) skim milk powder (LP0031, Oxiod) in PBS for 30 min and incubated with
deconvolution using phenocopy by at least two independent siRNA oligos as the desired primary antibodies diluted in blocking buffer at dilutions described
minimal criteria. above for 1 h at RT. Samples were then washed in PBS (three times for 5 min) and

incubated with the appropriate secondary anti-rabbit/mouse/rat Alexa-dye-coupled

antibodies (Invitrogen) in blocking buffer for 30 min. After washing in PBS (three
Confocal microscopy. For fluorescence confocal microscopy of fixed samples, cells  times for 5 min), cells were mounted using ProLong Gold antifade Mounting
were seeded into 24-well plates (Costar, Cat# 3524) containing glass coverslips medium with DAPI (Life Technologies, Cat# P36941). Samples were imaged using
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Leica SP5 or SP8 microscopes equipped with appropriate solid-state lasers, HCX
PL 63 times magnification oil emersion objectives and HyD detectors. Data were
collected using a digital zoom in the range of 1.5-2.5 in 1024 by 1024 scanning
format with line averaging. Post-collection image processing and colocalization
analyses were performed using the Fiji software. Colocalization was reported as
Mander’s overlap or Pierson’s coefficient, as indicated. Fractional distances were
calculated as follows. Fluorescence intensities (above automated background
threshold) were measured along the longest straight line ROI (regions of interest)
drawn from the center of a cell’s nucleus (fractional distance = 0) to the plasma
membrane (fractional distance = 1.0) using the line profile tool in the LAS-AF
software, and their absolute distance to the center of the nucleus was expressed
relative to the total length of the line?*. Fractional distances are reported in scatter
plots along with the median distance value (red line) within the sample and the
total number of cells analyzed.

For fluorescence confocal microscopy of live samples, cells were seeded into 35
mm glass bottom dishes (MatTek, Cat# P35GC-15-14-C) and transfected as
indicated. Samples were incubated with Lysotracker DeepRed (1:10,000) 30 min
prior to imaging. Imaging was performed on a Leica SP5 microscope with solid-
state lasers or Leica SP8 microscope with a white light laser, both equipped with
HyD detectors and a climate chamber. Data were collected using x63 oil
immersion objectives in combination with 1.5-2.5 digital zoom in 1024 x
1024 scanning format at 3-5s intervals with line averaging. Tracking of
Lysotracker-positive vesicles was performed using TrackMate for Fiji24. Fiji was
also used for post-collection image processing.

Correlative light and electron microscopy. Cells were fixed at room temperature
in 2% paraformaldehyde and 0.2% glutaraldehyde in culture medium for 2 h,
embedded in 12% gelatin, infused with 2.3 M sucrose, and frozen in liquid nitro-
gen. Ultrathin sections (75 nm) of the frozen cells were produced in a Leica UC6
cryo ultra-microtome and transferred onto a 75 mesh titanium EM grid (Agar),
carrying a Formvar support film coated with carbon and 100 nm blue fluorescent
microspheres (Life Technologies). The sections attached to the grid were rinsed in
PBS at 37 °C to remove the gelatin and sucrose, and stained with DAPT (60 ng/mL;
Sigma-Aldrich) for 5 min. The grid with the attached sections was imaged in 30%
glycerol in a confocal microscope using a x63 oil immersion objective. After
confocal microscopy imaging, the grid with the attached sections was rinsed in
distilled water and stained in 1.8% methylcellulose containing 0.4% uranyl acetate
and subsequently air-dried before imaging in the TEM. Confocal stacks were
deconvolved with theoretical point spread functions using the Huygens Essential
deconvolution software (SVI, Hilversum, Netherlands). Electron microscopy
images were recorded using a Tecnai 12 TEM (FEI company) equipped with an
EAGLE 4 x 4K digital camera using a magnification of x13,000. Superimposition
and correlation of confocal and electron microscopy images was performed in the
Adobe Photoshop software on basis of the signal of the DAPI stain and fluorescent
microspheres.

The diameter of GFP-Rab7-positive endosome profiles were measured on
75-nm-thick sections in ImageScope using montages of electron microscopy
images produced by stitching software.

Ubiquitome analysis. MelJuSo cells were grown in IMDM medium supplemented
with 10% FCS, 1% penicilin/streptomycin for label-free quantitation (LFQ)
experiments. HeLa or MelJuSo cells were grown either in DMEM or IMDM,
respectively, at a minimum of six passages in three batches IMDM media lacking
lysine/arginine (Thermo Fisher Scientific) supplemented with 7.5% dialyzed FCS
(Thermo Fisher Scientific), 1% penicilin/streptomycin, and either light lysine/
arginine (KORO0), medium (4,4,5,5-D4 Lys, 13C4Arg—K4R6), or heavy (13C4!°N,
Lys, 13C415N,Arg—K8R10) (Thermo Fisher Scientific) amino acids for SILAC-
based experiments. USP32 abundance was modulated either by depletion using
specific siRNA-mediated knockdown in MelJuSo cells or transient overexpression
in HeLa cells. Depletion in MelJuSo cells was performed in two independent ways:
(1) using LFQ mode (n =2 biological replicates) and (2) SILAC mode (n=1).
Overexpression of USP32-HA vs. vector control was performed in SILAC mode
only (n=1). For SILAC experiments, control cells (scrambled siRNA-transfected
MelJuSo cells or empty vector transfected HeLa cells) were grown in light media
(KORO); MelJuSo cells transfected with siRNAs targeting USP32 and HeLa cells
overexpressing USP32 were grown in heavy media (K8R10 and K4R6, respectively).
Approximately 108 cells per condition were used. Cells were lysed in lysis buffer 4
(50 mM Tris-HCI, pH 7.4; 0.5% NP-40; 150 mM NaCl; 20 mM MgCl,) containing
2mM N-ethylmaleimide. Protein amounts were measured using the BCA Protein
assay kit (Pierce, #23225). Samples derived from cells cultured in different isotope-
containing media were mixed 1:1 (e.g., 10 mg from control cells and 10 mg from
either USP32-depleted or -overexpressing cells), reduced in the presence of
dithiothreitol (DTT, 5 mM final concentration), and alkylated using iodoacetamide
(20 mM final concentration). Protein precipitation was performed with the
methanol/chloroform extraction method. The protein pellet was dissolved in 1 mL
of 6 M urea and diluted with 5mL MilliQ water. Proteins were digested with LysC
(Wako, 129-02541, 1:250 (w:w) ~40 mg) overnight at 37 °C following an adjust-
ment of the pH to 7. The second digestion was performed with trypsin (Promega
V5113, 1/100 volume of 1 mg/mL trypsin) overnight at 37 °C. Digestion was
stopped by the addition of 1% final concentration of trifluoroacetic acid (TFA).

Peptides were purified on a Sep-Pak C18 Column (Waters, WAT020515, 50/pk)
and dried using vacuum centrifugation. Peptide enrichment was carried out by di-
gly antibody immunoprecipitation according to the manufacturer’s instructions
(Cell Signalling Technology, Cat# 5562). After immunoprecipitation, enriched
peptides were desalted using Sep-Pak C18 columns (Waters, WAT020515) and
subsequently dried using vacuum centrifugation. Resulting peptides were resus-
pended in 10 uL H,O with 2 % acetonitrile and 0.1% formic acid and kept at —20°
C until analysis.

Enriched di-gly peptide samples were analyzed essentially using either a Dionex
U3000 system (Thermo Fisher)®2 and an orbitrap Q-Exactive or Fusion Lumos
mass spectrometer (Thermo Fisher)®3. In brief, after peptide loading in 0.1% TFA
in 2% acetonitrile onto a trap column (PepMAP C18, 300 um x5 mm, 5 pm
particle, Thermo), peptides were separated on an easy spray column (PepMAP
C18, 75 um x 500 mm, 2 um particle, Thermo) with a gradient 2 to 35% acetonitrile
in 0.1% formic acid in 5% dimethyl sulfoxide (DMSO). Mass spectrometry (MS)
spectra were acquired in profile mode with a resolution of 70,000 with an ion target
of 3x10° in the QE mass spectrometer. The Universal Method was used for the
Fusion Lumos mass spectrometer (Thermo). The QE instrument was set to pick the
15 most intense features for subsequent tandem mass spectrometry analysis at a
resolution of 17,500, a maximum acquisition time of 128 ms, an AGC target of 1 x
105, an isolation width of 1.6 Th, and a dynamic exclusion of 27 s (Fusion Lumos
12's). The orbitrap Fusion Lumos was used for SILAC samples and QE for LFQ
samples. Raw data were converted to Mascot generic files using msconvert®3, and
database searches were performed with MASCOT®4, Alternatively, for quantitative
analysis of all SILAC samples combined, raw MS data were processed using
MaxQuant (v1.5.3.1) and subsequently analyzed using the Perseus software
(v1.5.3.1). The MS data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifier PXD011899.

Ubiquitination assays. Ubiquitination status of GFP-tagged proteins was assessed
by using ubiquitination assay24. HEK293T cells, transfected with HA-ubiquitin,
GFP-substrates, and USP32 or its mutant as indicated, were lysed in 300 pL lysis
buffer 1 (50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 5 mM ethylenediaminete-
traacetic acid (EDTA), 0.5% Triton X-100, 10 mM N-methyl maleimide (general
DUB inhibitor diluted in DMSO, freshly added) and protease inhibitors (Roche
Diagnostics, EDTA-free, freshly added) by scraping. Then, 100 uL lysis buffer 2
(100 mM Tris-HCI, pH 8.0, 1 mM EDTA, and 2% SDS) were added to the crude
lysates; samples were sonicated (Fisher Scientific FB120 Sonic Dismembrator, 3
pulses, amplitude 40%) and SDS was subsequently diluted by bringing sample
volume to 1 mL with lysis buffer 1. After centrifugation (20 min, 4 °C, 20,817x g),
lysates were incubated with 6 pL GFP_Trap_A beads (Chromotek) overnight at
4°C. Beads were washed three times with lysis buffer. During the fourth washing
step, 30 uL Protein G4 fast flow (GE Healthcare) was added and all liquid was
removed prior to the addition of SDS sample buffer (containing 10 mM DTT).
Proteins were denatured by heating at 95 °C for 15 min, subjected to 8% SDS-
PAGE, and detected by Western blotting, as indicated.

Protein expression and purification. Spodoptera frugiperda Sf9 insect cells were
used as hosts for the baculovirus. SF900 II SFM medium (Gibco, Cat# 10902096)
containing 1% penicillin-streptomycin (Gibco, Cat# 15140122) was used for insect
cell culturing. Suspension insect cells were grown under serum-free conditions at
27 °C with shaking. Sf9 insect cells were transfected with 10 ug bacmid DNA
purified from DH10Bac-competent cells (transformed with pFastNKI-his3C-LIC-
USP32-FL and pFastNKI-his3C-LIC-USP32-CD plasmids) using Cellfectin II
reagent (Gibco, Cat# 10362100). Three days after transfection, P1 baculovirus stock
was collected from the culture medium. A total of 1 x 106 cells/mL in 30 mL
medium was infected with P1 baculovirus stock to prepare P2 baculovirus stock.
Baculovirus stocks were stored at 4 °C and protected from light. A total of 1 x 10°
Sf9 insect cells were infected using a low MOI (multiplicity of infection ratio of
infectious virus particles) to infect the cells. The cells were harvested 72 h after the
baculovirus infection. Cells were lysed with lysis buffer 3 (20 mM Tris, pH 8.0, 500
mM NaCl, 5mM B-mercaptoethanol, 10 mM imidazole, and protease inhibitor
cocktail) and sonication. The lysates were centrifuged at 21,000 x g for 30 min at
4°C. The supernatants were incubated with washed Talon metal affinity resin
(Clontech Inc., Palo Alto, CA, USA) for 20 min at 4 °C and the beads were then
washed with wash buffer (20 mM Tris, pH 8.0, 500 mM NaCl, 5 mM B-mercap-
toethanol, and 10 mM imidazole). Protein was eluted with elution buffer con-
taining 20 mM Tris, pH 8.0, 500 mM NaCl, 5 mM B-mercaptoethanol, and 250 mM
imidazole. Protein was dialyzed to remove imidazol and purified further with a size
exclusion column (S200 16/60 column) using a AktaPrime purifier. All proteins
were stored at —80 °C.

Enzyme activity assays. Di-ubiquitin hydrolysis assay was performed in a buffer
containing 50 mM HEPES (pH 7.5), 100 mM NaCl, 5mM DTT, and 75 nM
enzyme: USP32-FL or USP32-CD and 5 pg synthetic di-ubiquitin of specific
linkage generated in our lab (M1, K6, K11, K27, K29, K33, K48, and K63) for each
reaction®®. Hydrolysis reactions were kept at 37 °C for 0, 30, and 60 min and
stopped by the addition of SDS-containing sample loading buffer and heat dena-
turation. Samples were analyzed by SDS-PAGE on 4-12 % Bis-Tris NuPage gel

| (2019)10:1454 | https://doi.org/10.1038/541467-019-09437-x | www.nature.com/naturecommunications 15


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

(Invitrogen). Gels were stained with Coomassie blue and detection was performed
using molecular imager ChemiDoc XRS + system with the Image lab software
(Bio-Rad).

Ubiquitin-fluorescence polarization (Ub-FP) assay was performed with a
range of concentrations of USP32-FL and USP32-CD to determine a suitable
enzyme concentration®2. Diluted enzymes were prepared with reaction buffer 1
(20 mM Tris-HCI, pH 7.5, 100 mM NaCl, 5mM DTT, 0.5 mg/mL bovine y-
globulin, and 10 mg/mL CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate) and 400 nM final concentration of substrate (TAMRA K (Ub)
G) prepared with the same buffer. After preparation of enzyme and buffer, the
reaction was started by the addition of substrate. The Ub-FP assay was performed
on a Perkin-Elmer Wallac EnVisin2010 multilabel reader equipped with 531 nm
excitation and 579 nm emission filters. Non-binding surface flat-bottomed low
flange black 384-well plates were used for the assay. Data were analyzed using
the Microsoft Excel and GraphPad Prism5 software.

Activity-based probe assays were performed as follows. Cy5-Ub-Prg probe®>
was added at a final concentration of 0.5 mg/mL to either 100 nM of purified
USP32 or USP30, or incubated with clarified lysates of HEK293T cells transfected
with HA-N1 vector, USP32-HA or C743A-HA. Reactions were incubated at 37 °C
for 30 min and stopped by the addition reducing sample loading buffer (Invitrogen,
Cat# N0007). Samples were resolved on 4-12 % Bis-Tris NuPage gel (Invitrogen,
Cat# NP0323BOX) in MOPS buffer (Invitrogen, Cat# NP0001) and visualized on a
Typhoon 9500 Scanner Image System using 635 nM excitation and 685 nM
emission filters or on a Perkin-Elmer ProExpress 2D Proteomic Image System.

Subcellular fractionation. MelJuSo cells stably expressing GFP-Rab7 were trans-
fected in 10 cm dishes with the indicated siRNA. Seventy-two hours after trans-
fection, cells were harvested in lysis buffer containing 20 mM Tris-HCI (pH 7.5),
1 mM MgCl,, and protease inhibitors (Roche, complete EDTA-free, Cat#
05056489001), and cell suspension was passed through a 21 G needle 10 times or
more (until near complete lysis) using a 5 mL syringe. Samples were centrifuged
at 1000xg for 10 min. The supernatant was transferred into fresh tubes and
centrifuged at 2000 x g for 20 min. The resulting supernatant (containing mem-
brane and cytosolic fraction) was transferred into fresh tubes and centrifuged at
20,000 x g for 30 min. The supernatant containing the cytosolic fraction was
transferred into a new tube, and the pellet was resuspended with a lysis buffer
containing 0.5% NP-40, 20 mM Tris-HCI (pH 7.5), 1 mM MgCl,, and protease
inhibitors, and then incubated on ice for 20 min. Resulting cytosolic and membrane
fractions were incubated with 6 uL. GFP_Trap_A beads (Chromotek) overnight at
4°C. Beads were washed three times with lysis buffer. During the fourth washing
step, 30 uL Protein G4 fast flow beads (GE Healthcare) was added and all liquid
was removed prior to the addition of SDS sample buffer containing 10 mM DTT.
Proteins were denatured by heating at 95 °C for 15 min, subjected to 8% SDS-
PAGE, and detected by Western blotting, as indicated.

Co-immunoprecipitation. HEK293T cells were lysed for 20 min in a lysis buffer
containing 0.8% NP-40, 50 mM NaCl, 50 mM Tris-HCI (pH 8.0), 5 mM MgCl,,
and protease inhibitors (Roche, complete EDTA-free, Cat# 05056489001). The
supernatant after spinning (20 min, 4 °C, 20,817 x g) was incubated with respective
antibodies by rotation at 4 °C for 1 h. Protein G4 fast flow (GE Healthcare) beads
were then added to the supernatant and incubated by rotating at 4 °C for 4 h. Beads
were washed four times in wash buffer containing 0.08% NP-40, 150 mM NaCl, 50
mM Tris-HCI (pH 8.0), and 5 mM MgCl,. After completely removing the washing
buffer, SDS sample buffer (containing 10 mM DTT) was added to the beads fol-
lowed by 15 min incubation at 95 °C. Co-immunoprecipitated proteins were
separated by SDS-PAGE for Western blotting and detection by antibody staining.
The obtained signals were detected by Odyssey imager.

Proximity-based labeling. HEK293T or HeLa cells were transfected with either
GFP-BirA vector control or GFP-BirA-Rab7/2KR either directly or after 48 h of
siRNA transfection. After 24 h transfection, cells were treated with 50 uM final
concentration of biotin (Sigma, Cat# B4639) for 3 h. Cells were lysed for 20 min in
lysis buffer containing 0.8% NP-40, 50 mM NaCl, 50 mM Tris-HCI (pH 8.0), 5 mM
MgCl,, and protease inhibitors (Roche, complete EDTA-free, Cat# 05056489001).
SDS (0.5%) was added to the supernatant after spinning (20 min, 4 °C, 20,817 x g).
High-capacity neutravidin beads (Thermo Scientific, Cat# 29202) were then added
to the supernatant and incubated by rotating at 4 °C for overnight. Beads were
washed four times in wash buffer containing 0.8% NP-40, 150 mM NaCl, 50 mM
Tris-HCI (pH 8.0), 0.5% SDS, and 5 mM MgCl,. After completely removing the
washing buffer, SDS sample buffer (containing 10 mM DTT) was added to the
beads, followed by 15 min incubation at 95 °C. Co-immunoprecipitated proteins
were separated by SDS-PAGE for Western blotting and detection by antibody
staining. The obtained signals were detected by Odyssey imager.

EGFR degradation. Ligand-induced turnover of EGFR was performed using

25 ng/mL EGF*’. HeLa cells were transfected with siCtrl and siUSP32 oligos as
indicated. After 72 h incubation, cells were serum starved with serum-free media
for 3 h and incubated with 25 ng/mL EGF for 0, 30, 60, or 120 min. Receptor
abundance at each indicated time-point following stimulation was quantified

relative to actin and expressed as a fraction of EGFR at t =0 for each condition.
Receptor phosphorylation was expressed relative to the maximal activation
detected in control cells (pY at t = 30).

MG6PR internalization and recycling. After 72 h of siRNA transfection, HeLa cells
were incubated at 37 °C with serum-free DMEM containing 10 pg/mL mouse-
cation-independent M6PR antibody for 1 h. Cells were then quickly rinsed with
PBS and stained with internalized antibody using anti-mouse IgG. The percentage
of cells with dispersed M6PR was quantified by selecting different areas from three
independent experiments.

SDS-PAGE and immunoblotting. Samples were separated by an 8% SDS-PAGE.
Proteins were transferred to a nitrocellulose membrane (Protan BA85, 0.45 um, GE
Healthcare) at 300 mA for 2.5 h. The membranes were blocked in 5% milk (skim
milk powder, LP0031, Oxiod) in 1x PBS (P1379, Sigma-Aldrich), incubated with a
primary antibody diluted in 5% milk in 0.1% PBS-Tween 20 (PBST) for 1h,
washed three times for 10 min in 0.1% PBST, incubated with the secondary anti-
body diluted in 5% milk in 0.1% PBST for 30 min, and washed three times again in
0.1% PBST. The signal was detected using direct imaging by the Odyssey Classic
imager (LI-COR). Intensity of bands was quantified using the Image Studio soft-
ware. Unmodified blots corresponding to key experiments presented in Figs. 1-8
can be found in Supplementary Figs. 10 and 11.

Statistical analysis. Statistical evaluations report on Student’s ¢ test (two-tailed
distribution) with *p <0.05, **p <0.01, and ***p <0.001, NS: not significant). All
error bars correspond to the mean + SD.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All relevant data are available from the authors. The mass spectrometry data associated
with Fig. 4a—c have been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository under the accession code PXD011899.

Received: 25 August 2017 Accepted: 6 March 2019
Published online: 29 March 2019

References

1. Di Fiore, P. P. & von Zastrow, M. Endocytosis, signaling, and beyond. Cold
Spring Harb. Perspect. Biol. 6, https://doi.org/10.1101/cshperspect.a016865
(2014).

2. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481-3500
(2011).

3. Huber, L. A. & Teis, D. Lysosomal signaling in control of degradation
pathways. Curr. Opin. Cell Biol. 39, 8-14 (2016).

4. Hanson, P. I. & Cashikar, A. Multivesicular body morphogenesis. Annu. Rev.
Cell Dev. Biol. 28, 337-362 (2012).

5. Oh, E., Akopian, D. & Rape, M. Principles of ubiquitin-dependent signaling.
Annu. Rev. Cell Dev. Biol. 34, 137-162 (2018).

6. Clague, M. J., Heride, C. & Urbe, S. The demographics of the ubiquitin system.
Trends Cell Biol. 25, 417-426 (2015).

7. Rahighi, S. & Dikic, . Selectivity of the ubiquitin-binding modules. FEBS Lett.
586, 2705-2710 (2012).

8. Haglund, K. & Dikic, I. The role of ubiquitylation in receptor endocytosis and
endosomal sorting. J. Cell Sci. 125, 265-275 (2012).

9. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of
ubiquitylated membrane proteins. Nature 458, 445-452 (2009).

10. Hoeller, D. et al. Regulation of ubiquitin-binding proteins by
monoubiquitination. Nat. Cell Biol. 8, 163-169 (2006).

11. Zhen, Y. & Stenmark, H. Cellular functions of Rab GTPases at a glance.

J. Cell Sci. 128, 3171-3176 (2015).

12. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev.
Mol. Cell. Biol. 2, 107-117 (2001).

13. Shin, D. et al. Site-specific monoubiquitination downregulates Rab5 by
disrupting effector binding and guanine nucleotide conversion. eLife 6, https://
doi.org/10.7554/eLife.29154 (2017).

14. Song, P., Trajkovic, K., Tsunemi, T. & Krainc, D. Parkin modulates endosomal
organization and function of the endo-lysosomal pathway. J. Neurosci. 36,
2425-2437 (2016).

15. Langemeyer, L., Frohlich, F. & Ungermann, C. Rab GTPase function
in endosome and lysosome biogenesis. Trends Cell Biol. 28, 957-970
(2018).

16 | (2019)10:1454 | https://doi.org/10.1038/s41467-019-09437-x | www.nature.com/naturecommunications


http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD011899
https://doi.org/10.1101/cshperspect.a016865
https://doi.org/10.7554/eLife.29154
https://doi.org/10.7554/eLife.29154
www.nature.com/naturecommunications

ARTICLE

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Jordens, L et al. The Rab7 effector protein RILP controls lysosomal transport
by inducing the recruitment of dynein-dynactin motors. Curr. Biol.: CB 11,
1680-1685 (2001).

McEwan, D. G. et al. PLEKHMI1 regulates autophagosome-lysosome fusion
through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57, 39-54
(2015).

Marwaha, R. et al. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo
traffic to lysosomes. J. Cell Biol. 216, 1051-1070 (2017).

Cullen, P.J. & Korswagen, H. C. Sorting nexins provide diversity for retromer-
dependent trafficking events. Nat. Cell Biol. 14, 29-37 (2011).

Seaman, M. N. The retromer complex—endosomal protein recycling and
beyond. J. Cell Sci. 125, 4693-4702 (2012).

Neefjes, J. J., Stollorz, V., Peters, P. J., Geuze, H. J. & Ploegh, H. L. The
biosynthetic pathway of MHC class II but not class I molecules intersects the
endocytic route. Cell 61, 171-183 (1990).

Savio, M. G. et al. USP9X controls EGFR fate by deubiquitinating the
endocytic adaptor Eps15. Curr. Biol. 26, 173-183 (2016).

Paul, P. et al. A genome-wide multidimensional RNAi screen reveals
pathways controlling MHC class II antigen presentation. Cell 145, 268-283
(2011).

Jongsma, M. L. et al. An ER-associated pathway defines endosomal
architecture for controlled cargo transport. Cell 166, 152-166 (2016).
MacDonald, E., Urbe, S. & Clague, M. J. USP8 controls the trafficking and
sorting of lysosomal enzymes. Traffic 15, 879-888 (2014).

Niendorf, S. et al. Essential role of ubiquitin-specific protease 8 for receptor
tyrosine kinase stability and endocytic trafficking in vivo. Mol. Cell. Biol. 27,
5029-5039 (2007).

Arighi, C. N,, Hartnell, L. M., Aguilar, R. C,, Haft, C. R. & Bonifacino, J. S.
Role of the mammalian retromer in sorting of the cation-independent
mannose 6-phosphate receptor. J. Cell Biol. 165, 123-133 (2004).

Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi
requires retromer. J. Cell Biol. 165, 111-122 (2004).

Johnson, D. E., Ostrowski, P., Jaumouille, V. & Grinstein, S. The position of
lysosomes within the cell determines their luminal pH. J. Cell Biol. 212,
677-692 (2016).

Brown, W. J., DeWald, D. B, Emr, S. D., Plutner, H. & Balch, W. E. Role for
phosphatidylinositol 3-kinase in the sorting and transport of newly
synthesized lysosomal enzymes in mammalian cells. J. Cell Biol. 130, 781-796
(1995).

Gaffet, P., Jones, A. T. & Clague, M. J. Inhibition of calcium-independent
mannose 6-phosphate receptor incorporation into trans-Golgi network-
derived clathrin-coated vesicles by wortmannin. J. Biol. Chem. 272,
24170-24175 (1997).

Geurink, P. P, El Oualid, F., Jonker, A., Hameed, D. S. & Ovaa, H. A general
chemical ligation approach towards isopeptide-linked ubiquitin and ubiquitin-
like assay reagents. Chembiochem 13, 293-297 (2012).

Zhang, X. et al. An interaction landscape of ubiquitin signaling. Mol. Cell 65,
941-955 €948 (2017).

Cockman, M. E., Webb, J. D., Kramer, H. B., Kessler, B. M. & Ratcliffe, P. J.
Proteomics-based identification of novel factor inhibiting hypoxia-inducible
factor (FIH) substrates indicates widespread asparaginyl hydroxylation of
ankyrin repeat domain-containing proteins. Mol. Cell. Proteom. 8, 535-546
(2009).

Guerra, F. & Bucci, C. Multiple roles of the small GTPase Rab7. Cells 5,
https://doi.org/10.3390/cells5030034 (2016).

Seaman, M. N., Harbour, M. E,, Tattersall, D., Read, E. & Bright, N.
Membrane recruitment of the cargo-selective retromer subcomplex is
catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5.
J. Cell Sci. 122, 2371-2382 (2009).

Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential
action of Rab5 and Rab7. J. Cell Biol. 183, 513-526 (2008).

Girard, E. et al. Rab7 is functionally required for selective cargo sorting at the
early endosome. Traffic 15, 309-326 (2014).

Sowa, M. E., Bennett, E. ]., Gygi, S. P. & Harper, J. W. Defining the human
deubiquitinating enzyme interaction landscape. Cell 138, 389-403 (2009).
Roux, K. J., Kim, D. I, Raida, M. & Burke, B. A promiscuous biotin ligase
fusion protein identifies proximal and interacting proteins in mammalian
cells. J. Cell Biol. 196, 801-810 (2012).

Piper, R. C,, Dikic, I. & Lukacs, G. L. Ubiquitin-dependent sorting in
endocytosis. Cold Spring Harb. Perspect. Biol. 6, https://doi.org/10.1101/
cshperspect.a016808 (2014).

Clague, M. ], Liu, H. & Urbe, S. Governance of endocytic trafficking and
signaling by reversible ubiquitylation. Dev. Cell 23, 457-467 (2012).
McCann, A. P,, Scott, C. J., Van Schaeybroeck, S. & Burrows, J. F.
Deubiquitylating enzymes in receptor endocytosis and trafficking. Biochem. J.
473, 4507-4525 (2016).

Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-
modified proteome. Mol. Cell 44, 325-340 (2011).

45. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo
ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteom. 10,
M111 013284 (2011).

46. Wu, M., Wang, T., Loh, E., Hong, W. & Song, H. Structural basis for
recruitment of RILP by small GTPase Rab7. EMBO J. 24, 1491-1501 (2005).

47. Wiegandt, D. et al. Locking GTPases covalently in their functional states.
Nat. Commun. 6, 7773 (2015).

48. Arlt, H,, Reggiori, F. & Ungermann, C. Retromer and the dynamin Vpsl
cooperate in the retrieval of transmembrane proteins from vacuoles. J. Cell Sci.
128, 645-655 (2015).

49. Hao, Y. H. et al. USP7 acts as a molecular rheostat to promote WASH-
dependent endosomal protein recycling and is mutated in a human
neurodevelopmental disorder. Mol. Cell 59, 956-969 (2015).

50. Akhavantabasi, S. et al. USP32 is an active, membrane-bound ubiquitin
protease overexpressed in breast cancers. Mamm. Genome. 21, 388-397 (2010).

51. Hu, W. et al. Downregulation of USP32 inhibits cell proliferation, migration
and invasion in human small cell lung cancer. Cell. Prolif. https://doi.org/
10.1111/cpr.12343 (2017).

52. Guo, Y. et al. Comprehensive ex vivo transposon mutagenesis identifies genes
that promote growth factor independence and leukemogenesis. Cancer Res.
76, 773-786 (2016).

53. Pankratz, N. et al. Copy number variation in familial Parkinson disease.
PLoS ONE 6, 20988 (2011).

54. Hunn, B. H,, Cragg, S. J., Bolam, J. P, Spillantini, M. G. & Wade-Martins, R.
Impaired intracellular trafficking defines early Parkinson’s disease. Trends
Neurosci. 38, 178-188 (2015).

55. King, R. W.,, Lyman, S., Chung, E., Natesan, S. & Epstein, C. B. Mitotic
progression genes and methods of modulating mitosis. (2008). Patent
EP1989320A2, https://patents.google.com/patent/EP1989320A2/en

56. Luna-Vargas, M. P. et al. Enabling high-throughput ligation-independent
cloning and protein expression for the family of ubiquitin specific proteases.
J. Struct. Biol. 175, 113-119 (2011).

57. Berlin, I, Schwartz, H. & Nash, P. D. Regulation of epidermal growth factor
receptor ubiquitination and trafficking by the USP8.STAM complex. J. Biol.
Chem. 285, 34909-34921 (2010).

58. van der Kant, R. et al. Late endosomal transport and tethering are coupled
processes controlled by RILP and the cholesterol sensor ORP1L. J. Cell Sci.
126, 3462-3474 (2013).

59. Barik, S. Mutagenesis and gene fusion by megaprimer PCR. Methods Mol.
Biol. 67, 173-182 (1997).

60. Vennegoor, C. & Rumke, P. Circulating melanoma-associated antigen
detected by monoclonal antibody NKI/C-3. Cancer Immunol., Immunother.
23, 93-100 (1986).

61. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to
control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol.
185, 1209-1225 (2009).

62. Sepil, I. et al. Quantitative proteomics identification of seminal fluid proteins
in male Drosophila melanogaster. Mol. Cell. Proteom. https://doi.org/10.1074/
mcp.RA118.000831 (2018).

63. Davis, S. et al. Expanding Proteome Coverage with CHarge Ordered
Parallel Ion aNalysis (CHOPIN) combined with broad specificity proteolysis.
J. Proteome Res. 16, 1288-1299 (2017).

64. Faesen, A. C. et al. The differential modulation of USP activity by internal
regulatory domains, interactors and eight ubiquitin chain types. Chem. Biol.
18, 1550-1561 (2011).

65. Ekkebus, R. et al. On terminal alkynes that can react with active-site cysteine
nucleophiles in proteases. J. Am. Chem. Soc. 135, 2867-2870 (2013).

Acknowledgements

We are grateful to P. Celie and M. Stadnik from the NKI protein facility for USP32
expression and purification from insect cells. We thank B. Morris for providing siRNA
constructs and D.S. Hameed for synthesis of the di-ubiquitin chains. We also thank L.
Oomen and L. Brocks of the NKI and A.M.A. van der Laan and L. Voortman of LUMC
for microscopy facility support. We are grateful to D. Flierman for critical discussions.
This work was supported by the UPStream network funded by a Marie Curie Initial
Training Network (ITN) grant from the European Union (FP7A-PEOPLE-2011-ITN)
and by an Innovational Research Incentives Scheme Vici grant from the Netherlands
Foundation for Scientific Research (N.W.0.) to H.O. (724.013.002), as well as by ERC
Advanced grants to J.N. A.S. was supported by the European Cooperation in Science and
Technology (COST) with a short-term scientific mission grant (STSM) to perform
ubiquitome experiments.

Author contributions

A.S. and LB. designed the study and performed and analyzed most of the experiments.
RH.W. performed siRNA-based screen for DUBs. E.B. and R.IK. carried out correlative
light and electron microscopy studies, and H.J. performed electron microscopy on

| (2019)10:1454 | https://doi.org/10.1038/541467-019-09437-x | www.nature.com/naturecommunications 17


https://doi.org/10.3390/cells5030034
https://doi.org/10.1101/cshperspect.a016808
https://doi.org/10.1101/cshperspect.a016808
https://doi.org/10.1111/cpr.12343
https://doi.org/10.1111/cpr.12343
https://patents.google.com/patent/EP1989320A2/en
https://doi.org/10.1074/mcp.RA118.000831
https://doi.org/10.1074/mcp.RA118.000831
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

prepared samples. B.M.K. and RXK. carried out quantitative mass spectrometry experi-
ments and analyzed the ubiquitome data using prepared samples. A.E.E.-B. coordinated
biochemical experiments. J.J.A prepared GFP-BirA-Rab7 constructs for biotinylation
assay. J.N. advised on the project. H.O. coordinated the study. I.B. and A.S. wrote the
manuscript with the help of J.N. and H.O.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09437-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewers for their contribution to the peer review of this work. Peer reviewer reports are
available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

18 | (2019)10:1454 | https://doi.org/10.1038/s41467-019-09437-x | www.nature.com/naturecommunications


https://doi.org/10.1038/s41467-019-09437-x
https://doi.org/10.1038/s41467-019-09437-x
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	USP32 regulates late endosomal transport and�recycling through deubiquitylation of Rab7
	Results
	DUB screen for endosomal regulators identifies USP32
	USP32 is a membrane-associated catalytically active DUB
	LE GTPase Rab7 is a substrate of USP32
	USP32 promotes endosomal transport via the Rab7/RILP axis
	USP32 promotes membrane recycling from the Rab7 endosome

	Discussion
	Methods
	Cell culture and transfections
	DNA constructs
	Antibodies and fluorescent dyes
	siRNA-based DUB screen
	Confocal microscopy
	Correlative light and electron microscopy
	Ubiquitome analysis
	Ubiquitination assays
	Protein expression and purification
	Enzyme activity assays
	Subcellular fractionation
	Co-immunoprecipitation
	Proximity-based labeling
	EGFR degradation
	M6PR internalization and recycling
	SDS-PAGE and immunoblotting
	Statistical analysis
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS




