

Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems

Zhiman Lin 🔍, Kayan Ma and Yuchun Yang *D

State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China; linzhm25@mail2.sysu.edu.cn (Z.L.); majx26@mail.sysu.edu.cn (K.M.)

* Correspondence: yangych55@mail.sysu.edu.cn; Tel.: +86-188-9865-8365

Abstract: Wastewater treatment plants (WWTPs) are important contributors to global greenhouse gas (GHG) emissions, partly due to their huge emission of nitrous oxide (N₂O), which has a global warming potential of 298 CO₂ equivalents. Anaerobic ammonium-oxidizing (anammox) bacteria provide a shortcut in the nitrogen removal pathway by directly transforming ammonium and nitrite to nitrogen gas (N_2) . Due to its energy efficiency, the anammox-driven treatment has been applied worldwide for the removal of inorganic nitrogen from ammonium-rich wastewater. Although direct evidence of the metabolic production of N₂O by anammox bacteria is lacking, the microorganisms coexisting in anammox-driven WWTPs could produce a considerable amount of N₂O and hence affect the sustainability of wastewater treatment. Thus, N2O emission is still one of the downsides of anammox-driven wastewater treatment, and efforts are required to understand the mechanisms of N₂O emission from anammox-driven WWTPs using different nitrogen removal strategies and develop effective mitigation strategies. Here, three main N₂O production processes, namely, hydroxylamine oxidation, nitrifier denitrification, and heterotrophic denitrification, and the unique N₂O consumption process termed nosZ-dominated N₂O degradation, occurring in anammox-driven wastewater treatment systems, are summarized and discussed. The key factors influencing N2O emission and mitigation strategies are discussed in detail, and areas in which further research is urgently required are identified.

Keywords: nitrous oxide; anammox; wastewater treatment; mitigation

1. Introduction

Nitrous oxide (N₂O), as a potent greenhouse gas (GHG), has a global warming potential of 298 CO₂ equivalents [1] that contribute to the depletion of the ozone layer in the biosphere [2] and is considered the third most emitted GHG involved in global warming after carbon dioxide (CO₂) and methane (CH₄). Over the past decade, the atmospheric N₂O concentration has been increasing at an average rate of ~0.31% per year [3]. A considerable proportion of N₂O emission has occurred in domestic wastewater treatment systems, which contributed 1.6 Tg CO₂ equivalents over the past two decades, equivalent to 1.6% of the global N₂O emissions in 2010 [4]. It is therefore important to understand N₂O emission mechanisms in wastewater treatment plants (WWTPs).

Anaerobic ammonia oxidation (anammox) has recently been developed as an energyefficient way in wastewater treatment (70–90% of total nitrogen removal) [5], and over 100 anammox-processing full-scale WWTPs were implemented worldwide by 2014 [6]. Anammox bacteria provide a shortcut in the nitrogen cycle by direct transforming ammonium (NH_4^+) and nitrite (NO_2^-) to nitrogen gas (N_2) [7], rendering this method more efficient and cost-effective than the conventional nitrification/denitrification process. Since the discovery of anammox by Mulder [8] in 1995, extensive research has been carried out to develop anammox-driven nitrogen removal technologies. Considering the limitations of the conventional wastewater treatment systems, the combination of biological processes

Citation: Lin, Z.; Ma, K.; Yang, Y. Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems. *Life* 2022, 12, 971. https://doi.org/ 10.3390/life12070971

Academic Editor: Man-Young Jung

Received: 20 May 2022 Accepted: 27 June 2022 Published: 28 June 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). such as in the sequencing batch reactor (SBR) stands as a promising and viable option for sewage treatment, with low cost, high efficiency, and high stability [9–11]. Additionally, the partial nitrification/anammox process (PNA) provides an effective new option for the treatment of high-strength NH_4^+ wastewater with a low C/N ratio and elevated temperature. It involves the partial oxidation of NH_4^+ to NO_2^- and the anaerobic oxidation of the remaining NH_4^+ and NO_2^- to N_2 . The integrated PNA process can be conducted either in independent dedicated two-stage PNA reactors separating partial nitrification and anammox occur under low dissolved oxygen (DO) conditions [12]. Early implementations of PNA systems employed a two-stage configuration for the efficient control of partial nitrification, whereas recently, the focus has turned mainly to a one-stage PNA system due to its low N₂O emission [13,14] and operating costs [15].

Nevertheless, N₂O emission is still one of the downsides of anammox-driven wastewater treatment. Although direct evidence of the metabolic production of N₂O by anammox bacteria is lacking, the microorganisms coexisting in anammox-driven WWTPs, such as nitrifiers and denitrifiers, could produce a considerable amount of N₂O and affect the sustainability of the wastewater treatment [16,17]. This work intends to offer an overview of the processes taking place during the biological production and consumption of N₂O in anammox-driven WWTPs and to discuss the key factors influencing N₂O emission and mitigation strategies. Potential strategies focusing on the microbial community structure in anammox-driven WWTPs deserve further investigations.

2. N₂O Emission

In anammox-driven wastewater treatment systems, the net N₂O emission is driven by four key reactions: hydroxylamine oxidation (NH₄⁺ \rightarrow NH₂OH \rightarrow N₂O) and nitrifier denitrification (NO₂⁻ \rightarrow NO \rightarrow N₂O or NH₂OH \rightarrow N₂O or NH₂OH + NO \rightarrow N₂O) catalyzed by nitrifiers as well as heterotrophic denitrification (NO₃⁻ \rightarrow NO₂⁻ \rightarrow NO \rightarrow N₂O) catalyzed by diverse denitrifiers are the three known N₂O-forming biological processes, while *nosZ*-dominated N₂O consumption (N₂O \rightarrow N₂) is the unique N₂O degradation biological process driven by denitrifiers (Figure 1).

Figure 1. Schematic diagram illustrating the microbial pathways leading to N_2O production (green, blue and purple boxes) and consumption (white box) in the anammox-driven reactor. The blue and red colors in the background represent wastewater and sludge, respectively, the red circle denotes the anammox reaction, and the orange circle denotes the nitrification and denitrification reactions driven by nitrifiers and denitrifiers.

2.1. Hydroxylamine Oxidation

Hydroxylamine (NH₂OH), an inorganic and highly reactive chemical, is one of the main precursors of N₂O production via nitrification under aerobic conditions [18]. It is produced as one of the intermediate products of the nitrification process, which begins by oxidizing ammonia (NH₃) with ammonia monooxygenase (AMO) and particulate methane monooxygenase (pMMO) to yield NH₂OH. Normally, NH₂OH is then further oxidated to nitric oxide (NO) by either hydroxylamine dehydrogenase (HAO) or hydroxylamine oxidase (HOX) produced by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). The produced NO₂⁻ from NO oxidation is then oxidated to nitrate (NO₃⁻) by nitrite-oxidizing bacteria (NOB) using a nitrite oxidoreductase (NXR). The process can also be achieved through complete ammonia oxidation (comammox) by comammox bacteria, which encode all enzymes for complete nitrification (NH₄⁺ \rightarrow NO₂⁻ \rightarrow NO₃⁻) [19,20].

If NH₂OH production catalyzed by AMO and pMMO is faster than the conversion of HAO and HOX under aerobic conditions, the accumulated NH₂OH can stimulate hydroxylamine oxidation to consume N₂O, such that a metabolic imbalance is established [21]. The accumulated free NH₂OH could be emitted from the cells and produce N₂O through an abiotic chemical hybrid reaction with oxidants or extracellular NO₂⁻, i.e., the hydroxylamine oxidation reaction [22,23], while the oxidized NO₂⁻ can be reduced to NH₂OH to slow down the abiotic decay of NH₂OH [23]. Based on NH₂OH abiotic conversion rates, the maximum proportions of NH₄⁺ converted to N₂O via extracellular NH₂OH during the incubation of AOB, AOA, and comammox (*Nitrospira inopinata*) have been estimated to be 0.12%, 0.08%, and 0.14%, respectively [24]. This result is consistent with a prior study on the NH₄⁺:N₂O conversion ratio by AOB and AOA, which demonstrated that the abiotic conversion of extracellular NH₂OH contributes to N₂O emission during aerobic ammonia oxidation [24].

Directly converting NH₂OH to N₂O or combining NO with NH₂OH thus obtaining N₂O, the anaerobic NH₂OH detoxification pathway catalyzed by cytochrome P460 (CytL) in most AOB is also a significant source of N₂O [25]. CytL can oxide 2 equivalents of NH₂OH and 4 oxidizing equivalents to 1 equivalent of N₂O under anoxic conditions [25]. Alternatively, it can reduce NO to N₂O in the presence of NH₂OH [25]. CytL is used by AOB to detoxify NH₂OH and NO, such that AOB can abundantly emit N₂O from hydroxylamine oxidation under anaerobic conditions, thereby establishing a direct enzymatic link between nitrification and N₂O production via NH₂OH [25,26].

2.2. Nitrifier Denitrification

NO and NH₂OH are two of the precursors of N₂O emission during denitrification by nitrifiers at low DO conditions [26]. During nitrifier denitrification, NO₂⁻ is reduced by nitrite reductases (NIR) to NO, which is further reduced to N₂O through nitric oxide reductases (NOR) produced by nitrifiers. As such, this process is also a source of N₂O in anammox-driven WWTPs [27], with Chen et al. [28] claiming that it produced 73% of N₂O in a one-stage PNA reactor.

NO is a highly reactive and potent toxic molecule that can be converted to N₂O by the enzyme NOR in AOB, AOA, and comammox [29]. Most AOB have NOR-encoding genes (*norB* and/or *norC*) to detoxicate NO [30]. Previously, despite the presence of *nir* genes in almost all AOA genomes, AOA were believed to be incapable of N₂O production through nitrifier denitrification as they lack NOR [22,31,32]. However, a recent study found that cytochrome P450NOR in AOA can act as NOR leading to the production of N₂O via nitrifier denitrification at low pH under aerobic conditions [33]. This notion is supported by the general N₂O production pathway [2NO + NAD(P)H + H⁺ \rightarrow N₂O + H₂O + NAD(P)⁺] by the enzyme P450NOR in archaea denitrification [34]. Putative cytochrome P450-encoding genes were found not only in the genomes of AOA but also in the genomes of AOB and comammox [34,35]. However, ¹⁵N isotope tracer analysis revealed that the comammox strain of *N. inopinata* cannot denitrify NO to N₂O and thus emit N₂O at a level that is comparable to that of AOA (much lower than that of AOB) under varying oxygen

regimes, suggesting that N₂O formed by *N. inopinata* mainly originates from the abiotic conversion of NH₂OH [23]. Considering that P450NOR is not thought to be involved in energy conservation in fungal denitrifiers [36] and the contribution of the haem copper oxidase family (qNOR and cNOR) likely surpasses that of other NOR types due to their predominant roles in denitrification [37], it was suggested that AOA and comammox have weak N₂O emission potential under anoxic conditions [23,31]. Although the N₂O yield is significantly higher in nitrifier denitrification catalyzed by P450nor in AOA under aerobic conditions at low pH, it is still lower than that obtained by nitrifier denitrification catalyzed by NOR and hydroxylamine oxidation catalyzed by CytL in AOB under low-oxygen conditions [33]. Therefore, AOB are the dominant N₂O producers during the partial nitrification process [23,24,38].

2.3. Heterotrophic Denitrification

Heterotrophic denitrification is one of the main nitrogen removal pathways based on the reduction of NO to N_2O in wastewater by denitrifiers under anaerobic conditions, which begins by reducing NO_3^- to NO_2^- by nitrate reductases [27]. The produced NO_2 is then reduced to NO through either haem-containing (cd1-NIR, *nirS*) or copper-containing (Cu-NIR, *nirK*) nitrite reductases, which is further reduced to N_2O through NOR [27]. N_2O is an intermediate product during denitrification, and part of N_2O can escape from the cell before the final reduction to N_2 , resulting in N_2O emission [39]. Microbial N_2O reduction to N_2 is the main sink of this powerful GHG, which is catalyzed by the enzyme nitrous oxide reductase (NOS) [27]. It is becoming apparent that complete denitrifiers that reduce NO_3^- all the way to N_2 are the exception and that many denitrifiers, called incomplete denitrifiers, lack NOR or NOS and directly use NO or N_2O as the end product [27].

In microbial processes, NO is generated via NO₂⁻ reduction catalyzed by NirS and NirK, which are functionally equivalent but structurally divergent [40]. The genes for these two enzymes rarely co-occur in the genome of denitrifiers [41,42]. Changes in the composition and diversity of the denitrifier community and differences in habitat preferences indicate a niche differentiation process leading to *nirK*- and *nirS*-type denitrifiers [42–44]. A clear separation of *nirS* and *nirK* communities was observed in saline and non-saline environments, with *nirS* communities dominating in marine environments [42]. Interestingly, the *nosZ* gene has a higher frequency of co-occurrence with *nirS* than with *nirK*, and *nirS* usually co-occur with *nor* [44]. Under favorable conditions, *nirS*-type denitrifiers are more likely to be capable of complete denitrification and usually contribute less to N₂O emission than *nirK*-type denitrifiers [44]. The non-random patterns of *nir/nor/nos* gene occurrence [44] are important in determining the genetic N₂O production potential in wastewater treatment systems and illustrate the importance of the microbial community structure for biotic N₂O emission.

2.4. NosZ-Dominated N₂O Sink

N₂O-reducing microorganisms can reduce N₂O to N₂; therefore, their abundance and activity can strongly affect the net N₂O emission from WWTPs. N₂O degradation is catalyzed by members of either NosZ clade I or NosZ clade II. They can be distinguished by the signal peptide motif of twin-arginine translocation (Tat) or secretory (Sec) proteins, which govern the secretion pathway for N₂O translocation across the cell membrane [45,46]. Clade II NosZ is characterized by a much broader diversity of microorganisms than Clade I NosZ. About 30% of Clade II NosZ lack a complete denitrification capability and are termed *nosZ* II non-denitrifiers [44,47]. The *nosZ* II non-denitrifiers are regarded as N₂O reducers, as they lack other denitrifying enzymes that specifically consume N₂O [16,44]. Hence, increasing the diversity and abundance of *nosZ* II-type non-denitrifiers could help N₂O reduction in wastewater treatment systems [47,48]. Therefore, the community structure and regulatory mechanisms of *nosZ* II non-denitrifiers in anammox-driven wastewater treatment systems associated with N₂O emission mitigation deserved more attention in future studies. It is noteworthy that most studies attempting to characterize *nosZ* gene diversity using DNA-based PCR approaches only focused on Clade I *nosZ*, while the abundance and diversity of Clade II *nosZ* are underestimated [45,46]. The high diversity of Clade II NosZ makes it impossible to design a universal primer set that can effectively amplify all *nosZ* genes in this clade [49]. The Clade II *nosZ* community has yet to be thoroughly investigated, and characterizing its contributions to N₂O consumption will significantly enhance our understanding of N₂O emission in wastewater treatment.

3. N₂O Emission Rate and Influence Factors

The N₂O emission rate (0.057–2.3% of the total nitrogen load) varies substantially among different anammox-driven reactors (Table 1). The N₂O emission rates are even higher in some anammox-driven reactors than in conventional nitrification/denitrification nitrogen removal systems (0.1–0.58% of the total nitrogen load) [50,51]. The high N₂O emission rate is a major obstacle to the sustainable application of anammox systems for wastewater treatment. Factors such as DO, NH_4^+ , and NO_2^- concentrations, chemical oxygen demand (COD), and the presence of floc could significantly influence N₂O emission by impacting the microbial communities and their activity in anammox-driven nitrogen removal systems.

Table 1. Measured N₂O emission flux and DO levels in different types of reactors. PNA, partialnitrification/anammox, AMX, amammox.

Reactor	Strategies	DO (mg/L)	Nitrogen Removal Efficiency (%)	N ₂ O Emission Rate (%) ¹	Emission Factors	Reference
Lab-scale	one-stage PNA	<1	-	1 ²	DO, $\rm NH_4^+$ and $\rm NO_2^-$	[13]
	one-stage PNA	0.2 - 2.3	70.87 ± 1.36	0.004 - 0.11	Aeration control	[28]
	one-stage PNA	2	73.8 ± 4.1	1.0–4.1 ³	Influent organics, aeration control, flocs and NO ₂ ⁻	[52]
	AMX	≈ 0	86.7 ± 2.5	0.284	O_2 and aggregate size	[47]
	AMX	<1	87.01	$0.57 \pm 0.07^{\ 3}$	Flocs	[53]
	AMX	< 0.5	>80	$0.6 - 1.0^{2}$	NH_4^+	[54]
Full-scale	two-stage PNA	2.5	>90	1.7 (nitrification)-0.6 (anammox)	DO and NO_2^-	[14]
	one-stage PNA	<1	>90	0.4	DO	[50]
	one-stage PNA	0.5 - 1.5	>90	$0.2 - 0.9^{2}$	DO	[55]
	one-stage PNA	0.5-1.5	81	0.35-1.33	Aeration control and the nitrogen loads	[56]

 1 N₂O-N of the total nitrogen load. 2 N₂O/N² yield of removed nitrogen. 3 N₂O-N of the total nitrogen removal.

3.1. Dissolved Oxygen

DO is a crucial operation parameter in anammox-processing systems. Maintaining a relatively low oxygen supply is suggested for PNA reactors to achieve partial nitrification by limiting oxygen availability to AOB [28]. As most NOB in wastewater treatment systems have low oxygen affinity, a low level of DO could inhibit nitrite oxidation by suppressing the activity of NOB [57,58]. However, a low level of DO could also stimulate N₂O emission through heterotrophic denitrification and nitrifier denitrification in PNA systems [14,25,26]. A high oxygen supply not only promotes the nitrification process thus producing NO₂⁻ rather than NO₃⁻ and indirectly yielding N₂O through hydroxylamine oxidation [13], but also suppresses the activity of anammox due to oxygen inhibition and NO₂⁻ competition with NOB [59]. Balancing all factors, it is recommended that the oxygen concentration in anammox-driven nitrogen removal systems be kept at a low level to achieve partial nitrification and reduce N₂O emission.

3.2. NH_4^+ and NO_2^- Concentrations

The concentrations of NH_4^+ and NO_2^- could significantly affect the level of N_2O emission during wastewater treatment [51]. NH_4^+ can indirectly affect N_2O emission through hydroxylamine oxidation or directly promote NO_2^- production through nitrification [13]. A high NH_4^+ influx promotes NH_2OH production and results in NH_2OH accumulation, and part of NH_2OH could leak out of the cell and enhance N_2O emission during nitrification [52]. NO_2^- is known to increase N_2O emission through three main N_2O production processes during wastewater treatment, i.e., hydroxylamine oxidation, nitrifier denitrification, and heterotrophic denitrification [60]. The presence of NO_2^- not only offers a reactant for hybrid N_2O formation from NH_2OH via hydroxylamine oxidation but also delays the overall NH_2OH abiotic decay, further stimulating the conversion of NH_2OH to N_2O [24]. Furthermore, NO_2^- could increase N_2O emission by inhibiting the N_2O consumption activities of *nosZ*-containing denitrifiers [14]. Therefore, the concentration of NH_4^+ and NO_2^- in anammox-driven nitrogen removal systems should be cautiously controlled to mitigate N_2O emission.

3.3. Organics Availability

The positive effect of organic carbon on N₂O mitigation has been reported in different reactors [17,59], with the addition of organics significantly reducing N₂O emission (COD/N = 1) [52] and improving nitrogen removal efficiency (COD/N = 1.4) [61]. The presence of organic carbon provides energy to the growth of denitrifiers and boosts N₂O consumption by easing the carbon limitation of N₂O reduction to N₂, which is the last step of denitrification [52]. The enhancement of anammox performance for wastewater treatment by the addition of a small amount of acetate has been reported [62,63], contributing to a reduction in metabolic energy cost for the entire community under a low C/N ratio [63].

It is noteworthy that N₂O emission is enhanced by NO₂⁻ accumulation from partial nitrification under low organics availability conditions [64,65]. Electron competition between *nosZ*-containing and other denitrifiers could be stimulated by low influent organics under high NO₂⁻ conditions, such that N₂O reduction by *nosZ*-containing denitrifiers could be inhibited [52,64,66–69]. High concentrations of organics could suppress anammox activity in anammox-driven systems [52,70], likely due to the competition between anammox bacteria and heterotrophic denitrifiers [52,70–72]. Additionally, denitrifiers in the presence of organic could increase N₂O emission by affecting the number of flocs and filamentary structures around the anammox granules [52,73]. The variations in granule morphology could further affect N₂O emissions due to DO fluctuation [52].

3.4. Flocs Formation

Flocs are present in all types of granular sludge reactors and suspended sludge reactors [74–76]. It was reported that flocs, which constitute only ~10% of the total biomass, contributed to 60% of the total N₂O emission from a high-rate anammox granular sludge reactor [53]. The presence of small amounts of flocs has a non-negligible impact on nitrogen removal and N₂O emission in anammox granule systems [77]. The abundance of *nirS* was shown to much greater than that of *nor* in both granules and flocs, which resulted in transient NO accumulation in the anammox reactor [53]. Flocs are associated with a high oxygen penetration depth, resulting in a relatively low abundance of anammox bacteria compared to AOB [42], while granules contain a large number of anammox bacteria at anoxic zoon, which could rapidly eliminate NO from other microorganisms [53]. The anammox bacteria in granules could rapidly consume NO without the production of N₂O (Figure 2), which suggests that anammox is a net NO consumption process associated with N₂O emission mitigation in anammox granules [52,79,80]. Thus, this may explain why flocs are a significant source of N₂O, due to NO accumulation (Figure 2).

Figure 2. Flocs are a significant source of N_2O emission in the anammox granule system. The blue and red colors in the background represent water and sludge, respectively. The yellow, blue, and green arrows indicate DO, NO, and N_2O , while the red circle denotes the anoxic zoon containing anammox bacteria and denitrifiers, and the orange circle denotes the aerobic zoon containing nitrifiers. The number of deep orange square indicates the amount of nitrifiers, denitrifiers, and anammox bacteria in granule and floc.

In the nitrification/denitrification activated sludge system, it was reported that large flocs (>200 μ m), in which heterotrophic denitrification that led to the generation of N₂O was conducted by denitrifiers, showed higher N₂O generation rates than small flocs (<100 μ m) [42]. Denitrifiers usually coexist with anammox bacteria under anoxic or anaerobic conditions in anammox-driven wastewater treatment systems [81,82]. However, the contribution of denitrifiers in anammox granule has not been demonstrated. Nonetheless, anammox bacteria compete with denitrifiers for NO₂⁻ in anammox-processing systems [71], so denitrifiers might not be as important as they are in nitrification/denitrification systems.

4. N₂O Mitigation Strategies

Based on previous analyses, N_2O emission in anammox-driven WWTPs can be reduced by (i) lowering DO concentrations (controlling the nitrification process), (ii) adopting intermittent aeration (motivating N_2O degradation), (iii) reducing NO_2^- concentration (controlling the nitrification and denitrification processes), and (iv) increasing the C/N ratio (controlling the heterotrophic denitrification process). Additionally, regulating the microbial community composition, such as eliminating N_2O producers and increasing N_2O consumers, can be a potential N_2O emission mitigation strategy.

4.1. Operational Parameters Control

As shown in Table 1, DO control is the most frequently implemented strategy to mitigate N_2O emission in anamnox-processing systems. This strategy has been implemented in a full-scale conventional nitrification/denitrification WWTP, resulting in a 35% reduction of N_2O production via the hydroxylamine oxidation pathway [51]. Instead of continuous aeration, intermittent aeration could reduce N_2O emission by allowing heterotrophic denitrifiers to consume N_2O and/or N_2O precursors (NO, NO_2^-) during anaerobic periods, and hence is the most widely adopted approach. It was also suggested that NO_2^- can be maintained at relatively low levels using a recycling pump to avert N_2O accumulation [54], especially under limited organics conditions (low C/N rate) [64,65]. It was demonstrated

that a high NO_2^- concentration could stimulate N_2O emission from nitrifier denitrification and heterotrophic denitrification processes and likely inhibit N_2O reduction carried out by *nosZ*-containing denitrifiers [13,55]. The positive effect of a high NO_2^- concentration on N_2O emission during wastewater treatment could be mitigated by the addition of organic carbon, reducing NO_2^- influence and maintaining a neutral pH [52].

4.2. Microbial Community Structure

The microbial community structure of activated sludge in WWTPs determines the nitrogen removal ability and the N₂O emission potency [53]. Ammonia oxidizers, which provide anammox bacteria with NO_2^- by partly oxidizing NH_4^+ , are essential for nitrogen removal in anammox-processing systems. However, aerobic ammonia oxidation is usually accompanied by N₂O production via hydroxylamine oxidation and nitrifier denitrification [83]. AOB are deemed a significant source of N₂O emissions in anammox-driven systems [13,14,54], but the newly discovered comammox organisms have relatively low N₂O emission potential under anoxic conditions due to the lack of NO reduction enzymes [23]. Comammox organisms could outperform AOB in low-DO reaction tanks [82,84,85], ndicating that comammox bacteria are better substitutes for AOB for anammox-driven reactors.

Considering that nitrifier-enriched flocs are a significant source of N₂O emission, the regular elimination of flocs from anammox granule systems is an effective way to mitigate N₂O emission [52]. It was reported that removing 15% of flocs (2.8% of total biomass) can result in a significant decrease in N₂O emission under constant DO conditions [52]. It should be noted that floc removal at a constant airflow rate could lead to DO fluctuations because of the reduced total oxygen consumption from nitrifiers [49,76]. Although part of AOB biomass is removed with the floc, a high DO concentration can stimulate hydroxylamine oxidation and hence generate more N₂O. Therefore, a lower airflow rate is required during floc removal to maintain constant DO levels and control N₂O emission from hydroxylamine oxidation.

Incomplete denitrification is also a significant source of N₂O emission from WWTPs. The abundance of *nir* genes can exceed that of *nosZ* by up to an order of magnitude in various environments [45]. Thus, bacterial community composition and the co-occurrence of *nirS*, *nirK*, and *nor* with *nosZ* are expected to have a significant influence on the genetic N₂O emission potential from wastewater treatment systems. Additionally, selectively inoculating and increasing N₂O-consuming *nosZ* II non-denitrifiers in anammox-driven WWTPs is a promising N₂O mitigation option [44,47,86].

Besides, anammox bacteria can reduce N_2O emission by effectively consuming the accumulated NO in activated sludge or granules [52,79,80]. Anammox bacteria biomass is more abundant in granules than in flocs in the anammox granule system [53] so that granules have generally lower N_2O emission rates compared to flocs [79]. Consequently, anammox may be a potential microbial process in NO and N_2O emission control during wastewater treatment [79,80]. Inoculation of mature sludge with highly active anammox granules is an effective way to rapidly enrich anammox pellets and achieve a stable anammox-driven nitrogen removal process in ammonium-rich conventional WWTPs [82,84], which will significantly reduce N_2O emission from nitrogen removal.

5. Evaluation of N₂O Mitigation Strategies

 N_2O emission prediction models are a useful tool for evaluating the proposed N_2O mitigation strategies and their effects on nutrient removal performance in full-scale WWTPs. The models typically use elements including microbial N_2O generation and reduction pathways, as well as influence factors to simulate the real N_2O emission and appraise mitigation strategies (Figure 3).

Figure 3. Schematic of strategies evaluation, mitigation strategies, influence factors, N_2O biological processes, as well as N_2O emission in anammox-driven WWTPs.

Mathematical models have been successfully applied to evaluate N₂O mitigation strategies by quantifying nitrogen removal in conventional full-scale WWTPs [37]. Among various published mathematical N₂O models, the ASM2d-N₂O model developed by Massara et al. [87], which is a kind of activated sludge model (ASM), has been widely used for assessing N₂O emission from full-scale WWTPs [38,88,89]. Besides the classical mathematical models, novel machine learning methods, such as deep neural network (DNN) and long short-term memory (LSTM), have also been used for N₂O emission prediction [90].

Mathematical models developed based on the biological metabolic mechanisms of N_2O production and consumption can easily calibrate N₂O-related reactions by applying specific reaction kinetics parameters [87,91,92]. However, this requires a deep understanding of the N_2O emission mechanisms and of the specific liquid–gas transformation variables in different WWTPs. On the contrary, deep learning models mainly rely on operational datasets with correlative features of the WWTPs. Hybrid modeling concepts, integrating mathematical models and deep learning models, have been suggested for evaluating N2O mitigation strategies [90]. A hybrid model combining mechanistic (ASMs) with an LSTMbased deep learning model has been successfully and accurately used for modeling N_2O emission in a full-scale WWTP, with relatively low data requirements [90]. Anammoxdriven nitrogen removal technologies have been widely used for wastewater treatment, but to our best knowledge, the current models have not been used to evaluate N_2O emission in full-scale anammox-driven WWTPs. To increase the sustainability of anammox in wastewater treatment, more efforts are needed to evaluate the effects of the abundance and activities of anammox organisms and the mitigation strategies on N₂O production in anammox-driven WWTPs.

6. Conclusions and Implications

Biologically toxic N_2O is considered the third most emitted GHG contributing to global warming, and its concentration in the atmosphere has been steadily increasing in recent years. N_2O emission is still one of the downsides of anammox-driven wastewater treatment, which accounts for 0.057–2.3% of nitrogen loading in anammox-driven systems and 0.1–0.58% of nitrogen loading in traditional nitrogen removal systems. In anammox-driven wastewater treatment systems, N_2O is produced through three pathways, i.e., hydroxy-lamine oxidation, nitrifier denitrification, and heterotrophic denitrification, and is reduced through the unique pathway of *nosZ*-dominated N_2O degradation. Biological processes,

operational conditions (e.g., NH_4^+ , NO_2^- , DO, COD), and microbial communities can affect N_2O emission.

Common N₂O mitigation strategies for WWTPs include DO control, aeration control, NO₂⁻ limitation, C/N ratio control, and flocs removal regulation. Nonetheless, other potential strategies deserve further investigations, These include (i) increasing the biomass and activity of anammox bacteria, which are net NO consumers; (ii) the inoculation of N₂O-reducing organisms, such as *nosZ* II non-denitrifiers with high N₂O-affinity; (iii) establishing a symbiotic association of low-N₂O-yield comammox and anammox.

The feasibility and efficiency of the proposed mitigation strategies need to be verified and optimized by prediction models, such as mathematical models and deep learning models, in practical application. The development of high-throughput sequencing techniques and data analysis methods can elucidate the structure of the microbial community in WWTPs at high-resolution and low cost and can potentially uncover in great detail N₂O production and consumption mechanisms by the major microorganisms present in WWTPs. Therefore, more omics studies are needed to extend our understanding of the metabolic mechanisms of N₂O emission in anammox-driven WWTPs, which will help us find out and formulate effective N₂O emission mitigation strategies.

Author Contributions: Conceptualization, Z.L. and Y.Y.; writing—original draft preparation, Z.L.; writing—review and editing, Y.Y., Z.L. and K.M.; figure preparation, Z.L.; supervision, Y.Y. and K.M. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Natural Science Foundation of China (grant no. 32100086), the Basic and Applied Basic Research Foundation of Guangdong Province (Grant no. 2020A1515111033, 2021A1515011195), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant no. 22qntd2701).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Eggleston, S.; Buendia, L.; Miwa, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Intergovernmental Panel on Climate Change; Institute for Global Environmental Strategies: Hayama, Japan, 2006.
- Zumft, W.G.; Kroneck, P.M.H. Respiratory Transformation of Nitrous Oxide (N₂O) to Dinitrogen by Bacteria and Archaea. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2006; Volume 52, pp. 107–227, ISBN 978-0-12-027752-0.
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151, ISBN 978-92-9169-143-2.
- 4. Hockstad, L.; Cook, B. Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2010; USEPA: Washington, DC, USA, 2012.
- 5. Cao, Y.; van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream Partial Nitritation–Anammox in Municipal Wastewater Treatment: Status, Bottlenecks, and Further Studies. *Appl. Microbiol. Biotechnol.* **2017**, *101*, 1365–1383. [CrossRef]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-Scale Partial Nitritation/Anammox Experiences—An Application Survey. *Water Res.* 2014, 55, 292–303. [CrossRef] [PubMed]
- Russ, L.; Kartal, B.; Op Den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M. Presence and Diversity of Anammox Bacteria in Cold Hydrocarbon-Rich Seeps and Hydrothermal Vent Sediments of the Guaymas Basin. *Front. Microbiol.* 2013, *4*, 219. [CrossRef] [PubMed]
- 8. Zekker, I.; Mandel, A.; Rikmann, E.; Jaagura, M.; Salmar, S.; Ghangrekar, M.M.; Tenno, T. Ameliorating Effect of Nitrate on Nitrite Inhibition for Denitrifying P-Accumulating Organisms. *Sci. Total Environ.* **2021**, *797*, 149133. [CrossRef] [PubMed]
- 9. Muangthong-on, T. Evaluation of N₂O Production from Anaerobic Ammonium Oxidation (Anammox) at Different Influent Ammonia to Nitrite Ratios. *Energy Procedia* 2011, *8*, 7–14. [CrossRef]
- Zekker, I.; Artemchuk, O.; Rikmann, E.; Ohimai, K.; Dhar Bhowmick, G.; Madhao Ghangrekar, M.; Burlakovs, J.; Tenno, T. Start-Up of Anammox SBR from Non-Specific Inoculum and Process Acceleration Methods by Hydrazine. *Water* 2021, *13*, 350.
 [CrossRef]
- 11. Mulder, A.; Graaf, A.A.; Robertson, L.A.; Kuenen, J.G. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. *FEMS Microbiol. Ecol.* **1995**, *16*, 177–184. [CrossRef]

- Connan, R.; Dabert, P.; Moya-Espinosa, M.; Bridoux, G.; Béline, F.; Magrí, A. Coupling of Partial Nitritation and Anammox in Two- and One-Stage Systems: Process Operation, N₂O Emission and Microbial Community. *J. Clean. Prod.* 2018, 203, 559–573. [CrossRef]
- Ma, C.; Jensen, M.M.; Smets, B.F.; Thamdrup, B. Pathways and Controls of N₂O Production in Nitritation–Anammox Biomass. Environ. Sci. Technol. 2017, 51, 8981–8991. [CrossRef]
- 14. Kampschreur, M.J.; van der Star, W.R.L.; Wielders, H.A.; Mulder, J.W.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Full-Scale Reject Water Treatment. *Water Res.* 2008, 42, 812–826. [CrossRef]
- Chen, R.; Ji, J.; Chen, Y.; Takemura, Y.; Liu, Y.; Kubota, K.; Ma, H.; Li, Y.-Y. Successful Operation Performance and Syntrophic Micro-Granule in Partial Nitritation and Anammox Reactor Treating Low-Strength Ammonia Wastewater. *Water Res.* 2019, 155, 288–299. [CrossRef] [PubMed]
- Hallin, S.; Philippot, L.; Löffler, F.E.; Sanford, R.A.; Jones, C.M. Genomics and Ecology of Novel N₂O-Reducing Microorganisms. *Trends Microbiol.* 2018, 26, 43–55. [CrossRef] [PubMed]
- 17. Chen, X.; Ni, B.; Sin, G. Nitrous Oxide Production in Autotrophic Nitrogen Removal Granular Sludge: A Modeling Study. *Biotechnol. Bioeng.* 2019, 116, 1280–1291. [CrossRef]
- Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N₂O Production in Biological Wastewater Treatment under Nitrifying and Denitrifying Conditions. *Water Res.* 2012, 46, 1027–1037. [CrossRef] [PubMed]
- 19. Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete Nitrification by *Nitrospira* Bacteria. *Nature* **2015**, *528*, 504–509. [CrossRef] [PubMed]
- van Kessel, M.A.H.J.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Op den Camp, H.J.M.; Kartal, B.; Jetten, M.S.M.; Lücker, S. Complete Nitrification by a Single Microorganism. *Nature* 2015, 528, 555–559. [CrossRef]
- Caranto, J.D.; Lancaster, K.M. Nitric Oxide Is an Obligate Bacterial Nitrification Intermediate Produced by Hydroxylamine Oxidoreductase. *Proc. Natl. Acad. Sci. USA* 2017, 114, 8217–8222. [CrossRef]
- Hink, L.; Gubry-Rangin, C.; Nicol, G.W.; Prosser, J.I. The Consequences of Niche and Physiological Differentiation of Archaeal and Bacterial Ammonia Oxidisers for Nitrous Oxide Emissions. *ISME J.* 2018, 12, 1084–1093. [CrossRef]
- Kits, K.D.; Jung, M.-Y.; Vierheilig, J.; Pjevac, P.; Sedlacek, C.J.; Liu, S.; Herbold, C.; Stein, L.Y.; Richter, A.; Wissel, H.; et al. Low Yield and Abiotic Origin of N₂O Formed by the Complete Nitrifier Nitrospira Inopinata. *Nat. Commun.* 2019, 10, 1836. [CrossRef]
- 24. Liu, S.; Han, P.; Hink, L.; Prosser, J.I.; Wagner, M.; Brüggemann, N. Abiotic Conversion of Extracellular NH₂OH Contributes to N₂O Emission during Ammonia Oxidation. *Environ. Sci. Technol.* **2017**, *51*, 13122–13132. [CrossRef]
- Caranto, J.D.; Vilbert, A.C.; Lancaster, K.M. Nitrosomonas Europaea Cytochrome P460 Is a Direct Link between Nitrification and Nitrous Oxide Emission. Proc. Natl. Acad. Sci. USA 2016, 113, 14704–14709. [CrossRef] [PubMed]
- 26. Soler-Jofra, A.; Pérez, J.; van Loosdrecht, M.C.M. Hydroxylamine and the Nitrogen Cycle: A Review. *Water Res.* **2021**, *190*, 116723. [CrossRef] [PubMed]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The Microbial Nitrogen-Cycling Network. Nat. Rev. Microbiol. 2018, 16, 263–276. [CrossRef] [PubMed]
- Chen, G.; Zhang, Y.; Wang, X.; Chen, F.; Lin, L.; Ruan, Q.; Wang, Y.; Wang, F.; Cao, W.; Chiang, P. Optimizing of Operation Strategies of the Single-Stage Partial Nitrification-Anammox Process. J. Clean. Prod. 2020, 256, 120667. [CrossRef]
- Bowman, L.A.H.; McLean, S.; Poole, R.K.; Fukuto, J.M. The Diversity of Microbial Responses to Nitric Oxide and Agents of Nitrosative Stress. In *Advances in Microbial Physiology*; Elsevier: Amsterdam, The Netherlands, 2011; Volume 59, pp. 135–219, ISBN 978-0-12-387661-4.
- Kozlowski, J.A.; Kits, K.D.; Stein, L.Y. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria. Front. Microbiol. 2016, 7, 1090. [CrossRef]
- Hink, L.; Nicol, G.W.; Prosser, J.I. Archaea Produce Lower Yields of N₂O than Bacteria during Aerobic Ammonia Oxidation in Soil: N₂O Production by Soil Ammonia Oxidisers. *Environ. Microbiol.* 2017, *19*, 4829–4837. [CrossRef]
- Stieglmeier, M.; Mooshammer, M.; Kitzler, B.; Wanek, W.; Zechmeister-Boltenstern, S.; Richter, A.; Schleper, C. Aerobic Nitrous Oxide Production through N-Nitrosating Hybrid Formation in Ammonia-Oxidizing Archaea. *ISME J.* 2014, *8*, 1135–1146. [CrossRef]
- Jung, M.-Y.; Gwak, J.-H.; Rohe, L.; Giesemann, A.; Kim, J.-G.; Well, R.; Madsen, E.L.; Herbold, C.W.; Wagner, M.; Rhee, S.-K. Indications for Enzymatic Denitrification to N₂O at Low PH in an Ammonia-Oxidizing Archaeon. *ISME J.* 2019, 13, 2633–2638. [CrossRef]
- 34. Shoun, H.; Fushinobu, S.; Jiang, L.; Kim, S.-W.; Wakagi, T. Fungal Denitrification and Nitric Oxide Reductase Cytochrome P450nor. *Philos. Trans. R. Soc. B* 2012, 367, 1186–1194. [CrossRef]
- Sutka, R.L.; Adams, G.C.; Ostrom, N.E.; Ostrom, P.H. Isotopologue Fractionation during N₂O Production by Fungal Denitrification. *Rapid Commun. Mass Spectrom.* 2008, 22, 3989–3996. [CrossRef]
- Daiber, A.; Shoun, H.; Ullrich, V. Nitric Oxide Reductase (P450nor) from Fusarium Oxysporum. In *The Smallest Biomolecules:* Diatomics and Their Interactions with Heme Proteins; Elsevier: Amsterdam, The Netherlands, 2008; pp. 354–377, ISBN 978-0-444-52839-1.

- 37. Stein, L.Y.; Klotz, M.G. Nitrifying and Denitrifying Pathways of Methanotrophic Bacteria. *Biochem. Soc. Trans.* **2011**, *39*, 1826–1831. [CrossRef] [PubMed]
- Li, Z.; Wan, J.; Ma, Y.; Wang, Y.; Huang, Y.; Fan, H. A Comprehensive Model of N₂O Emissions in an Anaerobic/Oxygen-Limited Aerobic Process under Dynamic Conditions. *Bioprocess. Biosyst. Eng.* 2020, 43, 1093–1104. [CrossRef] [PubMed]
- Yan, X.; Zheng, S.; Qiu, D.; Yang, J.; Han, Y.; Huo, Z.; Su, X.; Sun, J. Characteristics of N₂O Generation within the Internal Micro-Environment of Activated Sludge Flocs under Different Dissolved Oxygen Concentrations. *Bioresour. Technol.* 2019, 291, 121867. [CrossRef] [PubMed]
- 40. Zumft, W.G. Cell Biology and Molecular Basis of Denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533-616. [PubMed]
- Haleem, D.; von Wintzingerode, F.; Moter, A.; Moawad, H.; Gobel, U. Phylogenetic Analysis of Rhizosphere-Associated Beta-Subclass Proteobacterial Ammonia Oxidizers in a Municipal Wastewater Treatment Plant Based on Rhizoremediation Technology. *Lett. Appl. Microbiol.* 2000, *31*, 34–38. [CrossRef]
- 42. Jones, C.M.; Hallin, S. Ecological and Evolutionary Factors Underlying Global and Local Assembly of Denitrifier Communities. *ISME J.* 2010, *4*, 633–641. [CrossRef]
- 43. Hallin, S.; Throback, I.; Dicksved, J.; Pell, M. Metabolic Profiles and Genetic Diversity of Denitrifying Communities in Activated Sludge after Addition of Methanol or Ethanol. *Appl. Environ. Microbiol.* **2006**, *72*, 5445–5452. [CrossRef]
- 44. Graf, D.R.H.; Jones, C.M.; Hallin, S. Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N₂O Emissions. *PLoS ONE* **2014**, *9*, e114118. [CrossRef]
- 45. Jones, C.M.; Graf, D.R.; Bru, D.; Philippot, L.; Hallin, S. The Unaccounted yet Abundant Nitrous Oxide-Reducing Microbial Community: A Potential Nitrous Oxide Sink. *ISME J.* **2013**, *7*, 417–426. [CrossRef]
- Sanford, R.A.; Wagner, D.D.; Wu, Q.; Chee-Sanford, J.C.; Thomas, S.H.; Cruz-García, C.; Rodríguez, G.; Massol-Deyá, A.; Krishnani, K.K.; Ritalahti, K.M.; et al. Unexpected Nondenitrifier Nitrous Oxide Reductase Gene Diversity and Abundance in Soils. *Proc. Natl. Acad. Sci. USA* 2012, 109, 19709–19714. [CrossRef]
- Suenaga, T.; Ota, T.; Oba, K.; Usui, K.; Sako, T.; Hori, T.; Riya, S.; Hosomi, M.; Chandran, K.; Lackner, S.; et al. Combination of ¹⁵N Tracer and Microbial Analyses Discloses N₂O Sink Potential of the Anammox Community. *Environ. Sci. Technol.* 2021, 55, 9231–9242. [CrossRef] [PubMed]
- 48. Zhao, S.; Zhou, J.; Yuan, D.; Wang, W.; Zhou, L.; Pi, Y.; Zhu, G. NirS-Type N₂O-Producers and NosZ II-Type N₂O-Reducers Determine the N₂O Emission Potential in Farmland Rhizosphere Soils. *J. Soils Sediments* **2020**, *20*, 461–471. [CrossRef]
- Chee-Sanford, J.C.; Connor, L.; Krichels, A.; Yang, W.H.; Sanford, R.A. Hierarchical Detection of Diverse Clade II (Atypical) NosZ Genes Using New Primer Sets for Classical- and Multiplex PCR Array Applications. J. Microbiol. Methods 2020, 172, 105908. [CrossRef] [PubMed]
- Joss, A.; Salzgeber, D.; Eugster, J.; König, R.; Rottermann, K.; Burger, S.; Fabijan, P.; Leumann, S.; Mohn, J.; Siegrist, H. Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR. *Environ. Sci. Technol.* 2009, 43, 5301–5306. [CrossRef] [PubMed]
- 51. Duan, H.; van den Akker, B.; Thwaites, B.J.; Peng, L.; Herman, C.; Pan, Y.; Ni, B.-J.; Watt, S.; Yuan, Z.; Ye, L. Mitigating Nitrous Oxide Emissions at a Full-Scale Wastewater Treatment Plant. *Water Res.* **2020**, *185*, 116196. [CrossRef]
- 52. Wan, X.; Laureni, M.; Jia, M.; Volcke, E.I.P. Impact of Organics, Aeration and Flocs on N₂O Emissions during Granular-Based Partial Nitritation-Anammox. *Sci. Total Environ.* **2021**, 797, 149092. [CrossRef]
- 53. Zhuang, J.; Zhou, Y.; Liu, Y.; Li, W. Flocs Are the Main Source of Nitrous Oxide in a High-Rate Anammox Granular Sludge Reactor: Insights from Metagenomics and Fed-Batch Experiments. *Water Res.* **2020**, *186*, 116321. [CrossRef]
- Jin, Y.; Wang, D.; Zhang, W. Effects of Substrates on N₂O Emissions in an Anaerobic Ammonium Oxidation (Anammox) Reactor. SpringerPlus 2016, 5, 741. [CrossRef]
- 55. Christensson, M.; Ekström, S.; Chan, A.A.; Le Vaillant, E.; Lemaire, R. Experience from Start-Ups of the First ANITA Mox Plants. *Water Sci. Technol.* 2013, 67, 2677–2684. [CrossRef]
- Yang, J.; Trela, J.; Plaza, E. Nitrous Oxide Emissions from One-Step Partial Nitritation/Anammox Processes. Water Sci. Technol. 2016, 74, 2870–2878. [CrossRef]
- 57. Blackburne, R.; Yuan, Z.; Keller, J. Partial Nitrification to Nitrite Using Low Dissolved Oxygen Concentration as the Main Selection Factor. *Biodegradation* **2008**, *19*, 303–312. [CrossRef] [PubMed]
- Wyffels, S.; Van Hulle, S.W.H.; Boeckx, P.; Volcke, E.I.P.; Cleemput, O.V.; Vanrolleghem, P.A.; Verstraete, W. Modeling and Simulation of Oxygen-Limited Partial Nitritation in a Membrane-Assisted Bioreactor (MBR). *Biotechnol. Bioeng.* 2004, *86*, 531–542. [CrossRef] [PubMed]
- Wan, X.; Baeten, J.E.; Volcke, E.I.P. Effect of Operating Conditions on N₂O Emissions from One-Stage Partial Nitritation-Anammox Reactors. *Biochem. Eng. J.* 2019, 143, 24–33. [CrossRef]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, U.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Seasonal and Diurnal Variability of N₂O Emissions from a Full-Scale Municipal Wastewater Treatment Plant. *Sci. Total Environ.* 2015, 536, 1–11. [CrossRef] [PubMed]

- 61. Jenni, S.; Vlaeminck, S.E.; Morgenroth, E.; Udert, K.M. Successful Application of Nitritation/Anammox to Wastewater with Elevated Organic Carbon to Ammonia Ratios. *Water Res.* **2014**, *49*, 316–326. [CrossRef] [PubMed]
- Tang, C.-J.; Zheng, P.; Ding, S.; Lu, H.-F. Enhanced Nitrogen Removal from Ammonium-Rich Wastewater Containing High Organic Contents by Coupling with Novel High-Rate ANAMMOX Granules Addition. *Chem. Eng. J.* 2014, 240, 454–461. [CrossRef]
- 63. Feng, Y. Discrepant Gene Functional Potential and Cross-Feedings of Anammox Bacteria Ca. Jettenia Caeni and Ca. Brocadia Sinica in Response to Acetate. *Water Res.* 2019, *11*, 114974. [CrossRef]
- 64. Hanaki, K.; Hong, Z.; Matsuo, T. Production of Nitrous Oxide Gas during Denitrification of Wastewater. *Water Sci. Technol.* **1992**, 26, 1027–1036. [CrossRef]
- 65. Zhou, Y.; Pijuan, M.; Zeng, R.J.; Yuan, Z. Free Nitrous Acid Inhibition on Nitrous Oxide Reduction by a Denitrifying-Enhanced Biological Phosphorus Removal Sludge. *Environ. Sci. Technol.* **2008**, *42*, 8260–8265. [CrossRef]
- Pan, Y.; Ni, B.-J.; Yuan, Z. Modeling Electron Competition among Nitrogen Oxides Reduction and N₂O Accumulation in Denitrification. *Environ. Sci. Technol.* 2013, 47, 11083–11091. [CrossRef]
- Chung, Y.-C.; Chung, M.-S. BNP Test to Evaluate the Influence of C/N Ratio on N₂O Production in Biological Denitrification. Water Sci. Technol. 2000, 42, 23–27. [CrossRef]
- Itokawa, H.; Hanaki, K.; Matsuo, T. Nitrous Oxide Production in High-Loading Biological Nitrogen Removal Process under Low COD/N Ratio Condition. Water Res. 2001, 35, 657–664. [CrossRef]
- Schalk-Otte, S. Nitrous Oxide (N₂O) Production by Alcaligenes Faecalis during Feast and Famine Regimes. Water Res. 2000, 34, 2080–2088. [CrossRef]
- Chen, C.; Sun, F.; Zhang, H.; Wang, J.; Shen, Y.; Liang, X. Evaluation of COD Effect on Anammox Process and Microbial Communities in the Anaerobic Baffled Reactor (ABR). *Bioresour. Technol.* 2016, 216, 571–578. [CrossRef]
- Molinuevo, B.; Garcia, M.; Karakashev, D.; Angelidaki, I. Anammox for Ammonia Removal from Pig Manure Effluents: Effect of Organic Matter Content on Process Performance. *Bioresour. Technol.* 2009, 100, 2171–2175. [CrossRef]
- Ahn, Y.-H.; Hwang, I.-S.; Min, K.-S. ANAMMOX and Partial Denitritation in Anaerobic Nitrogen Removal from Piggery Waste. Water Sci. Technol. 2004, 49, 145–153. [CrossRef]
- Pijuan, M.; Ribera-Guardia, A.; Balcázar, J.L.; Micó, M.M.; de la Torre, T. Effect of COD on Mainstream Anammox: Evaluation of Process Performance, Granule Morphology and Nitrous Oxide Production. *Sci. Total Environ.* 2020, 712, 136372. [CrossRef]
- 74. Innerebner, G.; Insam, H.; Franke-Whittle, I.H.; Wett, B. Identification of Anammox Bacteria in a Full-Scale Deammonification Plant Making Use of Anaerobic Ammonia Oxidation. *Syst. Appl. Microbiol.* **2007**, *30*, 408–412. [CrossRef]
- Vlaeminck, S.E.; Terada, A.; Smets, B.F.; De Clippeleir, H.; Schaubroeck, T.; Bolca, S.; Demeestere, L.; Mast, J.; Boon, N.; Carballa, M.; et al. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox. *Appl. Environ. Microbiol.* 2010, *76*, 900–909. [CrossRef]
- Winkler, M.K.H.; Yang, J.; Kleerebezem, R.; Plaza, E.; Trela, J.; Hultman, B.; van Loosdrecht, M.C.M. Nitrate Reduction by Organotrophic Anammox Bacteria in a Nitritation/Anammox Granular Sludge and a Moving Bed Biofilm Reactor. *Bioresour. Technol.* 2012, 114, 217–223. [CrossRef]
- 77. Hubaux, N.; Wells, G.; Morgenroth, E. Impact of Coexistence of Flocs and Biofilm on Performance of Combined Nitritation-Anammox Granular Sludge Reactors. *Water Res.* 2015, *68*, 127–139. [CrossRef] [PubMed]
- Volcke, E.I.P.; Picioreanu, C.; De Baets, B.; van Loosdrecht, M.C.M. The Granule Size Distribution in an Anammox-Based Granular Sludge Reactor Affects the Conversion-Implications for Modeling. *Biotechnol. Bioeng.* 2012, 109, 1629–1636. [CrossRef] [PubMed]
- 79. Hu, Z.; Wessels, H.J.C.T.; van Alen, T.; Jetten, M.S.M.; Kartal, B. Nitric Oxide-Dependent Anaerobic Ammonium Oxidation. *Nat. Commun.* **2019**, *10*, 1244. [CrossRef] [PubMed]
- Prather, M.J. Time Scales in Atmospheric Chemistry: Coupled Perturbations to N₂O, NO_y, and O₃. *Science* 1998, 279, 1339–1341. [CrossRef] [PubMed]
- Yang, Y.; Azari, M.; Herbold, C.W.; Li, M.; Chen, H.; Ding, X.; Denecke, M.; Gu, J.-D. Activities and Metabolic Versatility of Distinct Anammox Bacteria in a Full-Scale Wastewater Treatment System. *Water Res.* 2021, 206, 117763. [CrossRef]
- Yang, Y.; Pan, J.; Zhou, Z.; Wu, J.; Liu, Y.; Lin, J.-G.; Hong, Y.; Li, X.; Li, M.; Gu, J.-D. Complex Microbial Nitrogen-Cycling Networks in Three Distinct Anammox-Inoculated Wastewater Treatment Systems. *Water Res.* 2020, 168, 115142. [CrossRef]
- Wan, X.; Volcke, E.I.P. Dynamic Modelling of N₂O Emissions from a Full-scale Granular Sludge Partial Nitritation-anammox Reactor. *Biotechnol. Bioeng.* 2022, 119, 1426–1438. [CrossRef]
- 84. Yang, Y.; Daims, H.; Liu, Y.; Herbold, C.W.; Pjevac, P.; Lin, J.-G.; Li, M.; Gu, J.-D. Activity and Metabolic Versatility of Complete Ammonia Oxidizers in Full-Scale Wastewater Treatment Systems. *mBio* 2020, *11*, e03175-19. [CrossRef]
- Roots, P.; Wang, Y.; Rosenthal, A.F.; Griffin, J.S.; Sabba, F.; Petrovich, M.; Yang, F.; Kozak, J.A.; Zhang, H.; Wells, G.F. Comammox *Nitrospira* Are the Dominant Ammonia Oxidizers in a Mainstream Low Dissolved Oxygen Nitrification Reactor. *Water Res.* 2019, 157, 396–405. [CrossRef]
- Itakura, M.; Uchida, Y.; Akiyama, H.; Hoshino, Y.T.; Shimomura, Y.; Morimoto, S.; Tago, K.; Wang, Y.; Hayakawa, C.; Uetake, Y.; et al. Mitigation of Nitrous Oxide Emissions from Soils by Bradyrhizobium Japonicum Inoculation. *Nat. Clim. Change* 2013, *3*, 208–212. [CrossRef]

- Massara, T.; Solis, B.; Guisasola, A.; Katsou, E.; Baeza, J. Development of an ASM2d-N2O Model to Describe Nitrous Oxide Emissions in Municipal WWTPs under Dynamic Conditions. *Chem. Eng. J.* 2018, 335, 185–196. [CrossRef]
- Solís, B.; Guisasola, A.; Pijuan, M.; Corominas, L.; Baeza, J.A. Systematic Calibration of N₂O Emissions from a Full-Scale WWTP Including a Tracer Test and a Global Sensitivity Approach. *Chem. Eng. J.* 2022, 435, 134733. [CrossRef]
- Li, Z.; Yang, X.; Chen, H.; Du, M.; Ok, Y.S. Modeling Nitrous Oxide Emissions in Membrane Bioreactors: Advancements, Challenges and Perspectives. Sci. Total Environ. 2022, 806, 151394. [CrossRef] [PubMed]
- Li, K.; Duan, H.; Liu, L.; Qiu, R.; van den Akker, B.; Ni, B.-J.; Chen, T.; Yin, H.; Yuan, Z.; Ye, L. An Integrated First Principal and Deep Learning Approach for Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants. *Environ. Sci. Technol.* 2022, 56, 2816–2826. [CrossRef]
- Blomberg, K.; Kosse, P.; Mikola, A.; Kuokkanen, A.; Fred, T.; Heinonen, M.; Mulas, M.; Lubken, M.; Wichern, M.; Vahala, R. Development of an Extended ASM3 Model for Predicting the Nitrous Oxide Emissions in a Full-Scale Wastewater Treatment Plant. *Environ. Sci. Technol* 2018, *52*, 5803–5811. [CrossRef]
- 92. Kaelin, D.; Manser, R.; Rieger, L.; Eugster, J.; Rottermann, K.; Siegrist, H. Extension of ASM3 for Two-Step Nitrification and Denitrification and Its Calibration and Validation with Batch Tests and Pilot Scale Data. *Water Res.* 2009, 43, 1680–1692. [CrossRef]