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� Abstract
Microscopy is a fundamental technology driving new biological discoveries. Today
microscopy allows a large number of images to be acquired using, for example, High
Throughput Screening (HTS) and 4D imaging. It is essential to be able to interrogate
these images and extract quantitative information in an automated fashion. In the con-
text of neurobiology, it is important to automatically quantify the morphology of neu-
rons in terms of neurite number, length, branching and complexity, etc. One major
issue in quantification of neuronal morphology is the “crossover” problem where neu-
rites cross and it is difficult to assign which neurite belongs to which cell body. In the
present study, we provide a solution to the “crossover” problem, the software package
NeuronCyto II. NeuronCyto II is an interactive and user-friendly software package for
automatic neurite quantification. It has a well-designed graphical user interface (GUI)
with only a few free parameters allowing users to optimize the software by themselves
and extract relevant quantitative information routinely. Users are able to interact with
the images and the numerical features through the Result Inspector. The processing of
neurites without crossover was presented in our previous work. Our solution for the
“crossover” problem is developed based on our recently published work with directed
graph theory. Both methods are implemented in NeuronCyto II. The results show that
our solution is able to significantly improve the reliability and accuracy of the neurons
displaying “crossover.” NeuronCyto II is freely available at the website: https://sites.goo-
gle.com/site/neuroncyto/, which includes user support and where software upgrades
will also be placed in the future. VC 2016 The Authors. Cytometry Part A Published by Wiley

Periodicals, Inc. on behalf of ISAC. This is an Open Access article under the terms of the Creative Commons

Attribution-Noncommercial License which permits use, distribution and reproduction in any medium,

provided that the Contribution is properly cited and is not used for commercial purposes.
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NEURONS consist of an axon and dendrites, or neurites. The nervous system proc-

esses and transmits biochemical and electrical information via neurites and their con-

nections (synapses). Thus, investigating the morphology of individual neurons and

their connections is fundamental to understanding the nervous system. Nowadays, the

advancement of microscopy has enabled us to acquire large amount of high quality

neural images using image-based High-Throughput Screening (HTS) experiments.

The morphology of neurons is very unique compared with other cell types. Important

parameters to understand neuronal morphology include neurite length and number,

branching and complexity, among others. Quantification of such information will be

useful in drug discovery programs aiming at therapies for neuronal regeneration and

for brain disorder such as Alzheimer’s, Huntington’s, and Parkinson’s disease.

Manual assessments of neuronal morphology using visual observation (1) and

visual scoring (2,3) approaches were first available to and applied by biologists to pro-
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cess a small number of images. However, in the HTS experi-

ments, manual assessments of the cellular images acquired

under different experimental conditions are labor intensive,

time-consuming and tedious, even if feasible. Such analysis is

also subjective, highly dependent on the experience, skill and

knowledge of the end users and prone to bias, inconsistency

and inaccuracy. Thus, the generation of an image-processing

tool that can automatically and quantitatively analyze neuronal

morphology becomes critical. In recent decades, much effort

has been made to develop computer-assisted approaches and/

or fully automatic methods for the assessment of neuronal

morphology. There are several semi-automated and computer-

assisted quantitative solutions proposed, such as Refs. 4–7. In

general, these approaches require intensive user interaction, for

example, the allocation of “seeds” (annotation) inside or out-

side the cell in Neurite-J1 and NeuronMetric. More recently, a

few automated approaches have been reported (8–12). Obvi-

ously, they are becoming a more preferable solution than the

semi-auto methods because automated solutions can effi-

ciently extract relevant, reliable and quantitative information

from HTS experiments with limited user interference. In addi-

tion, the intra/inter-observer variation and measurement

errors can be minimized. Several software packages based on

the automated neuronal morphology and neurite outgrowth

analyses have been published, such as NeuriteQuant (8), Neu-

rite Image Quantitator (NeuriteIQ) (9), NeuriteTracer (10),

HCA-Vision (11), NeurphologyJ (12), and NeuronCyto I

(13,14). The popular semi-auto or fully automatic solutions

are summarized in Table 1.

Under certain experimental conditions, the neurites may

grow very long, that is, from short neurites without crossovers

to long neurites with substantial amount of crossovers, as

shown in the acquired image of Figure 2C. Such crossovers

between neurites bring additional challenges to automatic

analysis. Most of the automatic solutions for quantitative neu-

rite analysis currently work well with the neurites that do not

display crossovers. We have developed a two-step directed

graph theoretical approach to address the “crossover” prob-

lem (15). Our solution is to reformulate the neurite tracing

problem as a label propagation of a directed graph model

such that the crossed neurites can be separated with each

other. Therefore, we are able to extend our analysis capability

from short non-crossover neurites to long crossover neurites.

Besides the capability of solving the crossover, another major

improvement compared with our previous work (13) is that

we build a user-friendly graphical user interface (GUI). Our

package, named NeuronCyto II, allows users with limited com-

puter programming skills and image processing knowledge to

extract the useful quantitative information independently.

Our software package and other related materials, such as a

user manual, demo movies and testing images, are freely

accessible at https://sites.google.com/site/neuroncyto/.

IMPLEMENTATION AND METHODS

The implementation of NeuronCyto II with GUI, as

shown in Figure 1A, aims to minimize human intervention

and to be user friendly, facilitating better performance in

terms of accuracy, efficiency, and reliability. In the GUI design,

we optimized the number of parameters and focused on sev-

eral key parameters, which can be modified by end users in a

simple manner. The limited number of parameters reduces

the complexity of parameter tuning process. Furthermore, it

minimizes human intervention and reduces the potential

human errors. We implemented Batch Processing function,

highlighted by the red arrow in Figure 1A, to automatically

quantify all acquired images under the similar conditions. The

Table 1. Summary of existing software packages for neurite outgrowth quantification

SOFTWARE NAME KEY MEASUREMENTS PLATFORM APPROACH EXPORTED MEDIA

Neurite-J (7) Neurite intersection and neurite

occupied area

ImageJ Semi-automated Annotated image and text

NeuronMetric (5) Primary neurite count, neurite

length, branch

number, quantity of soma,

and soma’s size.

ImageJ Semi-automated Annotated image and text

NeuriteTracer (10) Neurite length, quantity of soma. ImageJ Semi-automated Annotated image and text

NeuriteQuant (8) Neurite length and quantity of

soma and soma’s size.

ImageJ Automated Web-based HTML format

NeuriteIQ (9) Neurite length, quantity of

soma and soma’s size.

Matlab Automated Excel

HCA-Vision (11) Primary neurite count, neurite length,

branch number, quantity of

soma, and soma’s size.

C, C11, C# Automated Annotated image,

built-in database and CSV

NeurphologyJ (12) Neurite length and quantity of

soma and soma’s size.

ImageJ Automated Annotated image and text

NeuroCyto (13) Neurite length, neurite complexity,

branch level, quantity of soma,

and soma’s size

Matlab Automated Annotated image and text
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automatic neurite outgrowth quantification pipeline of Neu-

ronCyto II is illustrated in Figure 1B, including image input,

image preprocessing, segmentation, neurite tracing, quantifi-

cation, and results output.

Image Loading and Preprocessing

The main interface of NeuronCyto II is shown in Figure

1A. The left panel of the interface, indicated by the green

frame, is the control panels, including both parameter input

and functional buttons. Two channel images are required as

input for NeuronCyto II as shown in Figure 1A. They are cell

image and soma/nucleus image. In the acquired raw images,

we often face some issues of image qualities, including indirect

immunofluorescence staining, noise and non-uniform back-

ground. Since the image quality issues significantly affect the

accuracy of segmentation, filtering non-uniform background,

Figure 1. Introduction of NeuronCyto II software package. (Panel A). The interface of NeuronCyto II. Left side, indicated by green frame, is

the control panel for the image loading and parameter selection; right side, indicated by the red frame, is the visualization of the images,

intermediate results, segmentation and the final tracing results. Red arrows highlighted the Batch Processing function; blue arrow indi-

cates the results visualization and interacting tool, that is, the Results Inspector. (Panel B). Processing pipeline of NeuronCyto II. It includes

a few steps, such as image loading, image pre-processing, segmentation and separation of neurons, neurite tracing, quantitative informa-

tion extraction and data output.
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and removing noise are critical steps. Image preprocessing

algorithms, such as intensity normalization, top-hat filtering

and intensity contrast adjustment, are implemented to address

the image quality issues and further improve the quality of

image. (A separate technical document of the image pre-

processing is provided as Supporting Information in this

work.) The right panel of the interface, indicated by the red

frame in Figure 1A, is the image viewers. In our GUI design,

both cell and soma channels are merged together into green

and blue channel respectively, as shown in Figure 1A. Merged

image is visualized in the image viewers as original image and

pre-processed image. Output of preprocessed image will be

updated in real-time on image viewers when users modified

any parameters on the left side. Hence, the impacts of any

parameter adjustments are visualized in real-time and this

facilitates the users to efficiently select proper parameters at

each step.

Nucleus/Cell Segmentation

Cell segmentation for neuronal morphology assessment

is not a trivial issue and much work has been done to address

this problem. In NeuronCyto II, two different pipelines are

designed for cell segmentation depending on whether or not

the cells display “crossover.” Our tracing algorithms are

adapted and improved based on Refs. 13,14, and 16.

Neurites Without Crossover

Typical neurites without crossovers are shown in Figure

2A. In our previous work, we have shown the topological

dependence algorithm (13,14) is fast, reliable, and accurate.

However, our previous work did not provided a user inter-

face for the end users. It is rather difficult for the users with

limited programming and image processing skills to apply

our scripts/code for their studies. NeuronCyto II solves this

problem. In the GUI implementation, the soma/nucleus

channel will be used to detect the identity each cell. Then

cells will be detected and segmented based on topological

dependence as described in Ref. 13. Furthermore, we simpli-

fied complex parameter setting in the segmentation process

with only two important parameters. They are namely

threshold limit and threshold level. Institutively, the threshold

limit is to identify the foreground (lower value indicates

that weaker signal will be considered as part of some

cells) and threshold level controls the quality of the cell seg-

mentation (greater threshold level will in general provide

more accurate segmentation although more time-consuming.)

Figure 2. The neurite tracing results generated by NeuronCyto II for the images with and without crossover problems. The original

images without crossover and with crossover are shown in Panel A and Panel C, respectively. The tracing results are shown in Panel B

and Panel D, respectively. The red circles in Panel C and D illustrate the events of crossovers in the given image.
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Finally, neurites of each cell are segmented and visualized with

random color for each cell in the image viewer as shown in

Figure 2B.

Neurites With Crossover

In certain experimental conditions, for example, some

compounds are able to significantly induce the neurite out-

growth, the neurons will produce very long neurites and easily

cause the “crossovers,” as shown by the red circles in Figures

2C and 2D. Identifying and tracing neurite from original cells

is critical for quantitative neurite outgrowth analysis. Exiting

application such as NeuriteTracer (10), HCA-vision (11),

Vaa3D neuron module (17), Simple Neurite tracer (18) and

Figure 3. The data structure of NeuronCyto II and the interactive Results Inspector. Panel A shows the three levels of quantitative informa-

tion, that is, image, cell, and neurite levels. The quantitative information is outputted into formatted text file for further analysis. Panel B

illustrates the interactive Results Inspector. The left side, indicated by the green frame, is the numerical features of three different levels;

the right side, indicate by the red frame, is the visualization of selected features. The cell body, primary neuritis, and the secondary neu-

rites are highlighted by the green, yellow, and pink arrows, respectively. This tool allows the user to interact with acquired images and the

numerical features. It is also a platform to validate the quantitative results and eliminate any potential errors.
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tracing module of Metamorph NX1 are designed for neurite

tracing tasks, while the presence of such neurite crossovers is

still a challenging task (15). Recently, we presented a new neu-

rite tracing theory based on directed graph model (15). Our

method is tested and shows promising results for neurite with

crossovers (15). In NeuronCyto II, we implemented our graph-

theoretical approach to isolate the long neurite structure with

crossovers. The approach consists of two steps. First, we seg-

ment the cells and their neurites from the background using an

approach that penalizes the likelihood estimated with graph

Laplacian (15). Second, the neurite will be separated based on

digraph-based label propagation using Matrix-forest theorem.

In NeuronCyto II, images are binarized using threshold method.

The binary image can be visualized in real-time when the end

users determine the optimized threshold parameter. In the final

step, neurites of different cells are separated and differentiated

from each other, as shown in Figure 2D.

Neurite Tracing and Quantitative Parameters

Once the neural cells are separated, the final segmenta-

tion will be provided to neurite tracing module to quantify

the relevant features of each neuron. In our previous work

(13), we presented our neurite tracing algorithms. Our tracing

algorithm is based on the skeletons of the binary images. We

defined pixels on skeletons into the five different categories:

Root Point, Body Point, Node Point, Branch Point, and Leaf

Point. Our tracing algorithm then automatically searches

around the boundary of each cell body. When it encounters a

neurite root point, it will follow the neurite and quantitatively

measure the lengths of its branches. Every traced point will

contain the information of its distance from the root point

and the point it is being traced from. Due to the limitation of

space, we refer readers to our previous work for more details

on the segmentation and tracing algorithms (13,14).

In NeuronCyto II, the cells are visualized and evaluated by

end user to understand the impact of different conditions,

such as size, shape, appearance, and complexity of neurite.

These features are presented at three levels: individual image,

individual cell, and individual neurite, as shown in Figure 3A.

In order to further enhance the interaction between numerical

parameters and images, we developed an interactive Results

Inspector, as shown by the blue arrow in Figure 1A. The inter-

face of Results Inspector is illustrated in Figure 3B. The left

panel, indicated by the green frame, is the quantitative fea-

tures extracted from the given image. The right panel is the

visualization of quantified structures. The primary and sec-

ondary neurites are highlighted by yellow and pink lines

respectively. This interactive tool bridges images and the phe-

notypic results. This tool allows the users to validate and filter

the obtained results to further improve the reliability of their

data. For more details, please refer to our online demo and

our user manual for Result Inspector.

RESULTS

Accurate quantification of neurites with crossover relies

on the precise separation of neurons from each other. Our

proposed approach (15) is based on Matrix Forest Theorem

on Directed Graph to minimize the given cost function such

that we can achieve the correct separation of neurons. In this

section, we select the images with crossover neurons and com-

pare the performance of NeuronCyto II with our previous

work and other existing solutions. For the performance of the

neuron without crossover problem, we refer readers to our

previous work (13,14).

All images in this section contain the crossover issues.

The branching level analysis is a key perspective of neurite

outgrowth. We use NeuronJ (19) (ImageJ plug-in) to create

the ground truth of about 10 images with approximately 100

neurons. The neurites of each cell are manually annotated and

the quantitative measurements are extracted. First of all, we

compared the accuracy of branching level between Neuro-

nCyto II, NeuronCyto (13) and NeurtieQuant (8). Figure 4A

shows the correlation coefficients of these three packages for

primary, secondary, and tertiary neurite outgrowth of each

image. For the primary branch, the three solutions achieve

Figure 4. The quantitative comparison of NeuronCyto II with existing solutions on the images with crossover problems. Panel A shows

the correlation coefficient of NeuronCyto II, NeuronCyto, and NeuriteQuant to the ground truth for the selected images with crossover

problems. The three software packages achieved similar results at primary neurites, while NeuronCyto II significantly improved the accu-

racy of secondary and tertiary neurites. Panel B illustrates the accuracy of segments detection between NeuronCyto II and NeuronCyto.

We have about 5% improvements. Panel C shows the accurate rate of separation of crossover neurites. We can see that NeuronCyto II has

much better performance to separate the crossed neurites.

1http://www.moleculardevices.com/systems/metamorph-research-imaging/

metamorph-nx-microscopy-automation-image-analysis-software
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similar accuracy, while it is not supervising that NeuronCyto II

has better accuracy for secondary and tertiary branch mea-

surement compared with the other two methods because it

can better solve the crossover problems in the given images.

NeuriteQuant is an automatic solution to analyze the neural

cell; however, it can only extract the information for primary

neurite and is not able to solve the crossover problem.

On a cell-by-cell basis, we measured the correct segments

for NeuronCyto II and NeuronCyto as shown in Figure 4B. We

can see that the accuracy of neurite segments are improved about

5% by NeuronCyto II. This is because not all the neurons will dis-

play the “crossover.” If we only consider the neurons with

“crossover” problem, the improvement will be more significant.

Another important parameter is the accurate ratio of

NeuronCyto II for a given number of crossover problems pre-

sented in those images. Based on our ground truth, we calcu-

late this ratio as N/M, where N is the number of correct

separation of crossovers by NeuronCyto II and M is the total

number of crossovers in an image. The accurate ratio is

improved from less than 10% to about 70% as shown in Fig-

ure 4C. As we can see, the reliability of the neuron with cross-

over problem is significantly improved and we are able to

describe the neuron with crossovers in a more accurate and

reliable manner. The original testing images and raw measure-

ments for comparisons in the section are provided as Online

Supporting Information.

DISCUSSION

It is not trivial to process large amount of images

acquired by HST experiments. It is probably more challenging

to extract reliable and quantitative information from neural

cells automatically. In the past ten years, much work has been

done by both biologists and computer scientists to address

this problem. The field is growing rapidly. However, the

“crossover” problem is still to be resolved. Furthermore,

applying those algorithms to different dataset is not straight-

forward and this is especially true for the biologists, as it gen-

erally requires coding and image processing skills. There is a

big gap from good algorithms to a user-friendly and usable

software package, which can be routinely used by the biologist

to process their acquired images. The development of a soft-

ware package for a specific scientific problem requires system-

atic work. Such software packages need to be carefully

designed and engineered.

In the HST experiments, the neurites tend to grow very

long under certain experimental conditions and they will

inevitably crossover. We have proposed a directed graph

approach to address this “crossover” problem. In this work,

we present our software package, NeuronCyto II, with a user-

friendly interface of limited parameters, which includes the

implementation of our directed graph approach. Our software

package provides a comprehensive solution to neuronal mor-

phology analyses and also addresses the “crossover” problem

in general. Nevertheless, there is still room to further improve

the performance and accuracy of our software. For example,

there is a mistake of crossed neuron separation as highlighted

by the red arrow in Figures 2C and 2D. The reason is that

although our solution is able to separate most of the cross-

overs, we have not yet to integrate the “thickness” and

“brightness” as a clue into our graph model. If such con-

straints are incorporated in our model, we expect that the

overall accuracy of separation will be further improved.

Bioimage analysis software packages generally require a few

free parameters to be determined by the end users. Once a soft-

ware package is designed, the accuracy and performance will rely

on those “user-defined” parameters. However we found parame-

ter tuning is not a trivial task for the users who lack image analy-

sis experience. This is a common issue for many software

packages. It is critical to minimize the number of free parame-

ters. Let us consider the performance of a software package as a

function of those given free parameters, where the users have to

find the optimized performance by tuning some image process-

ing parameters even if they do not really understand their mean-

ing. This blind parameter tuning processing is tedious and

painful for the end users. Users with more knowledge and skills

will uncover the “good” parameters faster while it might be

slower and more difficult for the other users with less experience.

To improve this, we strive to lessen the parameter tuning burden

in a more natural, friendly and interactive way. As shown in the

online demo video, the user could immediately visualize the

results once they adjust a parameter. Such visual feedback loop is

critical for the user to quickly find the optimized parameters

and achieve optimal results.

The interactions between the end users, the images and

the quantitative parameters are important. To enhance such

interaction, we build a dedicated Result Inspector as shown in

Figure 3B. It allows the users to directly interact with numeri-

cal parameters, the detected structures and acquired images.

This tool also facilitates the users to validate the results, filter

away unreliable readings and further improve the accuracy of

their measurements. Eventually, the level of users experience

and skill is important for the practical adoption of a software

package. We have prepared detailed user manual and demo

videos for our end users. Those online materials will help the

user to get familiar with our package quickly and apply it to

their daily research activities. We established a website at

https://sites.google.com/site/neuroncyto/. It is a platform to

provide technical assistance for users. The end users will also

be able to feedback the software developers with potential

bugs. We will also release our further improvements and soft-

ware upgrade on this website.
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