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Abstract: Cleavage of hemagglutinin precursor (HA0) by cellular proteases results in the formation
of two subunits, HA1 and HA2. The N-terminal fragment of HA2, named a fusion peptide (HAfp),
possess a charged, amine N-terminus. It has been shown that the N-terminus of HAfp stabilizes
the structure of a helical hairpin observed for a 23-amino acid long peptide (HAfp1-23), whose
larger activity than HAfp1-20 has been demonstrated recently. In this paper, we analyze the effect of
N-terminal charge on peptide-mediated fusion efficiency and conformation changes at the membrane
interface by comparison with the corresponding N-acetylated peptides of 20- and 23-amino
acid lengths. We found that higher fusogenic activities of peptides with unmodified amino
termini correlates with their ability to form helical hairpin structures oriented perpendicularly
to the membrane plane. Molecular dynamics simulations showed that acetylated peptides adopt
open and surface-bound conformation more often, which induced less disorder of the phospholipid
chains, as compared to species with unmodified amino termini.

Keywords: viral replication; artificial membrane systems; fluorescence lifetime imaging microscopy;
molecular dynamics simulation; phospholipids; peptide termini; peptide-lipid interactions

1. Introduction

Influenza virus hemagglutinin is a trimeric, single-span transmembrane protein and is solely
involved in membrane fusion between the viral envelope and the endosomal membrane of the infected
host cell. It is composed of two subunits, HA1 and HA2, which are created by the proteolytic cleavage
of hemagglutinin precursor HA0. The kind of the HA-processing subtilisin-like proteases has been
firmly confirmed in the case of avian influenza viruses. In the case of human strains, the exact nature
of cleaving enzymes remains unknown, but other proteases, such as type II transmembrane serine
proteases and human airway trypsin-like protease (HAT), were pointed out as being involved [1].
However, regardless of the protease family, as a result of cleavage reaction, the N-terminal part of HA2
subunit is ended with a free amine group.

Since the early observations by Lear and de Grado [2] showing that membrane fusion of lipid
vesicles can be accomplished by a short N-terminal synthetic fragment of HA2 subunit, such fusion
peptides (HAfp) have been extensively used as full-length hemagglutinin mimicking species in
the studies on membrane fusion. In the same seminal paper, the authors showed that HAfp1-20 was
able to induce membrane fusion, in contrast to HAfp1-16 which appeared to be a poor fusogenic agent,
even at concentrations saturating binding to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)
vesicles. This issue indicated that the length of a fusion peptide, possibly warranting its ability to
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reach the active conformation, may be an important factor to consider in the studies devoted to
the mechanism of membrane fusion. Indeed, the most commonly studied HAfp1-20 was shown
to have an open, “boomerang” conformation [3,4], in contrast to HAfp1-23, comprising the three
conservative C-terminal residues (W21-Y22-G23), and adopting a distinct structure of a tight helical
hairpin ([5–9], and reviewed in [10]). In agreement with the above observations, in our recent paper,
we showed that the presence of the three C-terminal W21-Y22-G23 residues promotes the formation
of a helical hairpin, which orients itself perpendicularly to the membrane plane and induces more
disorder in the surrounding lipids than the less structured HAfp1-20 [11].

Irrespective to peptide length, NMR experiments showed an elevated pK for G1 N-terminal amino
group: 8.69 for HAfp1-20, measured in the presence of dioleoyl phosphocholine (PC) lipids [12], and 8.8
for HAfp1-23, measured in the presence of dodecylphosphatidyl (DPC) detergents [6]. These values
are considerably higher than expected in a hydrophobic environment (8.00 ± 0.03) [13]. In the helical
hairpin formed by HAfp1-23, the N-terminal amine group of G1 was shown to form hydrogen bonds
with carbonyl oxygen atoms of W21 and G23 and to be involved in charge-dipole interactions [5,6].
The assignment of protonation state of G1 was somewhat ambiguous in the molecular dynamics
simulations performed hitherto. For instance, the N-terminus of the peptide was shown to be localized
close to the amphiphatic membrane interface regardless of the protonation state of HAfp1-20 [14].
The N-terminal charge was also shown to have an influence on the peptide orientation [15,16].
Apart from the mainly interfacial location of HAfp1-20, transmembrane configurations have been
also reported for HAfp1-20 peptide with positively charged N-terminus [16]. On the experimental
side, broad comparative studies are missing, because either the neutral (acylated) form of the peptide
was studied [17], or peptides with both kinds of termini were compared, however they contained
mutations for negatively charged glutamic acid residues [18,19].

In the light of our recent paper [11], here we address the influence of the N-terminal positive
charge on peptide configuration within the lipid bilayer, its impact on local membrane structure, and
overall fusogenic activity. We compare HAfp1-20 and HAfp1-23 peptides either with N-terminal
charged amine groups, or with neutral, acetylated N-termini, by means of experimental fluorescence
techniques as well as full-atom, explicit solvent molecular dynamics simulations. For the sake of
simplicity, we abbreviate the peptide names to indicate their length and the N-terminal group: 23N+
(HAfp1-23, unmodified amine N-terminus), 23Ac (HAfp1-23, acetylated N-terminus), 20N+ (HAfp1-20,
unmodified amine N-terminus), 20Ac (HAfp1-20, acetylated N-terminus). Here, we demonstrate that
the N-terminal charge is an important factor contributing to the activity of influenza fusion peptides
owing to its role in the stabilization of helical hairpin conformation and peptide positioning in
transmembrane configuration.

2. Results

2.1. Fusogenic Activity of Peptides

We initially focused our attention on the effect of the N-terminal peptide charge on membrane
fusion effectiveness. Therefore, we performed lipid mixing assay on large unilamellar vesicles (LUVs)
based on NBD-rhodamine fluorescence energy transfer (FRET). Figure 1 shows lipid mixing levels
induced by unmodified amino terminus and N-acetylated peptides, which, according to decreasing
fusion activity, could be sorted in the following order: 23N+, 23Ac, 20N+, 20Ac. These results pointed
out that acetylated peptides appeared to be less efficient fusogenic agents in comparison to their
unmodified amino terminus species of the same length. At the same time, 23-amino acid long peptides
had a larger influence on lipid mixing than their shorter counterparts, highlighting the role of the three
conserved C-terminal fusion peptide residues, in agreement with our previous work [11].
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Figure 1. Lipid mixing studied by means of fluorescence energy transfer (FRET) occurring between
donor and acceptor in large unilamellar vesicles induced by increasing amount of fusion peptides:
(A) HAfp1-23; (B) HAfp1-23Ac; (C) HAfp1-20; and (D) HAfp1-20Ac. Lipid mixing calculated as
percentage of liposomes fused, using solubilized liposomes in detergent as 100%.

2.2. Binding to Phosphocholine (PC) Membranes

Our previous work [11] also showed that the larger fusogenic activity of 23N+ with unmodified
amino terminus compared to 20N+ was not correlated with their binding free energy to phospholipid
liposomes. The difference of Gibbs free energy (∆G0) of peptide-lipid complexes between these
two peptides was smaller than the experimental error. To check whether acetylated peptides bind to
PC membrane interface with similar affinities, we performed a series of peptide titration with increasing
amounts of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (DOPC) lipids and constructed binding
curves based on the solvatochromic effect of intrinsic tryptophan fluorescence (Figure 2) [20].
Non-linear curve fitting (see Materials and Methods for details) allowed for the extraction of partition
coefficient Kx and calculations of binding Gibbs free energy. Surprisingly, at pH 5.0, N-acetylated
peptides exhibited reversed binding preferences, depending on their lengths: ∆G0 for 23Ac was more
favorable by ~2.3 kJ/mol compared to 23N+, however less favorable by ~1.2 kJ/mol in the case of
20-aa pair (Table 1). At pH 7.4, the trend of binding free energy differences remained the same and
was more favorable for peptides with unmodified amino terminus by ~5.3 kJ/mol for the 23-aa pair
and less favorable by ~1.4 kJ/mol for the 20-aa pair. It is noteworthy, however, that 23Ac was the sole
peptide whose binding free energy was more favorables by ~2.2 kJ/mol at pH 7.4 compared to pH
5.0, despite an increased peptide negative charge by ~0.84 e. In the case of 23N+, this difference was
+~0.8 kJ/mol and reached +~2.7 kJ/mol and +2.9 kJ/mol for 20Ac and 20N+, respectively. Taken
together, the correlation between binding to the membrane interface and fusogenic activity was
not observed.
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Figure 2. Binding curves obtained from native tryptophan fluorescence and titration with large
unilamellar vesicles (LUV). Stronger binding of acetylated fusion peptides to phosphocholine (PC)
small unilamellar vesicles analyzed by native peptide fluorescence at: (A,B) acidic pH; and (C,D)
neutral pH. a.u.—arbitrary units.

2.3. Configuration of Peptides at the Membrane Interface

During our all atom-explicit solvent simulations of membrane-bound peptides, we observed
a large variety of system states, whose distribution to a large extent depended on peptide sequence
length and the type of N terminus. In general, peptide configurations could be designated by
the position of its center of mass across the membrane and the degree of hairpin opening (Figure 3).
The least variable, 23N+, remained predominantly in the form of a deeply buried, tightly closed hairpin
whose orientation was perpendicular to the membrane plane. Such membrane-spanning configuration,
albeit with less tightly closed hairpin, was also most typical for the shorter N-charged peptide. In this
case, however, we observed somewhat greater tendency of the peptide to reach the membrane-water
interface and, once there, to further open up. The two acetylated peptides showed significantly
higher propensity for surface locations with more open hairpin conformations. The population of
boomerang-like structures at the membrane surface was particularly well represented in the case
of 20Ac. Given the lowest membrane affinity of this peptide, this may indicate that the open form
provides for less favorable interactions with lipid bilayer.
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Figure 3. Free energy landscape for peptide configurations as a function of hairpin opening angle
(defined as an angle between C alpha atoms of residues 1, 12, and 20—see the Supplementary Figure S3
for illustration), and peptide center of mass position along the membrane normal (with values of 0 and
1.8 denoted by dotted lines, corresponding to membrane center and surface, respectively). Red dashed
lines divide peptide configurations into “open/closed” and “deep/surface” basins. Representative
simulation frames for all basins are shown in the Supplementary Figure S4.

This diversity of peptide configurations indicates a subtle interplay between intramolecular
and solvation forces, whose actual balance shifts depending on the nature of the N-terminal group
and the presence of the three additional amino acids at the C-terminus. First, the closed hairpin
conformation is most effectively stabilized by hydrogen bonds between the N-terminal NH3

+ group
and residues 21–23 in 23N+. Once formed, this conformation favorably adopts membrane spanning
orientation owing to the presence of hydrophilic groups at the hairpin poles, that is at peptide termini
and in the kink region. Both those regions seek hydrogen bond contacts with aqueous environment and
polar phosphates at the opposite sides of the lipid bilayer (Figure 4), which generates a straightening
momentum. In comparison to the unmodified amino terminus, the acetyl moiety was not observed to
maintain stable hydrogen bonds with C-terminal amino acids in our simulations, even in the longer
HAfp1-23 Ac, thus contributed less to the stabilization of the closed hairpin form. Neither, was it
forming hydrogen bonds with membrane phosphate groups (Figure 4), and, hence, less effectively
fixed the N-terminus at the membrane interfacial region. Accordingly, the closed hairpin conformation
of deeply buried 23Ac peptide adopted positions within the membrane that were shifted towards
the kink side by ~0.4 nm in comparison to analogous configurations of 23N+ (see Figures 3 and 5).
At the expense of acetylated N-terminus burial within the membrane core, such configuration allows
for better hydration of the polar/charged kink region. This is reflected by the highest number of
peptide-water hydrogen bonds in the kink region observed for 23Ac (Figure 4). Such shifted position
of deep hairpin configuration in the case of 23Ac may explain its highest membrane affinity among
the considered peptides, as well as unique free energy gain upon pH increase (Table 1), since pH
elevation is supposed to further increase the polarity of titratable kink residues.



Int. J. Mol. Sci. 2018, 19, 578 6 of 14

Figure 4. The number of hydrogen bonds with water (top) and phosphate groups (bottom) formed by
subsequent peptide residues. Note that the peptide structure attached here for illustration does not
represent the most typical tight hairpin conformation but rather the boomerang-like one.

Table 1. Partition coefficients and Gibbs binding free energies for fusion peptides. Total charges
calculated based on pK values according to [13]: G1 N-term: 8.8; E11: 5.31; and D19: 4.35. Detailed
data on the position of λmax and spectral widths can be found in the Supplementary Figure S1.

Peptide pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4

HAfp Kx·10−3 Kx·10−3 ∆Gx
0 (kJ/mol) ∆Gx

0 (kJ/mol) charge charge
23Ac 1700 ± 180 4080 ± 260 −35.2 ± 0.3 −37.4 ± 0.2 −1.15 −1.99
23N+ 660 ± 80 480 ± 130 −32.9 ± 0.3 −32.1 ± 0.7 −0.15 −0.99
20Ac 385 ± 36 118 ± 31 −31.6 ± 0.2 −28.7 ± 0.2 −1.15 −1.99
20N+ 650 ± 67 200 ± 33 −32.8 ± 0.3 −30.1 ± 0.4 −0.15 −0.99

Intriguingly, the presence of charged N terminus apparently disfavored the occurrence of surface
peptide configurations (Figure 5). In our MD simulations, the overall surface populations of both
acetylated peptides (0.35 and 0.75 for 23Ac and 20Ac, respectively) were significantly higher than in
the case of peptides with unmodified amino termini (0.00 and 0.04 for 23N+ and 20N+, respectively).
This notion is also indirectly supported by the magnitude of fluorescence intensities (Figure 2),
where lower values for acetylated peptides obtained in saturating conditions indicate their relatively
larger solvent exposure in membrane bound state. This counterintuitive effect seems to be possible
because the N-terminal HAfp α-helix, composed of strictly hydrophobic residues 2–10, is particularly
stable within the nonpolar bilayer core. Its structure remains intact in all simulations, in contrast to
the more hydrophilic and malleable C-terminal α-helix. Accordingly, the exposure of the N-terminal
charge to the polar environment of membrane surface is energetically favorable only if the subsequent
part of the α-helix remains buried within the membrane core, which implies perpendicular or at
least highly tilted peptide orientation. In the absence of the N-terminal charge, the hydrophobic
N-terminal helix capped with now neutral acetyl group can be entirely buried just at the edge
of the nonpolar bilayer core, allowing hairpin configuration which is parallel to membrane plane.
Indeed, close inspection of Cα atoms positions across the membrane indicates that when the surface
configurations of acetylated peptides are considered, the N-terminal α-helix remains ~0.5 nm deeper
within the membrane than the C-terminal hairpin arm (Figure 5).
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Figure 5. Probability distributions (P) of positions along membrane normal for: all phosphate atoms (Pav),
most membrane-intruding phosphate atoms in each simulation frame (Pd), and subsequent Cα peptide
atoms (C1–C23).

2.4. Acetylated Peptides Induce Less Disorder of the Lipid Chains and Intrude Phosphate Group Less Effectively

As might be expected, the diverse peptide configurations discussed above differ in their influence
on lipid environment. Based on our MD simulations, the degree of perturbation of membrane
structure can be evaluated by calculating the SCD order parameter for lipid acyl chains ( Supplementary
Figure S5), and measuring the depth of phosphate groups intrusions towards the membrane core.
The most lipid perturbing configuration of the peptide in terms of average SCD deviation from values
observed for pure membrane turned out to be membrane-spanning hairpin. Its effect was particularly
apparent for the HAfp23 with unmodified amino terminus (Figure 6). In this case, lipid acyl chain
disorder, manifested by low SCD values, was accompanied by a significant degree of phosphate groups
intrusion evidenced by non-vanishing average density of phosphate atoms present across the entire
membrane (Figure 5). This high membrane-perturbing efficiency of the 23N+ most likely results
from its stable, deeply buried transmembrane configuration. It positions the charged N-terminus
together with the three additional amphiphilic C-terminal residues in such a way that they form
a hydrophilic indentation reaching deep towards the membrane core. The less hydrophilic character of
the N-terminus in 23Ac, in particular nonexistent hydrogen bonding between the acetyl moiety and
phosphate groups (Figure 4), apparently results in lesser lipid disorder observed for this peptide, even
for membrane spanning configuration. In addition, generally lower overall membrane perturbing
efficiency of the acetylated peptides is caused by their higher propensity to adopt surface configurations
that interfere relatively little with lipid ordering (Figure 6).
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Figure 6. (A) Surface and deep-embedded configurations of a helical hairpin and boomerang (I and
III, and II and IV, respectively) with their probabilities (bar heights) and impact on lipid disorder
(gray level). (B) Lipid disorder induced by HAfp peptides measured as experimental lifetime NBD-C6
values in giant unilamellar vesicles (GUV). Nonparametric Wilcoxon-Mann-Whitney test: p < 0.05
between “no peptide” and all the peptides; between N+ and Ac p > 0.1 for both peptide lengths.
(C) Representative Fluorescence-lifetime imaging microscopy (FLIM) images of GUVs, scale bar 5 µm.
Corresponding fluorescence intensity decays with fits can be found in Supplementary Figure S2.

The results of MD simulations were accompanied by the experiments with NBD-C6-PE fluorescent
lipid analog whose lifetime was shown to be sensitive to membrane order, as shown in the experiments
with giant unilamellar vesicles (GUVs) composed of liquid-ordered (Lo) or liquid-disordered (Ld)
phases. The lifetime value of NBD-C6-PE changes from ~7 ns for pure Ld phase (DOPC) to ~12 ns
for pure Lo phase (DOPC/shingomyelin/cholesterol 1/1/8) [21]. Our recent paper showed that this
dye is also sensitive to lipid disorder introduced by fusion peptides, albeit to a lesser degree [11].
Among all peptides studied here, 23N+ perturbed the order of lipids to the greatest extent, decreasing
the NBD-C6-PE lifetime from 6.94 ± 0.24 ns to 6.55 ± 0.23 ns (Figure 6A). The lifetime value for
HAfp1-23 Ac was slightly increased to 6.66 ± 0.25 ns, and further to 6.78 ± 0.20 ns for HAfp1-20.
However, the accuracy of measurements does not allow to conclude about differences between the two
forms of HAfp1-20, even though MD-based estimates indicate definitely higher lipid perturbation
by 20N+.

3. Discussion

In the present study, we investigate the role of influenza fusion peptide N-terminus for its
interaction with lipid bilayer and fusogenic activity, using experiments on phospholipid liposomes
and atomistic molecular dynamics simulations. We find that the presence of a charged unmodified
amino terminus group positively contributes to fusogenic activity in comparison to neutral, acetylated
N-terminus. In parallel, the charged N terminus is observed to promote the formation of a tight helical
hairpin peptide conformation, which is deeply buried within the membrane, in membrane-spanning
orientation. According to our results, this configuration has the greatest potential to perturb lipid
structure, likely explaining greater fusogenic activity peptides with unmodified amino terminus.

Indeed, the positive correlation between the depth of fusion peptide membrane insertion and
fusogenity which was also observed for HIV fusion peptide [22]. Furthermore, deeper peptide
insertion into membrane was found to perturb lateral bilayer organization leading to increased lipid
mixing with a proximal membrane, which is thought to be a prerequisite for the formation of a fusion
pore [23–25]. In agreement with our findings, peptide orientation closer to membrane normal was
observed for wild-type HAfp1-25 peptide in DMPC:DMPG 1:1 (mol:mol) by attenuated total reflectance
(ATR)-FTIR measurements [26]. Similar membrane-spanning perpendicular configuration of HAfp1-23
was reported also for molecular dynamics simulations performed as self-assembly of DMPC lipids [27].
We speculate that a closed hairpin deeply embedded in the membrane is the most fusogenic form
of the fusion peptide also in vivo, in the hemagglutinin trimer, however the insertion depth may
depend also on the lipid composition of membrane. Factors such as cholesterol content, percentage of
saturated lipids and presence of negatively charged lipids may lead to more shallow, yet still effectively
lipid-perturbing, peptide location.
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Since the early works on fusion peptide-induced membrane fusion, it has been noticed
that the binding energy is not necessarily related to the peptide activity [2]. Although peptide
length-dependent correlation between binding energy and fusogenity has been found for HAfp1-n
(n = 8, 13, 16, and 20) peptides [28], the effects of N-terminal mutations do not indicate a simple
energy-function relationship. For instance, binding energy for fusion-blocking HAfp1-20 G1V mutant
has been shown to be ~2.75 kJ/mol more favorable than for HAfp1-16 peptide showing some fusogenic
activity [29]. At the same time, fusion-defective peptides were more self-associated at the membrane
surface compared to wild-type peptides [29]. Here we observe a similar effect for acetylated peptides:
while more favorably surface-bound, they have smaller impact on the disorder of lipid acyl chains,
that is presumably needed for membrane fusion. Such a relationship seems to be true not only in
the case of influenza fusion peptides, but also for cell-penetrating peptides among which examples of
surface-bound and less active peptides have been described (reviewed in [30]).

The lack of clear correlation between peptide-membrane affinity and fusiogenic potential may,
in part, be explained by the fact that experimentally determined partition coefficients served to
estimate binding free energies, reflect free energy change between the states that correspond to:
(a) peptide in solution plus unperturbed membrane; and (b) peptide bound into perturbed membrane.
Accordingly, the overall binding free energy of membrane-perturbing peptides accounts also for
unfavorable contributions due to disruption of equilibrium lipid structure. In other words, for a given
concentration of fusion peptides in solution, fewer bound, but more membrane-perturbing units
may induce fusion more effectively than multiple membrane associated, but less active structures.
This notion seems to be well illustrated by the comparison of 23N+ and 23Ac peptides. The former
one has less favorable binding free energy, but remains centrally located within the membrane, and
its charged N terminus leads to significant intrusions of phosphate groups into the nonpolar core.
The latter one fits well into the membrane with relatively buried neutral termini and solvent-exposed
kink region. Its acetylated terminal group, however, is not able to establish hydrogen bonds with
phosphate atoms of phospholipids, and hence, less effectively perturbs the membrane structure.
This issue may be an important factor in the studies of other viral class I peptides also obtained as
a result of proteolytic cleavage and therefore having a protonated free amine group (reviewed in [31]).
To the best of our knowledge, such systematic studies on viral fusion peptides do not exist and probably
would contribute to better understanding of protein-mediated membrane fusion mechanisms.

Apart from being involved in the interactions with environment, the N-terminal NH3
+ group

apparently contributes to hairpin structure stabilization by maintaining hydrogen bonds with
C-terminal residues 21–23 [5]. As indicated by surprisingly low membrane affinity of the 20Ac
peptide, which adopts the most open conformation out of all peptides considered here, such closed
hairpin structure may provide more compatible distribution of surface groups for peptide interaction
with membrane environment.

4. Materials and Methods

4.1. Materials

The peptides were custom ordered with purity >95% (Genemed Synthesis, Inc., San Antonio,
TX, USA and Lipopharm, Gdańsk, Poland). Sequences were as following: HAfp1-23N:
GLFGAIAGFIEGGWQGMVDGWYG-amide, HAfp1-20N: GLFGAIAGFIEGGWQGMVDG-amide.
Acetylated peptide (Ac) had the N-terminal amine substituted by amide group. Stocks
were prepared from weighted amounts dissolved in DMSO as 300–500 µM solutions.
Concentrations were checked by UV spectroscopy using the extinction coefficient at 280 nm
of 12.490 M−1 cm−1 for all peptides. POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine),
DOPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), and C6-NBD-PC (1-palmitoyl-2-(6-
((7-nitro-2-1,3-benzoxadiazol-4-yl)amino)hexanoyl)-sn-glycero-3-phosphocholine)were purchased
from Avanti Polar Lipids Ltd. (Alabaster, AL, USA) and used with no further purifications.
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(N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)-1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine
(NBD-C6-PE) and Lissamine™ Rhodamine B 1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine
(N-Rh-PE) used in fusion assays were from ThermoFisher Scientific (Waltham, MA, USA). All other
chemicals were from Sigma Aldrich (Saint Louis, MO, USA). All experiments were performed in
buffer pH 5.0 (10 mM citric acid/NaOH, 150 mM NaCl), and additional binding experiments at pH 7.4
in 10 mM Hepes/NaOH, 150 mM NaCl.

4.2. Liposome Preparation

Desired amounts of lipids in chloroform or chloroform/methanol 2/1 (v/v) were dried under
a stream of nitrogen and overnight under vacuum, followed by rehydration with appropriate buffer to
2–10 mg/mL concentration. For LUV preparation, the dispersion was frozen and thawed in liquid
nitrogen and 40 ◦C water bath at least 6 times, followed by extrusion (21 times) through polycarbonate
filters with 100 nm pores (Whatman) using Avanti Mini Extruder (Avanti Polar Lipids Ltd., Alabaster,
AL, USA). For SUV preparation, the dispersion was sonicated with a tip sonicator (VibraCell VCX130,
Sonics and Materials, Newtown, CT, USA) in 7–20 pulses lasting 10 s separated by 10 s breaks until
the solution was clear. GUVs were prepared by electroformation using Pt wire electrodes in homemade
Teflon chambers. We applied 5 µl of 1 mg/mL lipid mixture in chloroform on each wire that was
cleaned beforehand in ethanol in an ultrasonic bath, followed by 15 min of drying at 37 ◦C for
solvent evaporation. The chamber was filled with 350 µL of 0.3 M sucrose and an AC-current of
3 V (peak-to-peak) was applied in two steps: 10 Hz for 2 h and 2 Hz for 0.5 h. Forty microliters of
GUVs solution was transferred to a chambered 8-well cover glass #1 (Nunc LabTek II Chamber Slide
System, ThermoFisher Scientific Waltham, MA, USA) or homemade chambers consisting of cut 1.5 mL
Eppendorf tubes glued (Norland Optical Adhesive 63, Norland Products, Cranbury, NJ, USA) to
a glass cover slip (22 mm × 22 mm, #1, Carl Roth, Karlsruhe, Germany). Each chamber contained
125 µL (or 255 µL in Nunc chambers) of buffer. The concentration of added peptides in the experiments
with GUVs was in the range of 2.6–7.5 µM.

4.3. Lipid Fusion in LUVs

Lipid mixing of membrane fusion was measured by FRET using a Cary Eclipse (Varian, Agilent,
Santa Clara, CA, USA) spectrofluorometer. For each lipid composition, unlabeled and labeled
LUVs were prepared. To prepare the labeled LUVs, we included 1 mol% NBD-PE and N-Rh-PE
in the lipid mixture before drying the lipids in the liposome preparation procedure. Unlabeled and
labeled LUVs were mixed at a 9:1 ratio in pH 5.0 buffer. The total lipids concentration was 0.2 mM.
After the equilibration of the vesicles, an appropriate amount of peptides from a stock solution was
added to give final concentrations of 1.1, 2.1 and 4.2 µM. Then, 10% Triton X-100 was added to achieve
a final concentration of 1% after fusion had been completed. Fluorescence intensity of the acceptor
(excitation with 463 nm and emission at 590 nm) before the addition of peptides and after the addition
of Triton X-100 was defined as 0% and 100% fusion, respectively. Experiments were performed in
triplicates and averaged signal is shown.

4.4. FLIM Imaging

For FLIM laser scanning microscopy, an upgrade kit (PicoQuant, Berlin, Germany) installed on
Zeiss LSM 710 (Carl Zeiss, Jena, Germany) was applied. The 256 × 256 pixel images of membrane
dyes in GUVs were collected by excitation with a pulsed diode laser (pulse frequency: 25 MHz) with
a wavelength of 485 nm focused by C-Apochromat 40×, 1.2 NA water immersion objective (Carl Zeiss,
Jena, Germany). Emission of C6-NBD-PC was recorded using a 520/35 bandpass filter. Single photons
were registered with a single photon avalanche photo diode and registered using a time-correlated
single photon counting (TCSPC) approach. The decay curves were analyzed in the range not affected
by the instrument response function (“tail-fit”). A non-linear least squares iterative fitting procedure
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was applied to obtain the fluorescence lifetimes of QDs by fitting a sum of two exponential decays.
The average lifetime was calculated as τav = (ΣAiτi

2/ΣAiτi).

4.5. Tryptophan Fluorescence

Fluorescence measurements were made with a Carry Eclipse (Varian, Agilent, Santa Clara, CA,
USA) spectrofluorometer with an excitation wavelength of 280 nm. Excitation slits were not wider
than 2.5 nm; emission slits were 4 nm. Photomultiplier voltage was 800 V. Spectra were measured
using a 4 mm × 10 mm cuvettes (Hellma USA Inc., Plainview, NY, USA) in the emission region of
295–500 nm with an increment of 1 nm. Peptide solutions were used in 2–10 µM concentrations in
1000 µL volume, titrated with increasing portions of SUV suspension up to ~1mM in 13–20 steps.
Normally, for each lipid concentration 3 spectra were averaged to achieve an adequate signal-to-noise
ratio. Titration was performed with mild stirring and the cuvette was in the contact with a thermostat,
assuring constant temperature of 22.0 × 0.5 ◦C. From each spectrum background was subtracted (by
measuring blank titration). The titration curves were constructed as normalized intensity values for
the wavelength for which the maximum spectral shift was observed between free and liposome-bound
peptide (~328 nm). Such procedure was shown to govern a linear response of the signal in respect
to the titrated peptide [20]. The titration curves were further corrected for SUV scattering according
to [20] by using the tryptophan (N-acetyl-L-tryptophanamide) fluorescence registered under the same
conditions in the presence of SUV solution at concentration [L] according to the equation:

Fcorr
pept([L]) = Fpept([L])

Fbu f f er
Trp

FTrp([L])

To corrected data point, non-linear hyberbolic curve was fitted according to the equation:

F = 1 + (I − 1)
Kx[L]

[W] + Kx[L]

where I denotes asymptotic intensity value, [W] is the molar water concentration (=55.55 M) and Kx is
the molar partition coefficient. Gibbs free energies were calculated as:

∆ G
◦
x = −RT ln Kx

4.6. Molecular Dynamics Simulations

Molecular dynamics simulations conducted in this work were based on the same methodology
as in our previous study [11]. Briefly, we used a temperature replica exchange method implemented
in GROMACS 2016 package [32], with amber99*ILDNP force field for peptides [33], Lipd14
force field for POPC molecules [34], and TIP3P model [35] for water. Peptide sequences of
GLFGAIAGFIEGGWQGMVDG(WYG) included protonated E11, charged or acetylated N-terminus,
and amidated C-terminus, reflecting the experimental setup, and protonation state expected for
pH = 5 [36]. The systems including one peptide, 128 POPC phospholipids, and ~4000 water molecules
were simulated using periodic boundary conditions, constrained bond lengths, 2 fs time step, 1 nm
cutoff for van der Waals interactions with long range correction, particle mesh Ewald method with
0.12 nm grid spacing for electrostatic interactions. Pressure of 1 atm was maintained with anisotropic
Parinello-Rahman barostat. Following spontaneous assembly procedure [11], and 100 ns equilibration
runs, each system was simulated using 24 replicas with temperatures ranging from 310 to 376 K, with
spacing determined to provide equal exchange probabilities [36]. Replica exchange simulation was
conducted for 200 ns for each system, 150 ns of which at T = 310 K was used for analysis. SCD order
parameters were calculated using the algorithm implemented in g_lomepro program [37], while
hydrogen bond analysis was carried out using gmx hbond Gromacs tool.
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5. Conclusions

Based on atomistic molecular dynamics simulations of peptide–membrane systems and
experiments on phospholipid liposomes, our study provides insights into the influence of
influenza fusion peptide N-terminal group on its interaction with lipid membrane and the resulting
fusogenic activity. According to our observations, the most fusogenic form of the fusion
peptide corresponds to a tight helical hairpin, deeply buried within the membrane, and adopting
membrane-spanning orientation. As expected, we find that an unmodified, charged N-terminal
amino group contributes positively to the fusogenic activity in comparison with neutral, acetylated
N-terminus. We ascribe the following roles to the charged N-terminus: (a) stabilization of the closed
hairpin peptide form by hydrogen bonds with residues 21–23; (b) stabilization of perpendicular,
centrally located membrane spanning hairpin configuration by maintaining polar contacts with
aqueous environment and membrane phosphate groups, which, together with analogous interactions
on the kink side, contribute to a pair of forces that fix hairpin ends to opposite sides of the bilayer;
and (c) influence on lipid disorder by promoting phosphate groups intrusions into the nonpolar
membrane core.

Supplementary Materials: The following are available online at www.mdpi.com/link/1422-0067/19/2/578/s1,
Figure S1: title, Table S1: title, Video S1: title.
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