
BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

CO
M

PU
TE

R
SC

IE
N

CE
S

Neural networks to learn protein sequence–function
relationships from deep mutational scanning data
Sam Gelmana,b , Sarah A. Fahlbergc, Pete Heinzelmanc , Philip A. Romeroc,1,2 , and Anthony Gittera,b,d,1,2

aDepartment of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706; bMorgridge Institute for Research, Madison, WI 53715;
cDepartment of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706; and dDepartment of Biostatistics and Medical Informatics, University
of Wisconsin–Madison, Madison, WI 53792

Edited by Andrej Sali, University of California, San Francisco, CA, and approved October 15, 2021 (received for review March 12, 2021)

The mapping from protein sequence to function is highly complex,
making it challenging to predict how sequence changes will affect
a protein’s behavior and properties. We present a supervised deep
learning framework to learn the sequence–function mapping from
deep mutational scanning data and make predictions for new, un-
characterized sequence variants. We test multiple neural network
architectures, including a graph convolutional network that in-
corporates protein structure, to explore how a network’s internal
representation affects its ability to learn the sequence–function
mapping. Our supervised learning approach displays superior per-
formance over physics-based and unsupervised prediction meth-
ods. We find that networks that capture nonlinear interactions
and share parameters across sequence positions are important for
learning the relationship between sequence and function. Further
analysis of the trained models reveals the networks’ ability to
learn biologically meaningful information about protein structure
and mechanism. Finally, we demonstrate the models’ ability to
navigate sequence space and design new proteins beyond the
training set. We applied the protein G B1 domain (GB1) models
to design a sequence that binds to immunoglobulin G with sub-
stantially higher affinity than wild-type GB1.

protein engineering | deep learning | convolutional neural network

Understanding the mapping from protein sequence to func-
tion is important for describing natural evolutionary pro-

cesses, diagnosing genetic disease, and designing new proteins
with useful properties. This mapping is shaped by thousands of
intricate molecular interactions, dynamic conformational ensem-
bles, and nonlinear relationships between biophysical properties.
These highly complex features make it challenging to model and
predict how changes in amino acid sequence affect function.

The volume of protein data has exploded over the last decade
with advances in DNA sequencing, three-dimensional structure
determination, and high-throughput screening. With these in-
creasing data, statistics and machine learning approaches have
emerged as powerful methods to understand the complex map-
ping from protein sequence to function. Unsupervised learning
methods such as EVmutation (1) and DeepSequence (2) are
trained on large alignments of evolutionarily related protein
sequences. These methods can model a protein family’s native
function, but they are not capable of predicting specific pro-
tein properties that were not subject to long-term evolutionary
selection. In contrast, supervised methods learn the mapping
to a specific protein property directly from sequence–function
examples. Many prior supervised learning approaches have limi-
tations, such as the inability to capture nonlinear interactions (3,
4), poor scalability to large datasets (5), making predictions only
for single-mutation variants (6), or a lack of available code (7).
Other learning methods leverage multiple sequence alignments
and databases of annotated genetic variants to make qualitative
predictions about a mutation’s effect on organismal fitness or
disease, rather than making quantitative predictions of molec-
ular phenotype (8–10). There is a current need for general,
easy to use supervised learning methods that can leverage large

sequence–function datasets to predict specific molecular pheno-
types with the high accuracy required for protein design. We
address this need with a usable software framework that can be
readily adopted by others for new proteins (11).

We present a deep learning framework to learn protein
sequence–function relationships from large-scale data generated
by deep mutational scanning experiments. We train supervised
neural networks to learn the mapping from sequence to function.
These trained networks can then generalize to predict the
functions of previously unseen sequences. We examine network
architectures with different representational capabilities includ-
ing linear regression, nonlinear fully connected networks, and
convolutional networks that share parameters. Our supervised
modeling approach displays strong predictive accuracy on
five diverse deep mutational scanning datasets and compares
favorably with state-of-the-art physics-based and unsupervised
prediction methods. Across the different architectures tested,
we find that networks that capture nonlinear interactions
and share information across sequence positions display the
greatest predictive performance. We explore what our neural
network models have learned about proteins and how they
comprehend the sequence–function mapping. The convolutional
neural networks learn a protein sequence representation that

Significance

Understanding the relationship between protein sequence and
function is necessary to design new and useful proteins with
applications in bioenergy, medicine, and agriculture. The map-
ping from sequence to function is tremendously complex be-
cause it involves thousands of molecular interactions that are
coupled over multiple lengths and timescales. We show that
neural networks can learn the sequence–function mapping
from large protein datasets. Neural networks are appealing
for this task because they can learn complicated relationships
from data, make few assumptions about the nature of the
sequence–function relationship, and can learn general rules
that apply across the length of the protein sequence. We
demonstrate that learned models can be applied to design new
proteins with properties that exceed natural sequences.

Author contributions: S.G., S.A.F., P.A.R., and A.G. designed research; S.G., S.A.F., P.H.,
P.A.R., and A.G. performed research; S.G. and S.A.F. contributed new reagents/analytic
tools; S.G., S.A.F., P.A.R., and A.G. analyzed data; and S.G., S.A.F., P.A.R., and A.G. wrote
the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).
1P.A.R. and A.G. contributed equally to this work.
2To whom correspondence may be addressed. Email: promero2@wisc.edu or
gitter@biostat.wisc.edu.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental.

Published November 23, 2021.

PNAS 2021 Vol. 118 No. 48 e2104878118 https://doi.org/10.1073/pnas.2104878118 1 of 12

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2104878118&domain=pdf&date_stamp=2021-11-23
http://orcid.org/0000-0001-9537-0976
http://orcid.org/0000-0002-5588-3731
http://orcid.org/0000-0002-2586-7263
http://orcid.org/0000-0002-5324-9833
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:promero2@wisc.edu
mailto:gitter@biostat.wisc.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104878118

organizes sequences according to their structural and functional
differences. In addition, the importance of input sequence
features displays a strong correspondence to the protein’s three-
dimensional structure and known key residues. Finally, we used
an ensemble of the supervised learning models to design five
protein G B1 domain (GB1) sequences with varying distances
from the wild type. We experimentally characterized these
sequences and found the top design binds to immunoglobulin
G (IgG) with at least an order of magnitude higher affinity than
wild-type GB1.

Results
A Deep Learning Framework to Model the Sequence–Function Map-
ping. Neural networks are capable of learning complex, nonlin-
ear input–output mappings; extracting meaningful, higher-level
features from raw inputs; and generalizing from training data to
new, unseen inputs (12). We develop a deep learning framework
to learn from large-scale sequence–function data generated by
deep mutational scanning. Deep mutational scanning data con-
sist of thousands to millions of protein sequence variants that
each have an associated score that quantifies their activity or
fitness in a high-throughput function assay (13). We encode the
protein sequences with a featurization that captures the identity
and physicochemical properties of each amino acid at each posi-
tion. Our approach encodes the entire protein sequence and thus
can represent multimutation variants. We train a neural network
to map the encoded sequences to their associated functional
scores. After it is trained, the network generalizes and can predict
functional scores for new, unseen protein variants (Fig. 1A).

We test four supervised learning models to explore how
different internal representations influence the ability to learn
the mapping from protein sequence to function: linear regres-
sion and fully connected, sequence convolutional, and graph

convolutional neural networks (Fig. 1B). Linear regression serves
as a simple baseline because it cannot capture dependencies
between sites, and thus, all residues make additive contributions
to the predicted fitness. Fully connected networks incorporate
multiple hidden layers and nonlinear activation functions,
enabling them to learn complex nonlinearities in the sequence
to function mapping. In contrast to linear regression, fully
connected networks are capable of modeling how combinations
of residues jointly affect function beyond simple additive effects.
These nonadditive effects are known as mutational epistasis (14,
15). Neither linear regression nor fully connected networks are
able to learn meaningful weights for amino acid substitutions
that are not directly observed in the training set.

Convolutional neural networks have parameter sharing ar-
chitectures that enable them to learn higher-level features that
generalize across different sequence positions. They learn convo-
lutional filters that identify patterns across different parts of the
input. For example, a filter may learn to recognize the alternating
pattern of polar and nonpolar amino acids commonly observed in
β-strands. Applying this filter would enable the network to assess
β-strand propensity across the entire input sequence and relate
this higher-level information to the observed protein function.
Importantly, the filter parameters are shared across all sequence
positions, enabling convolutional networks to make meaningful
predictions for mutations that were not directly observed during
training. We develop a sequence-based convolutional network
that integrates local sequence information by applying filters
using a sliding window across the amino acid sequence. We also
develop a structure-based graph convolutional network that in-
tegrates three-dimensional structural information and may allow
the network to learn filters that correspond to structural motifs.
The graph convolutional network applies filters to neighboring
nodes in a graph representation of the protein’s structure. The
protein structure graph consists of a node for each residue and an

A

B D

C

Fig. 1. Overview of our supervised learning framework. (A) We use sequence–function data to train a neural network that can predict the functional score
of protein variants. The sequence-based input captures physicochemical and biochemical properties of amino acids and supports multiple mutations per
variant. The trained network can predict functional scores for previously uncharacterized variants. (B) We tested linear regression and three types of neural
network architectures: fully connected, sequence convolutional, and graph convolutional. (C) Scatterplots showing performance of trained networks on the
Pab1 dataset. (D) Process of generating the protein structure graph for Pab1. We create the protein structure graph by computing a residue distance matrix
from the protein’s three-dimensional structure, thresholding the distances, and converting the resulting contact map to an undirected graph. The structure
graph is the core part of the graph convolutional neural network.

2 of 12 PNAS
https://doi.org/10.1073/pnas.2104878118

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep

mutational scanning data

https://doi.org/10.1073/pnas.2104878118

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

CO
M

PU
TE

R
SC

IE
N

CE
S

edge between nodes if the residues are within a specified distance
in three-dimensional space (Fig. 1D).

Evaluating Models Learned from Deep Mutational Scanning
Data. We evaluated the predictive performance of the different
network architectures on five diverse deep mutational scanning
datasets representing proteins of varying sizes, folds, and
functions: Aequorea victoria green fluorescent protein (avGFP),
β-glucosidase (Bgl3), GB1, poly(A)-binding protein (Pab1),
and ubiquitination factor E4B (Ube4b) (Fig. 2A and Table
1). These datasets range in size from ∼25,000 to ∼500,000

sequence-score examples. We randomly split each dataset into
training, tuning, and testing sets to optimize hyperparameters
and evaluate predictive performance on data that were not seen
during training. The learned models displayed excellent test
set predictions for most datasets, with Pearson’s correlation
coefficients ranging from 0.55 to 0.98 (Fig. 2B). The trends
are generally similar using Spearman’s correlation coefficient
(SI Appendix, Fig. S1), although the differences between linear
regression and the neural networks are smaller.

For comparison, we also evaluated the predictive performance
of established physics-based and unsupervised learning methods

Pe
ar
so
n’
s
r

10
1

10
2

10
3

10
4

10
5

10
6

Train Set Size

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

10
5

10
6

Train Set Size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10
1

10
2

10
3

10
4

10
5

10
6

Train Set Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10
1

10
2

10
3

10
4

10
5

10
6

Train Set Size

0.0

0.2

0.4

0.6

10
1

10
2

10
3

10
4

10
5

10
6

Train Set Size

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
lo
fT
op
10
0

10
1

10
2

10
3

10
4

Budget

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

Budget

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

Budget

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

Budget

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

Budget

0.0

0.2

0.4

0.6

0.8

1.0

EVmut (E)
DeepSeq

LR
FC

CNN
GCN

EVmut (I)
Rosetta

0.00 0.25 0.50 0.75 1.00
Pearson's r

0.00 0.25 0.50 0.75 1.00
Pearson's r

0.00 0.25 0.50 0.75 1.00
Pearson's r

0.00 0.25 0.50 0.75 1.00
Pearson's r

0.00 0.25 0.50 0.75 1.00
Pearson's r

LR
FC

CNN
GCN

0.0 0.5 1.0
Pearson's r

0.0 0.5 1.0
Pearson's r

0.0 0.5 1.0
Pearson's r

0.0 0.5 1.0
Pearson's r

0.0 0.5 1.0
Pearson's r

avGFP Bgl3 GB1 Pab1 Ube4b

LR FC CNN GCN Rosetta EVmut (I) EVmut (E) DeepSeq Best case Random

A

B

C

D

E

Fig. 2. Evaluation of neural networks and comparison with unsupervised methods. (A) Three-dimensional protein structures. (B) Pearson’s correlation
coefficient between true and predicted scores for Rosetta, EVmutation, DeepSequence, linear regression (LR), fully connected network (FC), sequence
convolutional network (CNN), and graph convolutional network (GCN). EVmutation (I) refers to the independent formulation of the model that does
not include pairwise interactions. EVmutation (E) refers to the epistatic formulation of the model that does include pairwise interactions. Each point
corresponds to one of seven random train–tune–test splits. (C) Correlation performance of supervised models trained with reduced training set sizes. (D)
Model performance when making predictions for variants containing mutations that were not seen during training (mutational extrapolation). Each point
corresponds to one of six replicates, and the red vertical lines denote the medians. (E) The fraction of the true 100 best-scoring variants identified by each
model’s ranking of variants with the given budget. The random baseline is shown with the mean and a 95% CI.

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep
mutational scanning data

PNAS 3 of 12
https://doi.org/10.1073/pnas.2104878118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104878118

Table 1. Deep mutational scanning datasets

Description Organism Molecular function Selection Length Variants Ref.

avGFP Green fluorescent
protein

A. victoria Fluorescence Brightness 237 54,024 16

Bgl3 β-glucosidase Streptococcus sp. Hydrolysis of
β-glucosidic linkages

Enzymatic activity 501 26,653 17

GB1 Protein G B1 domain Streptococcus sp. IgG binding IgG-Fc binding 56 536,084 15
Pab1 Pab1 RNA recognition

motif (RRM) domain
Saccharomyces

cerevisiae
Poly(A) binding Messenger RNA (mRNA)

binding
75 40,852 18

Ube4b Ubiquitination factor
E4B U-box domain

Mus musculus Ubiquitin-activating
enzyme activity

Ubiquitin ligase activity 102 98,297 19

We evaluated the models on deep mutational scanning datasets representing proteins of varying sizes, folds, and functions.

Rosetta (20), EVmutation (1), and DeepSequence (2), which
are not trained using the deep mutational scanning data. Our
supervised learning approach achieves superior performance to
these other methods on all five protein datasets, demonstrating
the benefit of training directly on sequence–function data (Fig.
2B). This result is unsurprising because supervised models are
tailored to the specific protein property and sequence distribu-
tion in the dataset. Rosetta predictions consider the energetics
of the protein structure and therefore do not capture the more
specific aspects of protein function. Unsupervised methods such
as EVmutation and DeepSequence are trained on natural se-
quences and thus only capture aspects of protein function directly
related to natural evolution. Despite their lower performance,
physics-based and unsupervised methods have the benefit of not
requiring large-scale sequence–function data, which are often
difficult and expensive to acquire.

The different supervised models displayed notable trends
in predictive performance across the datasets. The nonlin-
ear models outperformed linear regression, especially on
variants with low scores (SI Appendix, Fig. S2); high epistasis
(SI Appendix, Fig. S3); and in the case of avGFP, larger numbers
of mutations (SI Appendix, Fig. S4). The three nonlinear models
performed similarly when trained and evaluated on the full
training and testing sets. However, the convolutional networks
achieved a better mean squared error when evaluating single-
mutation variants in Pab1 and GB1 (SI Appendix, Fig. S4). For
most proteins, the convolutional networks also had superior
performance when trained on smaller training sets (Fig. 2C).

The quantitative evaluations described thus far involve test
set variants that have similar characteristics to the training data.
We also tested the ability of the models to extrapolate to more
challenging test sets. In mutational extrapolation, the model
makes predictions for variants containing mutations that were
not seen during training. The model must generalize based on
mutations that may occur in the same or other positions. The
convolutional networks achieved strong performance for one
dataset (r > 0.9), moderate performance for two additional
datasets (r > 0.6), and outperformed linear regression and fully
connected networks across all datasets (Fig. 2D). In positional
extrapolation, the model makes predictions for variants contain-
ing mutations in positions that were never modified in the train-
ing data. The performance of all models is drastically reduced
(SI Appendix, Fig. S5), highlighting the difficulty of this task (21).
In theory, the parameter sharing inherent to convolutional net-
works allows them to generalize the effects of mutations across
sequence positions. This capability may explain the convolutional
networks’ superior performance with reduced training set sizes
and mutational extrapolation. However, it is still difficult for
the convolutional networks to perform well when there are no
training examples of mutations in a particular position, such as
in positional extrapolation.

The sequence convolutional and graph convolutional networks
displayed similar performance across all evaluation metrics,
despite the inclusion of three-dimensional protein structure

information in the graph topology. To assess the impact of
integrating protein structure in the neural network architecture,
we created graph convolutional networks with misspecified
baseline graphs that were unrelated to the protein structure.
These baseline graphs include shuffled, disconnected, sequential,
and complete graph structures (SI Appendix, Fig. S6). We
found that networks trained using these misspecified baseline
graphs had accuracy similar to networks trained with the
actual protein structure graph, indicating that protein structure
information is contributing little to the model’s performance
(SI Appendix, Fig. S7). We also trained the convolutional
networks with and without a final fully connected layer and
found that this fully connected layer was more important than a
correctly specified graph structure. In almost all cases, this final
fully connected layer helps overcome the misspecified graph
structure (SI Appendix, Fig. S7). Overall, these results suggest
that the specific convolutional window is not as critical as sharing
parameters across different sequence positions and integrating
information with a fully connected layer.

The goal of protein engineering is to identify optimized pro-
teins, and models can facilitate this process by predicting high-
activity sequences from an untested pool of sequences. Pearson’s
correlation captures a model’s performance across all variants,
but it does not provide information regarding a model’s ability
to retrieve and rank high-scoring variants. We evaluated each
model’s ability to predict the highest-scoring variants within a
given experimental testing budget (Fig. 2E). We calculated recall
by asking each model to identify the top N variants from the
test set, where N is the budget, and evaluating what fraction
of the true top 100 variants was covered in this predicted set.
The supervised models consistently achieve higher recall than
Rosetta and the unsupervised methods, although the differences
are small for Pab1 and Bgl3. In practice, the budget depends on
the experimental costs of synthesizing and evaluating variants of
the given protein. For GB1, a feasible budget may be 100 variants,
and the supervised models can recall over 60% of the top 100
sequences with that budget.

Another important performance metric for protein engineer-
ing is the ability to prioritize variants that have greater activity
than the wild-type protein. We calculated the mean and max-
imum scores of the top N predicted test set variants ranked
by each model (SI Appendix, Figs. S8 and S9). We find that the
variants prioritized by the supervised models have greater func-
tional scores than the wild type on average, even when consid-
ering variants ranked beyond the top thousand sequences for
some datasets. In contrast, Rosetta and the unsupervised models
generally prioritize variants with mean scores worse than the
wild type. The maximum score of the prioritized variants is also
important because it represents the best variant suggested by
the model. We find that nearly all models are able to prioritize
variants with a maximum score greater than the wild type. The
relative performance of each model is dependent on the dataset.
Notably, the unsupervised methods perform very well on Bgl3,
with EVmutation identifying the top variant with a budget of 20.

4 of 12 PNAS
https://doi.org/10.1073/pnas.2104878118

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep

mutational scanning data

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104878118

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

CO
M

PU
TE

R
SC

IE
N

CE
S

Meanwhile, the supervised methods perform very well on Ube4b,
prioritizing a variant with the true maximum score with a budget
as small as five variants.

Role of Data Quality in Learning Accurate Sequence–Function Mod-
els. The performance of the supervised models varied substan-
tially across the five protein datasets. For example, the Pearson
correlation for the Bgl3 models was ∼0.4 lower than the GB1
models. Although it is possible some proteins and protein fam-
ilies are intrinsically more difficult to model, practical consid-
erations, such as the size and quality of the deep mutational
scanning dataset, could also affect protein-specific performance.
Deep mutational scanning experiments use a high-throughput
assay to screen an initial gene library and isolate variants with
a desired functional property. The initial library and the isolated
variants are sequenced, and a fitness score is computed for each
variant based on the frequency of reads in both sets. The quality
of the calculated fitness scores depends on the sensitivity and
specificity of the high-throughput assay, the number of times each
variant was characterized in the high-throughput assay, and the
number of DNA sequencing reads per variant. If any one of these
factors is too low, the resulting fitness scores will not reflect the
true fitness values of the characterized proteins, which will make
it more difficult for a model to learn the underlying sequence to
function mapping.

We assessed how experimental factors influence the success
of supervised learning by resampling the full GB1 dataset to
generate simulated datasets with varying protein library sizes
and numbers of DNA sequencing reads. The library size is the
number of unique variants screened in the deep mutational scan.
The GB1 dataset is ideal for this analysis because it contains
most of the possible single and double mutants and has a large
number of sequencing reads per variant. We trained sequence
convolutional models on each simulated dataset and tested each
network’s predictions on a “true” non-resampled test set (Fig.
3). Models trained on simulated datasets with small library sizes
performed poorly because there were not sufficient examples to
learn the sequence–function mapping. This result is expected
and is in line with the performance of models trained on re-
duced training set sizes on the original GB1 dataset (Fig. 2C).
Interestingly, we also found that datasets with large library sizes

5e1 1e2 5e2 1e3 5e3 1e4 5e4 1e5 4.5e5
Protein Library Size (Number of Unique Variants)

5e8

1e8

5e7

1e7

5e6

1e6

5e5

1e5

5e4

1e4

5e3

N
um
be
ro
fD
N
A
Se
qu
en
ci
ng
R
ea
ds

0.33 0.61 0.82 0.87 0.95 0.96 0.98 0.98 0.98

0.46 0.58 0.81 0.88 0.95 0.96 0.97 0.98 0.98

0.47 0.61 0.82 0.88 0.95 0.96 0.97 0.98 0.98

0.42 0.54 0.8 0.86 0.95 0.96 0.97 0.97 0.96

0.37 0.58 0.81 0.87 0.95 0.96 0.96 0.96 0.95

0.47 0.54 0.8 0.85 0.94 0.94 0.94 0.94 0.92

0.3 0.51 0.79 0.83 0.93 0.93 0.93 0.93 0.91

0.07 0.22 0.72 0.78 0.87 0.88 0.87 0.85 0.81

0.33 0.68 0.73 0.83 0.84 0.81 0.79 0.75

0.36 0.54 0.63 0.58 0.56 0.5 0.15

0.39 0.47 0.5 0.4 0.21
0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar
so
n'
s
r

Fig. 3. Trade-off between library size and the number of sequencing reads.
Performance of sequence convolutional models trained on GB1 datasets
that have been resampled to simulate different combinations of protein
library size and number of sequencing reads in the deep mutational scan.
An “X” signifies that the combination of library size and number of reads
produced a dataset with fewer than 25 variants and was, therefore, excluded
from the experiment. Having a large library size can be detrimental to
supervised model performance if there are not enough reads to calculate
reliable functional scores.

can perform poorly if there are not sufficient DNA sequencing
reads to reliably estimate the frequency of each variant. This
highlights a trade-off between the number of sequence–function
examples in a dataset and the quality of its fitness scores. Given
a fixed sequencing budget, there exists an optimal intermediate
library size that balances these two competing factors. The Bgl3
dataset’s poor performance may be the result of having too many
unique variants without sufficient sequencing coverage, resulting
in a low number of reads per variant and therefore unreliable
fitness scores. Future deep mutational scanning libraries could
be designed to maximize their size and diversity while ensuring
that each variant will have sufficient reads within sequencing
throughput constraints.

Learned Models Provide Insight into Protein Structure and Mecha-
nism. Our neural networks transform the original amino acid
features through multiple layers to map to an output fitness
value. Each successive layer of the network constructs new latent
representations of the sequences that capture important aspects
of protein function. We can visualize the relationships between
sequences in these latent spaces to reveal how the networks learn
and comprehend protein function. We used Uniform Manifold
Approximation and Projection (UMAP) (22) to visualize test
set sequences in the latent space at the last layer of the GB1
sequence convolutional network (Fig. 4A). The latent space or-
ganizes the test set sequences based on their functional score,
demonstrating that the network’s internal representation, which
was learned to predict function of the training set examples,
also generalizes to capture the sequence–function relationship
of the new sequences. The latent space features three promi-
nent clusters of low-scoring variants that may correspond to
different mechanisms of disrupting GB1 function. Two clusters,
referred to as “G1” and “G2,” contain variants with mutations
in core residues near the protein’s N and C termini, respectively
(SI Appendix, Fig. S10). Mutations at these residues may disrupt
the protein’s structural stability and thus decrease the activity
measured in the deep mutational scanning experiment (15).
Residue cluster “G3” contains variants with mutations at the IgG
binding interface, and these likely decrease activity by disrupting
key binding interactions. This clustering of variants based on
different molecular mechanisms suggests the network is learning
biologically meaningful aspects of protein function.

We can also use the neural network models to understand
which sequence positions have the greatest influence on protein
function. We computed integrated gradients attributions (23)
for all training set variants in Pab1 and mapped these values
onto the three-dimensional structure (Fig. 4B). Pab1’s sequence
positions display a range of attributions spanning from negative
to positive, where a negative attribution indicates that mutations
at that position decrease the protein’s activity. Residues at the
RNA binding interface tend to display negative attributions,
with the key interface residue N127 having the largest negative
attribution. The original deep mutational scanning study found
that residue N127 cannot be replaced with any other amino
acid without significantly decreasing Pab1 binding activity (18).
Position D151 has one of the largest positive attributions, which
is consistent with the observation that aspartic acid (D) is uncom-
mon at position 151 in naturally occurring Pab1 sequences (18).
The sequence convolutional network is able to learn biologically
relevant information directly from raw sequence–function data,
without the need to specify detailed molecular mechanisms.

Finally, we used the Pab1 sequence convolutional network
to make predictions for all possible single-mutation variants
(Fig. 4C). The resulting heat map highlights regions of the
Pab1 sequence that are intolerant to mutations and shows
that mutations to proline are deleterious across most sequence
positions. It also demonstrates the network’s ability to predict
scores for amino acids that were not directly observed in the

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep
mutational scanning data

PNAS 5 of 12
https://doi.org/10.1073/pnas.2104878118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104878118

Feature Importance Superimposed on Structure (Pab1 CNN)

126 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198
Position

A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y
*

Am
in
o
Ac
id

−6.0

−4.5

−3.0

−1.5

0.0
Effect of Amino Acid Substitutions on Pab1

BA

C
Dim 0

D
im
1

Highest scoring
variant

Lowest scoring
variant

Wild-type

Latent Space (GB1 CNN)

G2

G1

G3

Fig. 4. Neural network interpretation. (A) A UMAP projection of the latent space of the GB1 sequence convolutional network (CNN), as captured at the last
internal layer of the network. In this latent space, similar variants are grouped together based on the transformation applied by the network to predict the
functional score. Variants are colored by their true functional score, where red represents high-scoring variants and blue represents low-scoring variants. The
clusters marked G1 and G2 correspond to variants with mutations at core residues near the start and end of the sequence, respectively. Cluster G3 corresponds
to variants with mutations at surface interface residues. (B) Integrated gradients feature importance values for the Pab1 CNN, aggregated at each sequence
position and superimposed on the protein’s three-dimensional structure. Blue represents positions with negative attributions, meaning mutations in those
positions push the network to output lower scores, and red represents positions with positive attributions. (C) A heat map showing predictions for all single
mutations from the Pab1 CNN. Wild-type residues are indicated with dots, and the asterisk is the stop codon. Most single mutations are predicted to be
neutral or deleterious.

dataset. The original deep mutational scan characterized 1,244
single-mutation variants, yet the model can make predictions
for all 1,500 possible single-mutation variants. For example,
mutation F170P was not experimentally observed, but the model
predicts it will be deleterious because proline substitutions at
other positions are often highly deleterious. This generalization
to amino acid substitutions not observed in the data is only
possible with models that share parameters across sequence
positions.

Designing Distant Protein Sequences with Learned Models. Our
trained neural networks describe the mapping from sequence to
function for a given protein family. These models can be used to
design new sequences that were not observed in the original deep
mutational scanning dataset and may have improved function.
The protein design process involves extrapolating a model’s
predictions to distant regions of sequence space. Because the
models were trained and evaluated only on sequences with local
changes with respect to the wild type, it is unclear how these
out-of-distribution predictions will perform.

We tested the ability of our supervised models to generalize
beyond the training data by designing a panel of new GB1
variants with varying distances from the wild-type sequence (Fig.
5A). GB1 is a small 8-kDa domain from streptococcal protein G
that binds to the fragment crystallizable (Fc) domain of mam-
malian IgG. GB1’s structure is composed of one α-helix that is
packed into a four-stranded β-sheet. GB1’s interaction with IgG
is largely mediated by residues in the α-helix and third β-strand.

The design process was guided by an ensemble of the four
models (linear regression and fully connected, sequence con-
volutional, and graph convolutional networks) to fully leverage
different aspects of the sequence–function mapping captured by
each model. We used a random-restart hill-climbing algorithm
to search over GB1 sequence space for designs that maximize
the minimum predicted fitness over the four models. Maximizing
the minimum predicted fitness over the four models ensures
that every model predicts the designed sequences to have high
fitness. We applied this sequence optimization method to design
five GB1 variants with increasing numbers of mutations (10, 20,
30, 40, 50) from the wild type, representing sequence identities

6 of 12 PNAS
https://doi.org/10.1073/pnas.2104878118

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep

mutational scanning data

https://doi.org/10.1073/pnas.2104878118

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

CO
M

PU
TE

R
SC

IE
N

CE
S

A B DC

Sequence space

MDS visualization of
protein sequence space

Training
sequences

Design10

Predicted fitness
WT GB1

Design20

Design40

Design30

Design50

Training sequence
Soluble design
Insoluble design

M
ol
ar
el
lip
tic
ity
x
10

4

(d
eg
cm

2
dm
ol
-1
)

-1

2

0

1

Wavelength (nm)
190 260250240230210200 220

Circular dichroism
spectroscopy

Bi
nd
in
g
si
gn
al
(R
FU
)

0

3

1

2

IgG concentration (nM)
1 10 100

Yeast surface display
IgG binding curves

WT GB1
Design10

WT GB1

Design10

A24Y
E19Q+A24Y

IgG
Design10
model

Se
qu
en
ce
sp
ac
e

0.1

Fig. 5. Neural network–based protein design. (A) Multidimensional scaling (MDS) sequence space visualization of wild-type (WT) GB1 sequence, the GB1
training sequences, and the five designed proteins. Design10 to Design50 are progressively farther from the training distribution. Design10 is expressed as a
soluble protein, while the more distant designs were insoluble. (B) Circular dichroism spectra of purified wild-type GB1 and Design10. Both proteins display
highly similar spectra that are indicative of α-helical protein structures. (C) IgG binding curves of wild-type GB1 variants. Design10 displays substantially
higher binding affinity than wild-type GB1, A24Y, and E19Q + A24Y. All measurements were performed in duplicate. Binding signal is reported in relative
fluorescence units (RFU). (D) The locations of Design10’s 10 mutations (shown in orange) relative to the IgG binding interface. The Design10 structure was
predicted de novo using Rosetta.

spanning from 82 to 11% (SI Appendix, Table S1). We expect de-
signs with fewer mutations to be more likely to fold and function
because they are more similar to the training data.

We experimentally tested the five GB1 designs by synthesizing
their corresponding genes and expressing them in Escherichia
coli. We found that the 10-mutant design, referred to as Design10,
was expressed as a soluble protein, but the more distant designs
were insoluble (Fig. 5A). We were unable to further characterize
Design20 to Design50 because their insoluble expression pre-
vented downstream protein purification. We performed circular
dichroism spectroscopy on Design10 and found that it had nearly
identical spectra to wild-type GB1, suggesting they have similar
secondary structure content (Fig. 5B).

The original GB1 deep mutational scan measured binding to
the Fc region of IgG; therefore, our supervised models should
capture a variant’s binding affinity. We tested Design10’s ability
to bind to IgG using a yeast display binding assay. We also tested
wild-type GB1 and the top single (A24Y) and double (E19Q
+ A24Y) mutants from the original deep mutational scanning
dataset. We found that Design10 binds to IgG with a Kd of 5
nM, which is substantially higher affinity than wild-type GB1,
A24Y, or E19Q + A24Y (Fig. 5C). We were unable to precisely
determine wild-type GB1, A24Y, or E19Q + A24Y dissociation
constants because our assay could not reliably measure binding at
IgG concentrations above 100 nM. The data showed qualitative
trends where wild type had the lowest affinity, followed by A24Y
and then, E19Q + A24Y. Our measurements indicate that wild-
type GB1’s Kd is well above 100 nM, which is consistent with
measurements from the literature that have found that this in-
teraction is in the 250- to 900-nM range (24, 25). Based on our
estimates and others’ previous measurements, we conservatively
estimate that Design10 binds human IgG with at least 20-fold
higher affinity than wild-type GB1.

Closer inspection of the Design10 sequence revealed that it
was not simply composed of the top 10 single mutations for
enrichment and even included 4 mutations whose individual
effects on the predicted functional score ranked below the top
300. In addition, Design10’s predicted score was more than two
times greater than the variant comprising the top 10 single muta-
tions. This highlights the ability of the design process to capture
nonlinear interactions and leverage synergies between sites. We
also evaluated the robustness of our findings by rerunning the

10-mutant design process 100 independent times and evaluating
the diversity of the designs (SI Appendix, Table S2).

We built a model of Design10’s three-dimensional structure
using Rosetta de novo structure prediction (Fig. 5D). Design10’s
predicted structure aligns to the wild-type GB1 crystal structure
with 0.9 Å Cα rmsd. Design10’s actual structure is likely very
similar to wild-type GB1 given their high sequence identity, simi-
lar circular dichroism spectra, and the small deviation between
Design10’s de novo predicted structure and the experimental
GB1 structure. Inspection of Design10’s predicted structure re-
vealed that many of its mutations were concentrated near the IgG
binding interface, and this may help to explain its large increase
in IgG binding affinity. We also evaluated Rosetta models for
Design20 to Design50 and found no obvious reasons why they
failed to express.

Discussion
We have presented a supervised learning framework to infer
the protein sequence–function mapping from deep mutational
scanning data. Our supervised models work best when trained
with large-scale datasets, but they can still outperform physics-
based and unsupervised prediction methods when trained with
only hundreds of sequence–function examples. Unsupervised
methods remain appealing for proteins with very little or no
sequence–function data available. Among the supervised models,
linear regression displayed the lowest performance due to its
inability to represent interactions between multiple mutations.
Despite that limitation, linear regression still performed fairly
well because mutations often combine in an additive manner
(26). The convolutional networks outperformed linear regression
and fully connected networks when trained with fewer training
examples and when performing mutational extrapolation. The
parameter sharing inherent to convolutional networks can im-
prove performance by allowing generalization of the effects of
mutations across different sequence positions. However, in the
five datasets we tested, even the convolutional networks could
not accurately generalize when entire sequence positions were
excluded from the training data. It was surprising that graph
convolutions that incorporate protein structure did not improve
performance over sequence-based convolutions. The compara-
ble performance could be the result of the networks’ ability to
compensate with fully connected layers, the lack of sequence

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep
mutational scanning data

PNAS 7 of 12
https://doi.org/10.1073/pnas.2104878118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104878118

diversity in the deep mutational scanning data, or the specific
type of graph neural network architecture used. We are unable
to determine which of these factors had the greatest influence.

Our analysis of how data quality influences the ability to learn
the sequence–function mapping can be considered when design-
ing future deep mutational scanning experiments. We found that
a model’s predictive performance is determined not only by the
number of sequence–function training examples but also by the
quality of the estimated functional scores. Therefore, in a deep
mutational scanning experiment, it may be preferable to limit
the total number of unique variants analyzed to ensure that
each variant has sufficient sequencing reads to calculate accurate
functional scores. Any missing mutations can then be imputed
with a convolutional network to overcome the smaller dataset
size.

Recent studies have examined supervised learning methods
capable of scaling to deep mutational scanning datasets. One
study benchmarked combinations of supervised learning meth-
ods and protein sequence encodings (7). Consistent with our
results, it found that sequence convolutional neural networks
with amino acid property-based features tended to perform bet-
ter than alternatives. Some algorithms specialize in modeling
epistasis. Epistatic Net (27) introduced a neural network regu-
larization strategy to limit the number of epistatic interactions.
Other approaches focused on the global epistasis that arises
due to a nonlinear transformation from a latent phenotype to
the experimentally characterized function (28, 29). Protein en-
gineering with UniRep (30) showed that general global protein
representations can support training function-specific supervised
models with relatively few sequence–function examples. ECNet
pioneered an approach for combining global protein representa-
tions, local information about residue coevolution, and protein
sequence features (31). Across tens of deep mutational scanning
datasets, ECNet was almost always superior to unsupervised
learning models and models based only on a global protein
representation. Future work can explore how to best combine
global protein representations, local residue coevolution fea-
tures, and graph encodings of protein structure to learn predic-
tive models for specific protein functions, including for proteins
that have little experimental data available. Despite their similar
performance to sequence convolutional networks in our study,
graph convolutional networks that integrate three-dimensional
structural information remain enticing because of successes on
other protein modeling tasks (32–35) and rapid developments in
graph neural network architectures (36).

Another challenging future direction will be assessing how
well trained models extrapolate to sequences with higher-order
mutations (21, 37). As a proof of concept, we designed distant
GB1 sequences with tens of mutations from the wild type. The 10-
mutant design (Design10) had substantially stronger IgG binding
affinity than wild-type GB1, but the four sequences with more
mutations did not express as soluble proteins. The tremendous
success of Design10 is encouraging considering how few designed
sequences we tested and the many opportunities to improve
upon our limited exploration of model-guided design. The model
predictions can be improved through more sophisticated en-
sembling and uncertainty estimation. Our hill-climbing sequence
optimization strategy can be replaced by specialized methods
that allow supervised models to efficiently explore new parts of a
sequence space (38–41).

Machine learning is revolutionizing our ability to model and
predict the complex relationships between protein sequence,
structure, and function (42, 43). Supervised models of protein
function are currently limited by the availability and quality of
experimental data but will become increasingly accurate and
general as researchers continue to experimentally characterize
protein sequence space (44). Other important machine learn-
ing advances relevant to protein engineering include generative

modeling to sample nonnatural protein sequences (34, 45, 46),
language models to learn protein representations from diverse
natural sequences (47–50), and strategies to incorporate machine
learning predictions into directed evolution experiments (51–
53). These approaches are enabling the next generation of data-
driven protein engineering.

Materials and Methods
Datasets. We tested our supervised learning approach on five deep mu-
tational scanning datasets: avGFP (16), Bgl3 (17), GB1 (15), Pab1 (18), and
Ube4b (19). We selected these publicly available datasets because they
correspond to diverse proteins and contain variants with multiple amino
acid substitutions. The avGFP, Pab1, and Ube4b datasets were published with
precomputed functional scores, which we used directly as the target scores
for our method. For GB1 and Bgl3, we computed functional scores from raw
sequencing read counts using Enrich2 (54). We filtered out variants with
fewer than five sequencing reads and ran Enrich2 using the “Log Ratios
(Enrich2)” scoring method and the “Wild Type” normalization method.
Table 1 shows additional details about the datasets.

Protein Sequence Encoding. We encoded each variant’s amino acid sequence
using a sequence-level encoding that supports multiple substitutions per
variant. Each amino acid is featurized with its own feature vector, and the
full encoded variant consists of the concatenated amino acid feature vectors.
We featurize each amino acid using a two-part encoding made up of a
one-hot encoding and an amino acid index (AAIndex) encoding. One-hot
encoding captures the specific amino acid at each position. It consists of a
length 21 vector where each position represents one of the possible amino
acids or the stop codon. All positions are zero except the position of the
amino acid being encoded, which is set to a value of one. AAindex encoding
captures physicochemical and biochemical properties of amino acids from
the AAindex database (55). These properties include simple attributes, such
as hydrophobicity and polarity, as well as more complex characteristics,
such as average nonbonded energy per atom and optimized propensity
to form a reverse turn. In total, there are 566 such properties that were
taken from literature. These properties are partially redundant because
they are aggregated from different sources. Therefore, we used principle
component analysis to reduce the dimensionality to a length 19 vector,
capturing 100% of the variance. We concatenated the one-hot and AAindex
encodings to form the final representation for each amino acid. One benefit
of this encoding is that it enables the use of convolutional networks, which
leverage the spatial locality of the raw inputs to learn higher-level features
via filters. Other types of encodings that do not have a feature vector for
each residue, such as those that embed full amino acid sequences into
fixed-size vectors, would not be as appropriate for convolutional networks
because they do not have locality in the input that can be exploited by
convolutional filters.

Convolutional Neural Networks. We tested two types of convolutional neural
networks: sequence convolutional and graph convolutional. These networks
extract higher-level features from the raw inputs using convolutional filters.
Convolutional filters are sets of learned weights that identify patterns
in the input and are applied across different parts of the input. The fil-
ters can output higher or lower values depending on whether the given
input matches the pattern that the filters have learned to identify. We
implemented a sequence convolutional network where the input is a one-
dimensional amino acid sequence. The network applies filters using a sliding
window across the input sequence, integrating information from amino
acid sequence neighbors. The network applies filters at all valid sequence
positions and does not pad the ends of the sequence with zeros.

Graph convolutional neural networks are similar to traditional convolu-
tional networks, except graph convolutional networks operate on arbitrary
graph structures rather than linear sequences or two-dimensional grids.
Graph filters still capture spatial relationships in the input data, but those
relationships are determined by neighboring nodes in the graph rather
than neighboring characters in a sequence or neighboring pixels in a two-
dimensional grid. In our case, we use a graph derived from the protein’s wild-
type three-dimensional structure. This allows the network to more easily
learn features that correspond to patterns of amino acid residues that are
nearby in physical space.

We use the order-independent graph convolution operator described by
Fout et al. (32). It is considered order independent because it does not
impose an ordering on neighbor nodes. In an order-dependent formulation,
different neighbor nodes would have different weights, but in the order-
independent formulation, all neighbor nodes are treated identically and

8 of 12 PNAS
https://doi.org/10.1073/pnas.2104878118

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep

mutational scanning data

https://doi.org/10.1073/pnas.2104878118

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

CO
M

PU
TE

R
SC

IE
N

CE
S

share the same weights. Each filter consists of a weight vector for the center
node and a weight vector for the neighbor nodes that is shared among
the neighbor nodes. For a set of filters, the output zi at a center node i
is calculated using Eq. 1, where WC is the center node’s weight matrix, WN

is the neighbor nodes’ weight matrix, and b is the vector of biases, one for
each filter. Additionally, xi is the feature vector at node i, Ni is the set of
neighbors of node i, and σ is the activation function:

zi = σ
(

WC · xi +
1

|Ni|
∑
j∈Ni

(WN · xj) + b
)

. [1]

In this formulation, a graph consisting of nodes and edges is incorporated
into each convolutional layer. Input features are placed at the graph’s nodes
in the first layer. Outputs are computed at the node level using input
features from a given center node and corresponding neighbor nodes.
Because output is computed for each node, graph structure is preserved
between subsequent graph layers. The incoming signal from neighbor nodes
is averaged to account for the variable numbers of neighbors. The window
size of the filter is limited to the immediate neighbors of the current
center node. Information from more distant nodes is incorporated through
multiple graph convolutional layers. The final output of the network is
computed at the graph level with a single function score prediction for the
entire graph.

Protein Structure as a Graph. We encoded each protein’s wild-type structure
as a graph and incorporated it into the architecture of the graph convolu-
tional neural network (Fig. 1D). The protein structure graph is an undirected
graph with a node for each amino acid residue and an edge between nodes
if the residues are within a specified distance threshold in three-dimensional
space. The distance threshold is a hyperparameter with a range of 4 to 10 Å
and was selected independently for each dataset during the hyperparameter
optimization. We measure distances between residues via distances of the
β-carbon atoms (Cβ) in angstroms. The protein structure graph for GB1 is
based on Protein Data Bank (PDB) structure 2QMT. The protein structure
graphs for the other four proteins are based on structures derived from
Rosetta comparative modeling, using the RosettaCM protocol (56) with
the default options. For the comparative modeling, we selected template
structures from PDB that most closely matched the reference sequence of
the deep mutational scanning data. In addition to the standard graph based
on the protein’s structure, we tested four baseline graphs: a shuffled graph
based on the standard graph but with shuffled node labels, a disconnected
graph with no edges, a sequential graph containing only edges between
sequential residues, and a complete graph containing all possible edges
(SI Appendix, Fig. S6). We used NetworkX (57) v2.3 to generate all protein
structure and baseline graphs.

Complete Model Architectures. We implemented linear regression and three
types of neural network architectures: fully connected, sequence convolu-
tional, and graph convolutional. Linear regression is implemented as a fully
connected neural network with no hidden layers. It has a single output
node that is fully connected to all input nodes. The other networks all
have multiple layers. The fully connected network consists of some number
of fully connected layers, and each fully connected layer is followed by
a dropout layer with a 20% dropout probability. Finally, there is a single
output node. The sequence and graph convolutional networks consist of
some number of convolutional layers, a single fully connected layer with 100
hidden nodes, a dropout layer with a 20% dropout probability, and a single
output node. We also trained sequence and graph convolutional networks
without the fully connected layer or dropout layer for the analyses in
SI Appendix, Fig. S7. We used the leaky rectified linear unit as the activation
function for all hidden layers. A hyperparameter sweep determined the
other key aspects of the model architectures, such as the number of layers,
the number of filters, and the kernel size of filters (SI Appendix, Fig. S11).
We used Python v3.6 and TensorFlow (58) v1.14 to implement the models.

Model Training. We trained the networks using the Adam optimizer and
mean squared error loss. We set the Adam hyperparameters to the defaults
except for the learning rate and batch size, which were selected using hy-
perparameter sweeps. We used early stopping for all model training with a
patience of 15 epochs and a minimum delta (the minimum amount by which
loss must decrease to be considered an improvement) of 0.00001. We set the
maximum possible number of epochs to 300. The original implementation
overweighted the last examples in an epoch when calculating the tuning
set loss. This could have affected early stopping but had little to no effect
in practice. We trained the networks on graphics processing units (GPUs)
available at the University of Wisconsin–Madison via the Center for High
Throughput Computing and the workload management system HTCondor

(59). We also used GPU resources from Argonne National Laboratory’s
Cooley cluster. The GPUs we used included Nvidia GeForce GTX 1080 Ti,
GeForce RTX 2080 Ti, and Tesla K80.

Main Experiment Setup. We split each dataset into random training, tuning,
and testing sets. The tuning set is sometimes referred to as the validation
set and is used for hyperparameter optimization. This allowed us to train
the models; tune hyperparameters; and evaluate performance on separate,
nonoverlapping sets of data. The training set was 81% of the data, the
tuning set was 9%, and the testing set was 10%. This strategy supports
the objective of training and evaluating models that fully leverage all avail-
able sequence–function data and make predictions for variants that have
characteristics similar to the training data. There are other valid strategies
that more directly test the ability of a model to generalize to mutations
or positions that were not present in the training data, which we describe
below.

We performed a hyperparameter grid search for each dataset using all
possible combinations of the hyperparameters in SI Appendix, Fig. S11. The
hyperparameters selected for one dataset did not influence the hyperparam-
eters selected for any other dataset. For each type of supervised model (lin-
ear regression, fully connected, sequence convolutional, and graph convolu-
tional), we selected the set of hyperparameters that resulted in the smallest
mean squared error on the tuning set. The selected hyperparameters are
listed in SI Appendix, Table S3, and the number of trainable parameters in
each selected model is listed in SI Appendix, Table S4. This is the main set of
hyperparameters. For any subsequently trained models, such as those with
reduced training set sizes, we performed smaller hyperparameter sweeps
to select a learning rate and batch size, but all other hyperparameters that
specify the network architecture were set to those selected in the main run.

To assess the robustness of the original train–tune–test splits, we created
six additional random splits for each dataset. We tuned the learning rate and
batch size independently for each split; however, the network architectures
were fixed to those selected using the original split. There was a risk of
overestimating performance on the new splits because the data used to
tune the architectures from the original split may be present in the test sets
of the new splits. However, the results showed no evidence of this type of
overfitting. We report the performance on these new splits in Fig. 2B and
SI Appendix, Fig. S1A. All other experiments used the original train–tune–
test split.

For the random baseline in SI Appendix, Figs. S8 and S9, we generated
1,000 random rankings of the entire test set. Then, for each ranking thresh-
old N, we selected the first N variants from each ranking as the prioritized
variants. We computed the mean (SI Appendix, Fig. S8) and the maximum
(SI Appendix, Fig. S9) of each random ranking’s prioritized variants. Finally,
we show the 95% CI calculated as ± 1.96 times the SD.

Reduced Training Size Setup. For the reduced training size experiment, we
used the same 9% tuning and 10% testing sets as the main experiment. The
reduced training set sizes were determined by percentages of the original
81% training pool. For each reduced size, we sampled five random training
sets of the desired size from the 81% training pool. These replicates are
needed to mitigate the effects of an especially strong or weak training set,
which could be selected by chance, especially with the smaller training set
sizes. We reported the median metrics of these five replicates.

Mutational and Positional Extrapolation. We tested the ability of the models
to generalize to mutations and positions not present in the training data
using two dataset splitting strategies referred to as mutational and posi-
tional extrapolation. For each of these splitting strategies, we created six
replicate train–tune–test splits and tuned the learning rate and batch size
independently for each split. We report the Pearson’s correlation on the test
set for each split in Fig. 2D and SI Appendix, Fig. S5.

For mutational extrapolation, we designated 80% of single mutations
present in the dataset as training and 20% as testing. We then divided
the variants into three pools: training, testing, or overlap, depending on
whether the variants contained only mutations designated as training, only
mutations designated as testing, or mutations from both sets. We discarded
the variants in the overlap pool to ensure there was no informational
overlap between the training and testing data. We split the training pool
into a 90% training set and a 10% tuning set. We used 100% of the variants
in the testing pool as the test set.

For positional extrapolation, we followed a similar procedure as muta-
tional extrapolation. We designated 80% of sequence positions as training
and 20% as testing. We divided variants into training, testing, and overlap
pools, depending on whether the variants contained mutations only in
positions designated as training, only in positions designated as testing,
or both in positions designated as training and testing. We discarded the

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep
mutational scanning data

PNAS 9 of 12
https://doi.org/10.1073/pnas.2104878118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104878118

variants in the overlap pool, split the training pool into a 90% training set
and a 10% tuning set, and used 100% of the variants in the testing pool as
the test set.

Comparison with EVmutation and DeepSequence. We generated multiple
sequence alignments using the EVcouplings web server (60) according to the
protocol described for EVmutation (1). We used Jackhmmer (61) to generate
an initial alignment with five search iterations against UniRef100 (62) and
a sequence inclusion threshold of 0.5 bits per residue. If the alignment had
< 80% sequence coverage, we increased the threshold in steps of 0.05 bits
per residue until coverage was ≥ 80%. If the number of effective sequences
in the alignment was < 10 times the length of the sequence, we decreased
the threshold until the number of sequences was ≥ 10 times the length.
If the objectives were conflicting, we gave priority to the latter. We set all
other parameters to EVcouplings defaults. We trained EVmutation via the
“mutate” protocol from EVcouplings. We executed EVmutation locally using
EVcouplings v0.0.5 with configuration files generated by the EVcouplings
web server. We trained DeepSequence using the same fixed architecture and
hyperparameters described in the original work (2). We fit a DeepSequence
model to each alignment and calculated the mutation effect prediction
using 2,000 evidence lower-bound samples.

Comparison with Rosetta. We computed Rosetta scores for every variant us-
ing Rosetta’s FastRelax protocol with the talaris2014 score function (Rosetta
v3.10). First, we created a base structure for each wild-type protein. We
generated 10 candidate structures by running relax on the same structure
used to generate the protein structure graph, described above. We selected
the lowest-energy structure to serve as the base. Next, we ran mutate and
relax to generate a single structure and compute the corresponding energy
for each variant. We set the residue selector to a neighborhood of 10 Å. We
took the negative of the computed energies to compute the final score for
each variant.

GB1 Resampling Experiment. We performed a resampling experiment on the
GB1 dataset to assess how the quality of deep mutational scanning–derived
functional scores impacts performance of supervised learning models. In
this case, quality refers to the number of sequencing reads per variant
used to estimate the fitness scores. The number of reads per variant de-
pends on the number of variants and the total number of reads in the
deep mutational scanning experiment. Raw deep mutational scanning data
consist of two sets of variants: an input set (prescreening) and a selected
set (postscreening). Both sets have associated sequencing read counts for
each variant, and the functional score for each variant is calculated from
these read counts. We resampled the original GB1 data to generate datasets
corresponding to 99 different combinations of protein library size and
number of reads (SI Appendix, Fig. S12). The library size refers to the number
of unique variants being screened in the deep mutational scan. Note that
the final dataset may have fewer unique variants than the protein library.
This occurs when there is a low number of sequencing reads relative to
the size of the library. In that scenario, not all generated variants will
get sequenced, even though they were screened as part of the function
assay.

First, we created a filtered dataset by removing any variants with zero
reads in either the input set or selected set of the original deep mutational
scanning data. We generated Enrich2 scores for this filtered dataset using
the same approach described in the above section on datasets. We randomly
selected 10,000 variants from this dataset to serve as a global testing set.
Next, we used the filtered dataset, minus the testing set variants, as a base
to create the resampled datasets. For each library size in the heat map in Fig.
3, we randomly selected that many variants from the base dataset to serve
as the library. Then, for each library, we created multinomial probability
distributions giving the probability of generating a read for a given variant.
We created these probability distributions for both the input and selected
sets by dividing the original read counts of each variant by the total number
of reads in the set. The multinomial distributions allowed us to sample
new input and selected sets based on the read counts in the heat map in
Fig. 3. To determine how many reads should be sampled from the input
set vs. the selected set, we computed the fraction of reads in the input
set and selected set in the base dataset and sampled reads based on that
fraction. Finally, we generated Enrich2 scores for each resampled dataset
using the same approach described in the above section on datasets. To
account for potential skewing from random sampling, we generated five
replicates for each of the 99 combinations of library size and numbers
of reads. Counting the replicates, we created 495 resampled datasets in
total.

We trained the supervised learning models on each resampled dataset, as
long as the dataset had at least 25 total variants in each of its five replicates.

Of the 99 combinations of library size and number of reads, 7 did not
have enough variants across the replicate datasets and were thus excluded
from this experiment. Although the libraries of these 7 combinations had
more than 25 variants, there were not enough reads to estimate scores
for all of them, and thus, the final datasets ended up with less than 25
variants. We split each resampled dataset into 80% training and 20% tuning
sets. The tuning sets were used to select the learning rate and batch size
hyperparameters. The network architectures and other parameters were
set to those selected during the main experiment described above. We
evaluated each model using the held-out testing set with non-resampled
fitness scores. This type of evaluation ensures that although the models are
trained on resampled datasets with potentially unreliable fitness scores, they
are evaluated on high-confidence fitness scores from the non-resampled
dataset. We report the mean Pearson’s correlation coefficient across the five
replicates for each combination of library size and number of reads.

UMAP Projection of Latent Space. Each neural network encodes a latent
representation of the input in its last internal layer before the output
node. The last internal layer in the convolutional networks is a dense fully
connected layer with 100 hidden nodes. Thus, the latent representation of
each variant at this layer is a length 100 vector. We used UMAP (22) to
project the latent representation of each variant into a two-dimensional
space to make it easier to visualize while still preserving spatial relationships
between variants. We used the umap-learn package v0.4.0 to compute the
projection with default hyperparameters (n_neighbors = 15, min_dist = 0.1,
and metric = “euclidean”). The two-dimensional visualization shows how
the network organizes variants internally prior to predicting a functional
score. We colored each variant by its score to show that the network
efficiently organizes the variants. Variants grouped close together in the
UMAP plot have similar functional scores. We also annotated a few key
variants, such as the highest-and lowest-scoring variants.

Integrated Gradients. To determine which input features were important for
making predictions, we generated integrated gradients feature attributions
(23) for all variants. The attributions quantify the effects of specific feature
values on the network’s output. A positive attribution means the feature
value pushes the network to output a higher score relative to the given
baseline, and a negative attribution means the feature value pushes the
network to output a lower score relative to the given baseline. We used the
wild-type sequence as the baseline input. Integrated gradients attributions
are computed on a per-variant basis, meaning attributions are specific to the
feature values of the given variant. Due to nonlinear effects captured by the
nonlinear models, a given feature value might have a positive attribution in
one variant but a negative attribution in a different variant. We computed
attributions for all variants in the training set. Examining the training
set is analogous to other model interpretation techniques that compute
attributions directly from the weights or parameters of models that were
trained using training sets. We summed the attributions for all features at
each sequence position, allowing us to see which mutations pushed the
network to output a higher or lower score for each individual variant.
We also summed the attributions across all the variants in the training
set to see which sequence positions were typically tolerant or intolerant
to mutations. We used DeepExplain (63) v0.3 to compute the integrated
gradients attributions with “steps” set to 100.

Model-Guided Design of GB1 Variants. We used a random-restart hill-
climbing algorithm to design sequences with a set number of mutations
(n) from wild-type GB1 that maximized the minimum predicted functional
score from an ensemble of four models (linear regression, fully connected,
sequence convolutional, and graph convolutional):

arg max
x∈Sn

min
model∈LR,FC,CNN,GCN

fmodel(x),

where x is a sequence, Sn is the set of all sequences n mutations from the
wild type, and fmodel(x) is a model’s predicted score for sequence x. This
design objective ensures that all models predict that the sequence will have
a high functional score. We initialized a hill-climbing run with a randomly
selected sequence containing n point mutations and performed a local
search by exchanging each of these n mutations with each other possible
single-point mutation. Exchanging mutations ensured that we only search
sequences a fixed distance n from the wild type. We then moved to the
mutation-exchanged variant with the highest objective, which became our
new reference point, and repeated this hill-climbing process until a local
optimum was reached. We performed each sequence optimization with 10
random initializations and took the design with the highest overall objective
value. We applied this procedure to design one sequence at each level
of diversity, where n = 10, 20, 30, 40, 50. We visualized the sequence space

10 of 12 PNAS
https://doi.org/10.1073/pnas.2104878118

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep

mutational scanning data

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104878118

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

CO
M

PU
TE

R
SC

IE
N

CE
S

using multidimensional scaling with the Hamming distance as the distance
metric between sequences.

We predicted the three-dimensional structure of Design10 using Rosetta
Abinitio (64). We used the Rosetta Fragment Server to generate the frag-
ments for the Design10 sequence. We generated 100 structures using
Rosetta 3.12 and AbinitioRelax and selected the structure with the lowest
total score. The predicted structure for Design10 aligns to the wild-type GB1
crystal structure with 0.9 Å Cα rmsd.

The experimental methods to characterize these designs are described in
SI Appendix.

Data Availability. We provide a cleaned version of our code that can
be used to retrain the models from this article or train new models with
different network architectures or for different datasets. We also provide
pretrained models that use the latest code and are functionally equivalent to
the ones from this article. The pretrained models can be used to make predic-
tions for new variants. Our code is freely available on GitHub and is licensed
under the MIT license (https://github.com/gitter-lab/nn4dms) (65). The soft-
ware is also archived on Zenodo (https://doi.org/10.5281/zenodo.4118330)

(66). SI Appendix, Table S5 shows software dependencies and their
versions.

ACKNOWLEDGMENTS. We thank Zhiyuan Duan for his assistance running
Rosetta and Darrell McCaslin at the University of Wisconsin–Madison Bio-
physics Instrumentation Facility for his expertise in collecting and analyz-
ing the circular dichroism spectra. The research was performed using the
compute resources and assistance of the University of Wisconsin–Madison
Center for High Throughput Computing in the Department of Computer
Sciences. This research was supported by NIH Awards R35GM119854 and
R01GM135631, NIH Training Grant T32HG002760, a predoctoral fellowship
from the Pharmaceutical Research and Manufacturers of America (PhRMA)
Foundation, the John W. and Jeanne M. Rowe Center for Research in Virol-
ogy at the Morgridge Institute for Research, and the Brittingham Fund and
the Kemper K. Knapp Bequest through the Sophomore Research Fellowship
at the University of Wisconsin–Madison. In addition, this research benefited
from the use of credits from the NIH Cloud Credits Model Pilot, a component
of the Big Data to Knowledge program, and used resources of the Argonne
Leadership Computing Facility, which is a Department of Energy Office of
Science User Facility supported under Contract DE-AC02-06CH11357.

1. T. A. Hopf et al., Mutation effects predicted from sequence co-variation. Nat.
Biotechnol. 35, 128–135 (2017).

2. A. J. Riesselman, J. B. Ingraham, D. S. Marks, Deep generative models of genetic
variation capture the effects of mutations. Nat. Methods 15, 816–822 (2018).

3. R. J. Fox et al., Improving catalytic function by ProSAR-driven enzyme evolution.
Nat. Biotechnol. 25, 338–344 (2007).

4. H. Song, B. J. Bremer, E. C. Hinds, G. Raskutti, P. A. Romero, Inferring protein
sequence-function relationships with large-scale positive-unlabeled learning. Cell
Syst. 12, 92–101.e8 (2021).

5. P. A. Romero, A. Krause, F. H. Arnold, Navigating the protein fitness landscape with
Gaussian processes. Proc. Natl. Acad. Sci. U.S.A. 110, E193–E201 (2013).

6. V. E. Gray, R. J. Hause, J. Luebeck, J. Shendure, D. M. Fowler, Quantitative missense
variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116–124.e3
(2018).

7. Y. Xu et al., Deep dive into machine learning models for protein engineering. J.
Chem. Inf. Model. 60, 2773–2790 (2020).

8. R. Vaser, S. Adusumalli, S. N. Leng, M. Sikic, P. C. Ng, SIFT missense predictions for
genomes. Nat. Protoc. 11, 1–9 (2016).

9. I. A. Adzhubei et al., A method and server for predicting damaging missense
mutations. Nat. Methods 7, 248–249 (2010).

10. M. Hecht, Y. Bromberg, B. Rost, Better prediction of functional effects for sequence
variants. BMC Genomics 16 (suppl. 8), S1 (2015).

11. B. Wang, E. R. Gamazon, Modeling mutational effects on biochemical phenotypes
using convolutional neural networks: Application to SARS-CoV-2. bioRxiv [Preprint]
(2021). https://doi.org/10.1101/2021.01.28.428521 (Accessed 8 February 2021).

12. T. Ching et al., Opportunities and obstacles for deep learning in biology and
medicine. J. R. Soc. Interface 15, 20170387 (2018).

13. D. M. Fowler, S. Fields, Deep mutational scanning: A new style of protein science.
Nat. Methods 11, 801–807 (2014).

14. T. N. Starr, J. W. Thornton, Epistasis in protein evolution. Protein Sci. 25, 1204–1218
(2016).

15. C. A. Olson, N. C. Wu, R. Sun, A comprehensive biophysical description of pairwise
epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014).

16. K. S. Sarkisyan et al., Local fitness landscape of the green fluorescent protein. Nature
533, 397–401 (2016).

17. P. A. Romero, T. M. Tran, A. R. Abate, Dissecting enzyme function with microfluidic-
based deep mutational scanning. Proc. Natl. Acad. Sci. U.S.A. 112, 7159–7164 (2015).

18. D. Melamed, D. L. Young, C. E. Gamble, C. R. Miller, S. Fields, Deep mutational
scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding
protein. RNA 19, 1537–1551 (2013).

19. L. M. Starita et al., Activity-enhancing mutations in an E3 ubiquitin ligase identified
by high-throughput mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 110, E1263–E1272
(2013).

20. R. F. Alford et al., The Rosetta all-atom energy function for macromolecular model-
ing and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

21. A. C. Mater, M. Sandhu, C. Jackson, The NK landscape as a versatile bench-
mark for machine learning driven protein engineering. bioRxiv [Preprint] (2020).
https://doi.org/10.1101/2020.09.30.319780 (Accessed 6 October 2020).

22. L. McInnes, J. Healy, UMAP: Uniform manifold approximation and projection for
dimension reduction. arXiv [Preprint] (2020). https://arxiv.org/abs/1802.03426 (Ac-
cessed 18 September 2020).

23. M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks. arXiv
[Preprint] (2017). https://arxiv.org/abs/1703.01365 (Accessed 13 June 2017).

24. R. K. Jha, T. Gaiotto, A. R. Bradbury, C. E. Strauss, An improved Protein G with higher
affinity for human/rabbit IgG Fc domains exploiting a computationally designed
polar network. Protein Eng. Des. Sel. 27, 127–134 (2014).

25. H. Watanabe et al., Histidine-mediated intramolecular electrostatic repulsion for
controlling pH-dependent protein-protein interaction. ACS Chem. Biol. 14, 2729–
2736 (2019).

26. J. A. Wells, Additivity of mutational effects in proteins. Biochemistry 29, 8509–8517
(1990).

27. A. Aghazadeh et al., Epistatic Net allows the sparse spectral regularization of
deep neural networks for inferring fitness functions. Nat. Commun. 12, 5225
(2021).

28. A. Tareen et al., MAVE-NN: Learning genotype-phenotype maps from multiplex
assays of variant effect. bioRxiv [Preprint] (2021). https://doi.org/10.1101/2020.
07.14.201475 (Accessed 27 June 2021).

29. J. Otwinowski, D. M. McCandlish, J. B. Plotkin, Inferring the shape of global epistasis.
Proc. Natl. Acad. Sci. U.S.A. 115, E7550–E7558 (2018).

30. S. Biswas, G. Khimulya, E. C. Alley, K. M. Esvelt, G. M. Church, Low-N pro-
tein engineering with data-efficient deep learning. Nat. Methods 18, 389–396
(2021).

31. Y. Luo et al., Evolutionary context-integrated deep sequence modeling for protein
engineering. bioRxiv [Preprint] (2020). https://doi.org/10.1101/2020.01.16.908509
(Accessed 17 January 2020).

32. A. Fout, J. Byrd, B. Shariat, A. Ben-Hur, “Protein interface prediction using graph
convolutional networks” in NIPS’17: Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, I. Guyon et al., Eds. (Curran
Associates, Inc., Red Hook, NY, 2017), vol. 30, pp. 6530–6539.

33. V. Gligorijević et al., Structure-based protein function prediction using graph con-
volutional networks. Nat. Commun. 12, 3168 (2021).

34. A. Strokach, D. Becerra, C. Corbi-Verge, A. Perez-Riba, P. M. Kim, Fast and flexi-
ble protein design using deep graph neural networks. Cell Syst. 11, 402–411.e4
(2020).

35. S. Sanyal, I. Anishchenko, A. Dagar, D. Baker, P. Talukdar, ProteinGCN: Protein model
quality assessment using Graph Convolutional Networks. bioRxiv [Preprint] (2020).
https://doi.org/10.1101/2020.04.06.028266 (Accessed 7 April 2020).

36. Z. Wu et al., A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 32, 4–24 (2021).

37. D. H. Bryant et al., Deep diversification of an AAV capsid protein by machine
learning. Nat. Biotechnol. 39, 691–696 (2021).

38. C. Angermueller et al., Population-based black-box optimization for biological
sequence design. arXiv [Preprint] (2020). https://arxiv.org/abs/2006.03227 (Accessed
11 July 2020).

39. C. Fannjiang, J. Listgarten, Autofocused oracles for model-based design.
arXiv [Preprint] (2020). https://arxiv.org/abs/2006.08052 (Accessed 24 October
2020).

40. D. H. Brookes, H. Park, J. Listgarten, Conditioning by adaptive sampling for robust
design. arXiv [Preprint] (2021). https://arxiv.org/abs/1901.10060 (Accessed 12 May
2021).

41. J. Linder, G. Seelig, Fast differentiable DNA and protein sequence optimization for
molecular design. arXiv [Preprint] (2020). https://arxiv.org/abs/2005.11275 (Accessed
20 December 2020).

42. K. K. Yang, Z. Wu, F. H. Arnold, Machine-learning-guided directed evolution for
protein engineering. Nat. Methods 16, 687–694 (2019).

43. M. Torrisi, G. Pollastri, Q. Le, Deep learning methods in protein structure prediction.
Comput. Struct. Biotechnol. J. 18, 1301–1310 (2020).

44. D. Esposito et al., MaveDB: An open-source platform to distribute and interpret data
from multiplexed assays of variant effect. Genome Biol. 20, 223 (2019).

45. A. Hawkins-Hooker et al., Generating functional protein variants with variational
autoencoders. PLOS Comput. Biol. 17, e1008736 (2021).

46. A. Madani et al., ProGen: Language modeling for protein generation. bioRxiv
[Preprint] (2020). https://doi.org/10.1101/2020.03.07.982272 (Accessed 13 March
2020).

47. E. Asgari, M. R. K. Mofrad, Continuous distributed representation of biological
sequences for deep proteomics and genomics. PLoS One 10, e0141287 (2015).

48. K. K. Yang, Z. Wu, C. N. Bedbrook, F. H. Arnold, Learned protein embeddings for
machine learning. Bioinformatics 34, 2642–2648 (2018).

49. E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, G. M. Church, Unified rational pro-
tein engineering with sequence-based deep representation learning. Nat. Methods
16, 1315–1322 (2019).

50. A. Rives et al., Biological structure and function emerge from scaling unsuper-
vised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. U.S.A. 118,
e2016239118 (2021).

51. S. Biswas et al., Toward machine-guided design of proteins. bioRxiv [Preprint] (2018).
https://doi.org/10.1101/337154 (Accessed 2 June 2018).

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep
mutational scanning data

PNAS 11 of 12
https://doi.org/10.1073/pnas.2104878118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://github.com/gitter-lab/nn4dms
https://doi.org/10.5281/zenodo.4118330
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104878118/-/DCSupplemental
https://doi.org/10.1101/2021.01.28.428521
https://doi.org/10.1101/2020.09.30.319780
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1703.01365
https://doi.org/10.1101/2020.07.14.201475
https://doi.org/10.1101/2020.07.14.201475
https://doi.org/10.1101/2020.01.16.908509
https://doi.org/10.1101/2020.04.06.028266
https://arxiv.org/abs/2006.03227
https://arxiv.org/abs/2006.08052
https://arxiv.org/abs/1901.10060
https://arxiv.org/abs/2005.11275
https://doi.org/10.1101/2020.03.07.982272
https://doi.org/10.1101/337154
https://doi.org/10.1073/pnas.2104878118

52. Y. Saito et al., Machine-learning-guided mutagenesis for directed evolution of
fluorescent proteins. ACS Synth. Biol. 7, 2014–2022 (2018).

53. B. J. Wittmann, Y. Yue, F. H. Arnold, Machine learning-assisted directed evolution
navigates a combinatorial epistatic fitness landscape with minimal screening bur-
den. Cell Syst., 10.1016/j.cels.2021.07.008 (2021).

54. A. F. Rubin et al., A statistical framework for analyzing deep mutational scanning
data. Genome Biol. 18, 150 (2017).

55. S. Kawashima et al., AAindex: Amino acid index database, progress report 2008.
Nucleic Acids Res. 36, D202–D205 (2008).

56. Y. Song et al., High-resolution comparative modeling with RosettaCM. Structure 21,
1735–1742 (2013).

57. A. A. Hagberg, D. A. Schult, P. J. Swart, “Exploring network structure, dynamics, and
function using NetworkX” in Proceedings of the 7th Python in Science Conference,
G. Varoquaux, T. Vaught, J. Millman, Eds. (SciPy, 2008), pp. 11–15.

58. M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. Accessed 18 June 2019.

59. D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: The Condor
experience. Concurr. Comput. Pract. Exp 17, 323–356 (2005).

60. T. A. Hopf et al., The EVcouplings Python framework for coevolutionary sequence
analysis. Bioinformatics 35, 1582–1584 (2019).

61. S. R. Eddy, Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195
(2011).

62. B. E. Suzek, Y. Wang, H. Huang, P. B. McGarvey, C. H. Wu, UniRef clusters: A
comprehensive and scalable alternative for improving sequence similarity searches.
Bioinformatics 31, 926–932 (2015).

63. M. Ancona, E. Ceolini, C. Öztireli, M. Gross, Towards better understanding of
gradient-based attribution methods for deep neural networks. arXiv [Preprint]
(2018). https://arxiv.org/abs/1711.06104 (Accessed 7 March 2018).

64. K. T. Simons, R. Bonneau, I. Ruczinski, D. Baker, Ab initio protein structure prediction
of CASP III targets using ROSETTA. Proteins 37, 171–176 (1999).

65. S. Gelman, S. A. Fahlberg, P. A. Romero, A. Gitter, Neural networks for deep
mutational scanning data (2020). GitHub. https://github.com/gitter-lab/nn4dms.
Deposited 22 October 2020.

66. S. Gelman, S. A. Fahlberg, P. A. Romero, A. Gitter, Neural networks for deep
mutational scanning data (2020). Zenodo. https://doi.org/10.5281/zenodo.4118330.
Deposited 22 October 2020.

12 of 12 PNAS
https://doi.org/10.1073/pnas.2104878118

Gelman et al.
Neural networks to learn protein sequence–function relationships from deep

mutational scanning data

https://www.tensorflow.org/
https://arxiv.org/abs/1711.06104
https://github.com/gitter-lab/nn4dms
https://doi.org/10.5281/zenodo.4118330
https://doi.org/10.1073/pnas.2104878118

