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Abstract. A liver metastasis (MSL) with a remarkable 
in vitro proliferation potential has been identified in an 
NEDH rat carrying a transplantable x-ray-induced is- 
let cell tumor. Two insulin-secreting cell lines, MSL-G 
and MSL-H, with doubling times of 3-5 d were estab- 
lished by repeated limiting dilution cloning. In vivo in- 
oculation of MSL-G cells induced severe hypoglyce- 
mia caused by a small but highly heterogeneous tumor 
as revealed by immunocytochemistry. Whereas most 
cells stained for the islet hormones, insulin, glucagon, 
and somatostatin, clustered cells were discovered to 
contain cholecystokinin (CCK). Additional in vitro- 
limiting dilution cloning, followed by immunocyto- 
chemical characterization, clearly demonstrated the ca- 
pacity of single cell clones to simultaneously express 
the same four hormones. Radioimmunoassays with a 

panel of site-specific antisera of culture supernatants 
and purified cell extracts showed the MSL-G2 cells to 
produce, store, and secrete readily detectable amounts 
of processed and unprocessed CCK. Gastrin was not 
detected while coexpression of glucagon and CCK 
were demonstrated. Mutant clones selected for resis- 
tance to 6-thioguanine (frequency, 2 × 10 -7) and 
checked for HAT (hypoxanthine, aminopterin, thymi- 
dine) sensitivity retained the capacity for multi- 
hormone expression. 

We propose that the MSL tumor contains pluripotent 
endocrine stem cells. The MSL tumor and the MSL- 
G2 cells in particular will allow studies of not only 
CCK biosynthesis and processing but also of mecha- 
nisms involved in tumor and islet cell differentiation. 

I 
SLET cell tumors frequently consist of mixed cell pop- 
ulations producing multiple hormones, although insulin 
is the major product (2, 16, 22). Whether such tumors 

are induced by a simultaneous transformation of different 
mature endocrine cell types or by a single transformation of 
a pluripotent islet stem cell is not known. The high frequency 
of occurrence of mixed multihormonal tumors (16, 22) sup- 
ports the latter hypothesis, assuming that the transformed 
stem cell has retained the potential to differentiate into vari- 
ous hormone-secreting cells. It also has been speculated that 
each tumor cell may produce several hormones simultane- 
ously (27, 28). Support for this idea has come from the estab- 
lishment of clonal endocrine cell lines from an x-ray-in- 
duced transplantable islet cell tumor (2), some of which, 
although initially producing somatostatin, were capable of 
also expressing insulin (7, 26). In the mature islets of Langer- 
hans in most vertebrates, however, the four major hormones 
(insulin, glucagon, somatostatin, and pancreatic polypep- 
tide) are found in cytologically distinct B, A, D, and PP cells, 

respectively. Immunocytochemical staining experiments and 
electron microscopic cell identification have not provided 
support for the coexistence of any of these hormones within 
a single cell (16). Two other hormones-thyrotropin-releas- 
ing hormone (6) and gastrin-may be detected by biochemi- 
cal or immunocytochemical techniques in the islets of Lang- 
erhans. Gastrin, however, is found only in the fetal ahd neo- 
natal stage (23). Interestingly, gastrin cells are often detected 
in insulinomas and other pancreatic endocrine tumors, with- 
out clinical signs of hypergastrinemia (16). Additionally, the 
production of hormones such as growth (hormone)-releasing 
factor (9, 34, 40), ACTH (16, 22), and calcitonin (38), has 
been noted in pancreatic endocrine tumors. So far, chole- 
cystokinin (CCK)-producing ~ pancreatic endocrine tumors 
have not been described. 

The identification of a malignant variant of an x-ray-in- 

1. Abbreviations used in this paper: CCK, cholecystokinin; CTM, complete 
tissue culture medium. 
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duced islet cell tumor (2) with an unusually high in vitro 
proliferation potential as well as a broad hormonal repertoire 
has allowed us to carry out a long-term study on the nature 
of multiple hormone-producing tumors. Wild-type and 
drug-resistant cells from the variant were cloned in vitro and 
subsequently used for formation of hormone-producing 
tumors in vivo. 

In this report we have characterized these cell lines with 
respect to their growth properties and potential for gastro- 
entero-pancreatic hormone expression in vitro and in vivo. 

Materials and Methods 

Transplantation 
Tumors were maintained in vivo by subcutaneous inoculation between the 
shoulder blades or by intraperitoneal injection in young NEDH rats (80- 
120 g) of small tumor pieces (1-3 mm 3) from severely hypoglycemic (glu- 
cose concentration below 1.5 raM) donors carrying small tumors (0.5-1 g). 
Similarly, tumors were induced from cloned cell lines by subcutaneous in- 
jection of 100 p.1 serum-free tissue culture medium containing 5-10 × 106 
cells. After tumor excision, all donors were autopsied for detection of 
metastases. Blood glucose was measured using Hypocount (Hypoguard 
Ltd., Woodbridge, UK). 

Cell Culture 
Primary cultures were prepared by gently mincing freshly excised tumors 
with forceps and a scalpel in complete tissue culture medium (CTM) com- 
posed of RPMI 1640 (Gibco, Grand Island, NY) supplemented with 5-10 % 
fetal calf serum (KC Biological Inc., Lenexa, KS), 5-10% donor horse se- 
rum (KC Biological Inc.), and 2 mM L-glutamine and Pen-Strep (100 U/ml) 
from Gibco. The cell preparation was resuspended followed by sedimenta- 
tion for 1 min to allow the removal of larger, mostly fibrous, tissue clumps. 

The supernatant was collected and centrifuged for 5 min at 250 g. The pellet 
was resuspended in CTM and primary cultures were prepared by serial dilu- 
tion in 96-well (200 I.tl), 24-well (1 ml), 12-well (2.5 ml), or 6-well (5 ml) 
plates from Costar (Cambridge, MA). The culture dilutions spanned the cell 
concentrations of 0 to 500,000 cells/ml to ensure optimal conditions in at 
least a fraction of the cultures with respect to initial tumor cell concentra- 
tions and low fibroblast contamination. Plates were incubated at 37°C in 5 % 
CO2 in air for 2-4 wk without change of medium. Fibroblast-contaminated 
cultures could be identified by the color change of medium after 1-2 wk in 
culture. Residual wells were routinely checked for tumor cell proliferation. 
Medium was replaced approximately every 3 wk. 

Proliferating colonies were isolated in 5 p.I using a Pipetman P-20 (Gilson 
Co., Worthington, OH) equipped with a sterile tip and transferred to 0.5 ml 
medium in 24-well plates. If colonies attached and spread out during 3-4 
wk, they were mechanically disrupted into smaller clumps to allow new 
colonies to form. A colony density of at least 10 per well was required before 
conventional trypsination procedures could be used for further propagation. 
Established cultures were maintained by bi-weekly medium change and 
trypsinization every 2-4 wk with a split ratio of 1:2 to 1:4. 

Cell Cloning 
Clonal cell lines were established by the limiting dilution technique. Cell 
suspensions containing 5-8 cells/ml were distributed into microtiter plates 
(100 ktl/well). Single cell proliferation was supported by 50% (vol/vol) con- 
ditioned medium obtained from 1-2-d-old medium from dense primary cul- 
tures. Plates were sealed with parafilm strips to allow free CO2/O2 ex- 
change and reduce evaporation, and then left in the incubator for up to 1 mo 
before proliferation was directly visible. Selected clones were expanded as 
described above. 

Trypsinization 
Cells were prewashed in Hanks' balanced salt solution (HBSS) without 
Ca ++ and Mg ÷+ (Gibco) and incubated for 5 min at 37°C with trypsin, 
EDTA (Gibco). After extensive pipetting, the reaction was stopped by the 
addition of 1 vol of CTM. Cells were centrifuged and reseeded at the desired 
density. Several of the MSL cells, especially MSL-G2, attached very firmly 
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Figure 1. The epitopes recog- 
nized by the antisera used for 
immunocytochemis t ry  and se- 
quence-specif ic  radio immu-  
noassays are shown for rat 
gastr in (35) and rat cholescys- 
tokinin (3, 4, 15). For refer- 
ences on the antisera,  see 
Materials  and Methods.  Gas- 
tr in and C C K both  contain the 
COOH-te rmina l  antigenic de- 
terminant  Trp-Met-Asp-Phe-  
CONH2 recognized by Ab  
2717 or  A b  278/9. The  im- 
munoreact iv i ty  observed to- 
wards the MSL cells or se- 
creted products  is indicated 
( + / - ) .  R denotes  the C O O H -  
or NH2-terminus of the pre- 
cursor  forms. The  rat prepro- 
CCK,  115 amino  acids long, 
has  addit ionally 12 amino 
acids COOH-te rmina l  to the 
amidated Phe-res idue  (4). 
The corresponding human pre- 
progastr in (1, 39) is 101 amino  
acids long with a C O O H -  
terminal  extension of 9 amino 
acids. 
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to the plastic and required two successive trypsinizations for complete 
detachment. 

Insulin Screening Assay 
Insulin assays were performed as described (8, 25) with the following 
modifications. The use of Sarstedt tubes (no 73.1055) and 96-tube racks (no. 
95.1046; Sarstedt, Inc., Princeton, N J) allowed a semiautomation at the mi- 
crotiter scale with the use of microtiter plate carders (Beckman Instru- 
ments, Inc., Palo Alto, CA), multichannel pipettes (Flow Laboratories, Inc., 
McLean, VA), and manifolds (Wheaton Instruments Div., Wheaton Indus- 
tries, Millville, NJ). 

In the assay, 100 I.tl of monoiodinated insulin (5,000 cpm/tube, obtained 
from Dr. Bruce H. Frank, Eli Lilly Research Laboratories, Indianapolis, 
IN) was added to 50 ~tl tissue culture sample, and 100 ~tl of guinea pig 
anti-insulin diluted l:ll0,000 (Dako Corp., Santa Barbara, CA; Accurate 
Chemical & Scientific Corp., Westbury, NY). Bovine "t-globulin (0.22 %; 
Sigma Chemical Co., St. Louis, MO) was present as carder during the incu- 
bation. Carbowax 8000 (12.5 %; Fischer Chemical Co., Fair Lawn, N J) was 
used to separate bound from free antigen. 

Cloning for Drug Resistance 
Titration studies were performed using serial dilutions of 6-thioguanine (1 
ng/ml to 100 ~tg/ml; Sigma Chemical Co.) in CTM to optimize selection 
conditions for particular cell lines. Mass cultures (2-3 x 107 cells/75-cm 2 
flask) were grown in 25 ml of medium in the presence of the desired con- 
centration of 6-thioguanine with or without ethylmethanesulphonate (150 
Ixg/ml; Sigma Chemical Co.) as mutagen. After '~2 wk, 80% of medium 
with dead cells was replaced with 10 ml fresh selective medium. Cultures 

were maintained by a 50% medium change every 4-5 wk until proliferating 
clones could be observed. Colonies were picked out of bottles using bent 
pasteur pipettes and propagated according to the method previously men- 
tioned. Surviving clones were tested for HAT (hypoxanthine, aminopterin, 
thymidine) sensitivity. 

Immunocytochemistry 
Cell cultures growing on coverslips (9 x 9-mm, Beilco Glass, Inc., 
Vineland, NJ) were fixed in 1% paraformaldehyde in 0.05 M sodium phos- 
phate buffer (pH 7.4) (18) and could be stored for prolonged times in fixative 
without loss of immunoreactivity. The cells were permeabilized as de- 
scribed (18). In addition, solid tumors were fixed by immersion in 4% para- 
formaldehyde in 0.1 M sodium phosphate buffer, pH 7.4, for at least 24 h, 
soaked in 20% (wt/vol) sucrose in the same buffer overnight, and then 
quenched in melting Freon-22 as described (18). Cryostat sections were cut 
at 8 I~m at -200C. Permeabilized coverslips and cryostat sections were 
stained by previously detailed procedures (18), using the following: (a) rab- 
bit gastrin/CCK antiserum No. 2717, recognizing the COOH-terminal 
tetrapeptide amide common to gastrin (Fig. l) and CCK (20); (b) rabbit 
CCK-antiserum 1561, recognizing the NH2-terminal 15-20 region of CCK- 
33 and devoid of cross-reactivity to gastrin (Fig. 1) (32, 33); (c) rabbit CCK- 
antiserum 4698, recognizing the NH2-terminal tetrapeptide of CCK-8 and 
devoid of cross-reactivity to gastrin (Fig. 1) as detailed elsewhere (20, 29); 
(d) rabbit gastrin-34-specific antiserum, specifically recognizing the NH2- 
terminal sequence of gastrin-34 (Fig. 1), kindly donated by Dr. N. Yanai- 
hara, Shizuoka, Japan, and described in detail elsewhe~ (13); (e) rabbit 
anti-glucagon sera Nos. 4304 and 4316, kindly donated by Dr. Jens Holst, 
Dept. of Physiology, Panum Institute, Copenhagen. Antiserum 4304 reacts 
with both pancreatic glucagon and with larger glucagon precursor forms in- 
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cluding glicentin, whereas serum 4316 reacts exclusively with pancreatic- 
type glucagon (19); ( f )  rabbit anti-somatostatin antiserum R213/3, previ- 
ously described in detail (21); (g) rabbit anti-human pancreatic polypeptide 
serum No. 615-1054B-216-2, kindly donaled by Dr. R. E. Chance (Eli Lilly 
Research Laboratories, Indianapolis, IN) and previously characterized (24); 
(h) guinea pig anti-insulin serum, kindly donated by Dr. J. Hoist; (i) guinea 
pig anti-CCK antiserum No. 4488, raised against CCK-33 and reacting as 
described (29); ( j )  guinea pig anti-motilin serum, a kind gift of Professor 
N. Yanaihara; or (k) rabbit anti-human growth hormone serum kindly do- 
nated by Dr. K. Hanssen, Department of Medicine, Akers Sykehus, Nor- 
way, and previously characterized (17). All antisera were applied at their 
optimal dilutions for 24 h at 4°C as described (18). The site of antigen-anti- 
body reaction was revealed either by the peroxidase-antiperoxidase pro- 
cedure of Sternberger (37) or by indirect immunofluorescence using flu- 
orescein isothiocyanate-(FITC-) or tetramethylrhodamine isothiocyanate- 
(TRITC-) labeled antibodies (18). Immunofluorescence preparations were 
examined in a Leitz Orthoplan epifluorescence microscope with selective 
interference filters and mercury/xenon burners for excitation of FITC and 
TRITC, at 490 nm or 546 nm, respectively. 

Controls included conventional staining controls as recommended (37) 
as well as specificity controls using antisera preabsorbed against synthetic 
human gastrin I (ICI), synthetic somatostatin-14 (Peninsula Laboratories, 
Inc., Belmont, CA) purified porcine glucagon (NOVO, Bagsvaerd, Den- 
mark), synthetic tetragastrin and gastric inhibitory polypeptide (Peninsula 
Laboratories, Inc.), 99% pure porcine CCK-33 (a kind gift from Professor 
V. Mutt, Department of Chemistry, Karolinska Institute, Stockholm, Swe- 
den), and insulin (Nordisk Gentofte A/S, Gentofte, Denmark). All stainings 
were specific according to these criteria and could be abolished only by pre- 
absorption against the appropriate but not unrelated peptides. 

Indirect immunofluorescence was used in double-staining experiments to 
test for the joint presence of two hormones in the same cell. Permeabilized 

cells on coverslips were stained with rabbit anti-glucagon serum No. 4304, 
whereafter the site of antigen-antibody reaction was revealed with TRITC- 
labeled anti-rabbit IgG that had been preabsorbed against guinea pig IgG 
coupled to cyanogen bromide-activated Sepharose 4B beads. After rinsing, 
guinea pig anti-CCK serum No. 4488 was applied and finally, FITC-labeled 
anti-guinea pig IgG, preabsorbed against rabbit IgG-Sepharose beads, was 
applied. Specimens were analyzed in the above fluorescence microscope 
and pictures at selective FITC or TRITC excitation were taken on Kodak 
Ektachrome Professional Daylight film of 200 ASA. Controls included 
those applied above for single staining. In addition, combinations of pri- 
mary rabbit antiserum and FITC-labeled anti-guinea pig IgG and of pri- 
mary guinea pig antiserum and TRITC-labeled anti-rabbit IgG produced 
negative results documenting the species specificity of the second fluoro- 
chromed antibodies. Finally, reversal of the staining sequence (guinea pig 
sequence first) produced identical results. 

Differential counts (n >300) were performed to quantitate positively 
stained cells in the peroxidase-antiperoxidase method. This was carried out 
at different tissue culture passages using the following antibodies: 
anti-COOH-terminal gastrin/CCK Ab 2717; anti-glucagon Ab 4304; anti- 
somatostatin Ab R213/3, and anti-insulin. 

Sequence-specific Radioimmunoassays 
Development and characteristics of the four radioimmunoassays specific for 
different sequences of rat preproCCK (using antisera nos. 1561, G-160, 278, 
and 3208) and of the two control radioimmunoassays specific for different 
sequences of preprogastrin (using antisera nos. 2604 and 5284) have been 
described in detail elsewhere (29, 32). Briefly, Ab 1561 binds sequence 
85-90; Ab G-160 binds sequence 95-99, Ab 278 binds sequence 99-103; 
and Ab 3208 binds sequence 100-104 of rat preproCCK (Fig. 1). Gastrin 
antiserum Ab 2604 binds the COOH-terminal octapeptide amide of rat 
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gastrin-17 and Ab 5284 the corresponding glycine-extended COOH- 
terminus (Fig. 1). Neither of the two latter gastrin antisera cross-react with 
any products of prepmCCK. The radioimmunoassays were performed as 
described in detail elsewhere (29, 32). 

Results 

During routine propagation of the x-ray-induced transplant- 
able islet cell tumor (2) in NEDH rats, involving selective 
transplantation of small tumors from severely hypoglycemic 
animals, we observed a tumor nodule in the liver which was 
assumed to represent a metastasis (Fig. 2). In this single rat, 
which had received the tumor tissue sample intraperitoneal- 
ly, the main tumor mass was attached to the pancreas. The 
metastasis was clearly embedded within the liver tissue. 

Separate propagation in vivo of the metastasis (MSL) as 
well as of the main tumor (MP) from the same animal by sub- 
cutaneous transplantation to the back resulted in a series of 
insulin-producing tumors (Fig. 3). However, in successive 
generations of the MSL tumor, the insulin expression was 
unstable as indicated by gradually increasing tumor size, 
where large cystic tumors developed in the fourth generation 
with only a single animal becoming hypoglycemic (Table I). 
In contrast, transplants from the main tumor consistently 
produced small-sized tumors associated with severe hypo- 
glycemia in the subsequent generations. Interestingly, no 
metastases were observed in either MSL or MP recipients at 
the time of tumor removal (n=26 and 22, respectively). The 
MSL tumor displayed a remarkably high in vitro prolifera- 
tion potential as compared to the original x-ray tumor and 
the MP-variant (Table I). The relationship of MSL cultures 
and the RIN cell lines (7) of similar origin is shown in Fig. 2. 

Primary Cultures 

All tumor cell preparations from the MSL tumor yielded 
proliferating primary cultures (n = 5), whereas none of the 
attempts using identical procedures with the MP tumor were 
successful (n = 20) (Table I). It was observed that fibroblast 
contamination strongly reduced attachment of the primary 
tumor cells, thus inhibiting subsequent proliferation. Our 
serial dilution culture procedure ensured, however, that a 
certain fraction of primary microcultures from a particular 
tumor would be devoid of fibroblasts. 

Establishment of Insulin-producing Cell Cultures 

The simple screening assay for immunoreactive insulin al- 
lowed large-scale screening to identify insulin-secreting 
microcultures. A second generation MSL tumor causing se- 

vere hypoglycemia was used to start more than 200 second- 
ary cultures, each containing a proliferating colony, which 
was isolated from insulin-positive primary cultures. Four 
secondary cultures with insulin concentrations greater than 
20 ng/ml after 1 wk in 1-ml cultures were selected for expan- 
sion and cryopreservation (MSL-C, -D, -E, and -F; Fig. 3). 
One of these cultures (MSL-F) was subjected to limiting di- 
lution cloning twice, to establish two insulin-secreting cell 
lines; MSL-G and MSL-H. The doubling times of the vari- 
ous cultures varied between 3 and 6 d. 

Multihormone Expression In Vivo 
by the Clonal Culture MSL-G 

Subcutaneous inoculation of MSL-G cells in NEDH rats in- 
duced small, solid tumors (200-500 rag) associated with se- 
vere hypoglycemia. Immunocytochemical characterization 
of MSL-G tumor sections showed that, in addition to numer- 
ous insulin cells, discrete small areas in the tumor also con- 
tained glucagon, somatostatin, and CCK immunoreactive 
cells (Fig. 4, somatostatin staining not shown). 

The Cholecystokinin/Glucagon-producing 
MSL-G2 Variant 

After ~8  mo of continuous culture of the MSL-G cells, a 
morphologically distinct and slightly faster growing variant 
with a doubling time of ~4  d was observed (Fig. 6). Isolation 
and propagation of this variant (MSL-G2) resulted in a con- 
tinuously constant expression of this particular phenotype 
for >9 too. The MSL-G2 culture gradually ceased to secrete 
detectable amounts of insulin into the medium. Immunocyto- 
chemical analysis of monolayer cultures of MSL-G2 (Fig. 7, 
A-C) as well as of its subclone, CI-3 (Fig. 7, D-F) revealed 
numerous glucagon and COOH-terminal gastrin/CCK-like 
immunoreactive cells (Fig. 1). The use of non-cross-reacting 
antibodies towards gastrin and CCK (Fig. 1) demonstrated 
that the immunoreactivity was due to CCK, whereas gastrin- 
specific staining could not be detected. These results were 
confirmed by radioimmunoassay on supernatants (Table II) 
and purified extracts (Fig. 8) of MSL-G2 cells. Larger forms 
of presumably non-amidated CCK accumulate in the medi- 
um under normal culture conditions (Table II) whereas 
smaller amidated forms are found in cell extracts thus as- 
sumed to be the major stored products (Fig. 8). This was also 
reflected in supernatants of cultures stimulated to secrete 
stored immunoreactivity (Table II). The reaction of Ab 1561 
(Fig. 1) to the CI-3 cells is shown in Fig. 7 E The fractions 
of MSL-G2 cells positive for glucagon or CCK were of the 
same size and varied from 50 to 80 % throughout a 6-mo cul- 

Table I. Comparison of MP and MSL Tumor Cells 

Tumor generation 

1 2 3 4 
MSL MP MSL MP MSL MP MSL 

Animals per generation 1 2 5 9 9 11 11 

Hypoglycemic animals (%) 1 2 5 9 5 11 1 
Continuous in vitro growth/culture attempt 1/1 0/2 2/2 0/9 2/2 0/11 - 

Tumor size (g) <1 <1 4-6  <1 >10 <1 >10 

The size, the ability to induce hypoglycemia in vivo, and the proliferation potential in vitro is shown for MSL and MP tumors in subsequent generations. Large 
tumors were cystic. 
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Figure 6. Phase-contrast microscopy of the original MSL-G cells 
(filled arrow) with the MSL-G2 variant (open arrow). Bar, 30 I.tm. 

ture period (Table III). Somatostatin- and insulin-positive 
cells were present throughout the culture period but in much 
lower numbers (Table III). The distribution of the expression 
of the two hormones was rather remarkable since groups of 
typically 2-4 strongly stained cells were scattered in areas 
of negative cells (as shown in Fig. 7 C). A similar profile 
of hormone expression was found in C1-3. Double-staining 
immunofluorescence analyses with glucagon and CCK anti- 
sera raised in a rabbit and a guinea pig, respectively, showed 
that the majority of the positive ceils contained both types 
of immunoreactivity. However, a minority of cells in the 
same culture stained for only either glucagon or CCK (Fig. 
5). MSL-G2 and CI-3 were negative for the other hormones 
tested including motilin, growth hormone, and pancreatic 
polypeptide. 

Other Multihormone-producing Cell Lines 

The immunocytochemical analysis of the in vitro insulin- 
producing clone MSL-H revealed a mixed hormone expres- 
sion including the same four hormones as above (Table III). 
Since the limiting dilution technique does not provide the 
ultimate guarantee of monoclonal origin, we performed 
drug selection experiments to confirm our data. Selection 
by 6-thioguanine was used to obtain HAT (hypoxanthine, 
aminopterin, thymidine)-sensitive cultures and allowed us to 
isolate a series of insulin- and non-insulin-secreting clones. 
The frequency of proliferating 6-thioguanine resistant clones 
in the MSL-H culture was extremely low (2.5 × 10 -7) and 
independent of the presence of ethylmethanesulphonate. One 
insulin-secreting clone (MSL-R7,2E) tested so far retained 
the capacity for multihormone expression, although the frac- 
tion of positive cells for a particular hormone was very low 
(Table III). However, the intensity of staining of the few posi- 
tive cells with glucagon, CCK, and somatostatin, respec- 
tively, was strong (Fig. 7, G, H, and J) .  Among the non- 

Table II. Quantitation of CCK Peptides 
by Radioimmunossay 

Anti- Accumulation Release in 
Standard Tracer serum in 2 d 90 min 

CCK 33 125I-CCK 33 1561 
CCK-8-gly 125I-G13-gly 3208 
CCK-8 (S) 12sI-CCK-33 278/9 
CCK 8 (S) 125I-CCK-33 G160 
Gl3-gly 12sI-G13-gly 5284 
G17 nSI-G17 2604 

pmol/ t O 6 pmol/ l O 6 

cells ceils 

I II I II 
17.4 14.0 2.9 3,8 
5.6 6.7 3.2 2.5 
3.0 2.8 15.7 >10" 
3.0 5.0 1.2 1.9 
0 0 0 0 
0 0 0 0 

Supernatants of cultured cells were assayed for CCK/gastrin-like immunoreac- 
tivity. Culture conditions were as follows: 5 × 105 cells in 4 ml (1) and 106 
cells in 4.7 ml were incubated for 2 d in normal medium, Medium was collect- 
ed for assay and cells were incubated 90 min with serum-free medium, This 
medium was known to reduce cytoplasmic hormone content based on immuno- 
cytochemical results, and thus assumed to stimulate secretion of stored 
products. 
* Lowest dilution tested gave full displacement in assay. Antiserum 3208 
recognizes COOH-terminal glycine-extended gastrin or CCK which are the 
immediate precursors of amidated gastrin and CCK (Fig. 1). Gl3-gly is 
COOH-terminal glycine-extended gastrin-13. Specificities of antisera are 
shown in Fig. 1, The antisera 5284 and 2604 are gastrin specific. 

Table III. lmmunocytochemical Results 

% cells reactive with antiserum aganist 
Passage 

Clone number Insulin Glucagon Somatost. PP CCK 

MSL-G 10 2 33 10 0 30 
MSL-G2 11 2 78 5 nt 78 
MSL-G2 13 0.2 72 nt nt 67 
MSL-G2 14 0.2 58 4 nt 59 
MSL-G2 19 nt 48 nt nt 52 

MSL-CL3 17 1 46 6 nt 30 

MSL-A 6 0 9 10 0 1 
MSL-H 17 1 1 6 nt <0,1 
MSL-R7, 2E 6 <0.1 4 3 0 4 

Results of differential counting of positively stained cells using antisera against 
the hormones indicated. 

insulin-secreting cell lines tested so far, including MSL-A, 
(Table III) all expressed glucagon and CCK. 

Discuss ion  

We have identified a liver metastasis (MSL) of an x-ray-in- 
duced pancreatic islet cell tumor (2). The metastatic cells ex- 
pressed an enhanced potential for in vitro proliferation. This 
is in accordance with the observation that malignant cells can 
be cultured more readily in vitro as compared to their normal 
and benign counterparts (11, 36). To our knowledge, meta- 
static spreads have not previously been reported for this tu- 
mor. Interestingly, no metastases were identified in any of the 
rats carrying the MSL tumor (n = 26). However, two MSL 
cell lines (MSL-A and MSL-G) have occasionally produced 

Figures 4and5. (Fig. 4) MSL-G tumor sections stained for insulin (lej~), CCK (center), and glucagon (right). Bar, 20 ~tm. (Fig. 5) Double- 
staining experiments. (Lef~ panels) CCK. (Right panels) Glucagon. In top panels, most cells stain for both hormones simultaneously. How- 
ever, few cells predominantly contain either glucagon or CCK (open arrows andfiUed arrows, respectively). In bottom panels, two cells 
in a small colony contain both hormones (filled arrows) whereas one cell only stains for glucagon (open arrow). Bar, (top panels) 20 ttm; 
(bottom panels) 10 p.m. 
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Figure 7. Immunocytochemical staining of monolayer cell cultures. MSL-G2 (A-C), MSL-CI3 (D-F), and MSL-R7,2E (G-I) were stained 
for glucagon (A, D, and G), somatostatin (I), insulin (C), COOH-terminal gastrin/CCK (Ab 2717) (B, E, and H), and CCK (Ab 1561) 
(F). Bar, 10 ~tm. 

metastases when grown subcutaneously in vivo. In two rats 
carrying MSL-A tumors, multiple small cystic tumors were 
observed in the liver. One rat carrying an MSL-G tumor de- 
veloped two small solid insulin-producing metastases, one in 
each lung (Madsen, O. D., unpublished observations). 

All the clonal MSL-cell lines studied show a multihor- 
monal expression. Interestingly, RIN cell clones of same ori- 
gin (Fig. 2) were also found to express insulin and somato- 
statin (7, 26). These results strongly suggest that the original 
tumor arose from a transformed pluripotent islet stem cell, 
or that transformation lead to the dedifferentiation of a ma- 
ture cell to a pluripotent stage. The fact that most human 
pancreatic islet cell tumors are multihormonal (16, 22) is 
consistent with either of the above hypotheses regarding the 

mechanism of islet tumor genesis. The MSL cells thus allow 
studies of in vitro differentiation processes associated to the 
expression of particular hormones. 

The demonstration of the presence of CCK and not gastrin 
reveals a hitherto undescribed hormone expression by trans- 
formed pancreatic islet cells. The MSL-G2 cells in particu- 
lar have been shown to produce and secrete various forms of 
processed and unprocessed CCK. The hormone regulates 
gall bladder contraction (12), secretion of pancreatic en- 
zymes (10, 14), and has neurotransmitter activity (5; see 31 
for review). As with other regulatory peptides, preproCCK 
undergoes a series of posttranslational modifications leading 
to a heterogeneous group of CCK peptides with different 
biological activities (30, 31). The posttranslational modi- 
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Figure 8. Gel chromatography of a boiling water extract of MSL-G2 
cells. 1-ml extract (106 cells) was applied to a calibrated Sephadex 
G 50-superfine column (10 x 1,000 mm) eluted at 4°C in 0.02 M 
sodium veronal (pH 8.4) containing 0.1% bovine serum albumin at 
a flow rate of 5 ml/h. 1-ml fractions were collected and measured 
by cholecystokinin radioimmunoassays as described (29, 32). The 
measurements shown here (e -e )  were performed with the COOH- 
terminal-directed CCK-antiserum 278/9, which binds CCK-4, -8, 
-12, and -33 with equimolar potency. 

fications of CCK include proteolytic processing, tyrosin 
O-sulphatation, and ct-carboxy-amidation. The MSL cells 
will allow studies of mechanisms involved in CCK biosyn- 
thesis and processing in vitro. The demonstration of high 
concentrations of processed CCK forms underlines the con- 
siderable differentiation potential of the MSL cells. 

The establishment of HAT-sensitive pluripotent pancreatic 
endocrine cells such as MSL-R7,2E provides a vehicle by 
which novel hormones may be expressed using cell fusion 
techniques. 
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