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Over the past decade, polypharmacy instances have been common in multi-diseases treatment. However,
unwanted drug-drug interactions (DDIs) that might cause unexpected adverse drug events (ADEs) in
multiple regimens therapy remain a significant issue. Since artificial intelligence (AI) is ubiquitous today,
many AI prediction models have been developed to predict DDIs to support clinicians in
pharmacotherapy-related decisions. However, even though DDI prediction models have great potential
for assisting physicians in polypharmacy decisions, there are still concerns regarding the reliability of
AI models due to their black-box nature. Building AI models with explainable mechanisms can augment
their transparency to address the above issue. Explainable AI (XAI) promotes safety and clarity by show-
ing how decisions are made in AI models, especially in critical tasks like DDI predictions. In this review, a
comprehensive overview of AI-based DDI prediction, including the publicly available source for AI-DDIs
studies, the methods used in data manipulation and feature preprocessing, the XAI mechanisms to pro-
mote trust of AI, especially for critical tasks as DDIs prediction, the modeling methods, is provided.
Limitations and the future directions of XAI in DDIs are also discussed.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Drug-drug interactions (DDIs) usually happen in polypharmacy
instances when the effects of a drug alter that of others in a com-
bined regimen. In treatment, preferably, synergistic action and
therapeutic benefit are expected. However, in multi-diseases treat-
ment, adverse drug events (ADEs) that cause toxicity or reduced
treatment effect may also inevitably happen. These can eventually
lead to increased morbidity and mortality in patients [1-3]. In addi-
tion, an increased number of recently frequent launches and
approval of new drugs and indications in marketed medicines
introduces more possible DDIs occurrences [4,5]. However, wet-
lab experiments for verifying DDIs can drain researchers’ time
and resources and make it difficult for numerous and regular adop-
tions. Therefore, artificial intelligence (AI) models have been
applied to predict DDIs [6-9]. These models have been continu-
ously studied and improved along with the expansion and com-
pleteness of drug-database resources to support clinical decisions.

However, since the introduction of AI-models in DDIs recogni-
tion, many efforts have been applied to boost the predictive power
of algorithms by putting forward more complex systems, turning
these models into those called ‘‘black-box AI” that hinder the abil-
ity of users to explain how these models work [10]. Specifically,
higher performance models are associated with more sophisticated
systems, but lower performance tools with simple approaches are
easier to comprehend [11]. Despite various benefits given by wide-
spread industrial adoption of machine learning (ML) models, a crit-
ical domain as healthcare should be taken more seriously due to its
immense value to humans. Additionally, from a human-oriented
research angle, the ambiguity of complicated models in making
predictive decisions hamper its successful adoption in medical set-
tings as unable-to-interpreted systems are difficult to be trusted.
Since the fundamental application of AI in drug treatment must
first do with DDIs, explainable DDIs-AI models are pivotal for clin-
icians and patients to understand and trust their prediction. In
response, the ignition of the field explainable artificial intelligence
(XAI), which concentrates on methods to interpret ML models, has
revived over recent years. XAI can facilitate clinical applications of
DDIs prediction models regarding their requirement of robust yet
human-understandable systems to provide clear justifications
and promote safety, reliability, and transparency.

This review focuses on the advances of recently developed DDIs
prediction models regarding their data manipulation technique,
feature selection process, modeling approach, XAI method, and
the challenge of assuring explainability and transparency of
DDIs-prediction models without compromising the predictive
power of these systems.
2. Study selection

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guideline was referenced when conduct-
ing literature reviewing [12]. We searched five electronic data-
bases up to December 2021: Cochrane Library, PubMed, EMBASE,
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IEEE, and Scopus. The search strategy combined the Medical Sub-
ject Headings terms and free terms ‘‘drug drug interaction” or
‘‘drug-drug interaction”, in combination with ‘‘artificial intelli-
gence” or ‘‘machine learning” or ‘‘deep learning” or ‘‘neural net-
work” and ‘‘prediction model”.

The eligibility criteria consisted of DDI predictive models that
were built up using ML - and/or DL-based algorithms. The articles
were screened and selected independently by two reviewers (N.T.
K.N and H.T.V.), and disagreements were resolved by the third
reviewer (N.Q.K.L.). All the retrieved publications were entered
into reference-manager software (EndNote X9, Excel 2018).

We identified 643 records through Cochrane Library, IEEE,
PubMed, EMBASE, Scopus database, and two records from refer-
ence lists of review paper. After removing 215 duplicates, 116
records were excluded according to the screening of titles and
abstracts. Of 314 remaining research studies, 220 studies were
removed after evaluating the selection criteria: (1) related to DDIs,
(2) related to predictive model, (3) focused on ML or/and DL. As a
result, we had 94 different research studies. Fig. 1 shows the flow
diagram of the systematic search. Table 1 shows the detailed infor-
mation of 94 selected studies.

The flowchart of AI-based DDI prediction model is illustrated in
Fig. 2. From the whole flowchart, we would like to conduct our
review based on two main aspects: input data (DDIs extraction
and feature preprocessing) and AI algorithms (traditional machine
learning and deep learning). The evolution of DDI prediction mod-
els separated by these two aspects is also shown in Fig. 3.
3. Dataset, input data, and features for AI-DDIs studies

In response to the growing number of pharmaceutical drugs
entering the market over the past decades, many drug-related
information databases have been updating and expanding to facil-
itate DDIs prediction [13-15]. Generally, most DDIs studies referred
to datasets from DDIExtraction 2011 [16,17], DDIExtraction 2013
[18] and DrugBank database [19]. These public sources provide
various types of drugs’ characteristics and DDIs events to leverage
AI approaches for DDIs discovery. The quantitative information
about the DDIs is a necessary part of creating the described system.
The data record format usually has binary characters encoded as 1
if there is an interaction between two drugs and 0 if there is a lack
of known interaction.

Depending on the DDIs features-based view of different
approaches, appropriate data extraction and feature preprocessing
methods for DDIs prediction tasks can be applied.

3.1. DDIs information retrieved from text-based sources

This method involves extracting DDIs information in the form of
biomedical text, especially in scientific literature since these
sources represent valuable information for the retrieval of knowl-
edge about the interaction between drugs. The amount of biomed-
ical literature, which holds a vast amount of DDIs, has been
growing over the past years and facilitating many DDIs extracting



Fig. 1. PRISMA diagram showing our literature strategy search.
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studies [20-22]. Aside from studies using public available DDI cor-
pus [23,24], some studies have also used additional user-generated
content to compensate for the limits of delayed updates of the
medical database [25,26]. In addition, multi-information sources
DDI corpora have been constructed based on useful information
from FDA adverse event reports [27,28], electronic health records
(EHRs) [29,30], or by following specific annotation guidelines
[31] to construct corpus for DDIs extracting.

In these DDIs extraction approaches, feature preprocessing is
essential. In detail, tokenization and lower casing are the first vital
steps in reducing the sparsity of feature space. Also, many dimen-
sionally reduction text preprocessing techniques have been used
for DDIs extraction. Some compression techniques such as sen-
tence pruning [32] and anaphora resolution have been applied
[33]; Zhao used syntax word embedding strategy [34] instead of
the common word embedding technique, some used Bidirectional
Encoder Representations from Transformers (BERT) that relies on
attention mechanism to capture high-quality contextual informa-
tion [35,36]. The domain-specific ontologies approach attempted
to use ancestors’ sequences in the ontology to represent each
entity [37]. Bokharaeian et al. [31] proposed clause dependency
features to improve the relation extraction performance. Also,
Ben Abacha et al. [38] used the CRF-based algorithm trained by a
2114
set of linguistic and semantic features for the drug name recogni-
tion. Later, the DDIs extraction task was built on a hybrid method
of both feature-based and kernel-based machine learning
approaches. Moreover, the imbalanced class distribution problem
has also been considered in many articles since this issue can
diminish the power of classification [39,40]. Liu et al. used several
rules to filter negative instances [41]; others added random nega-
tive sampling as part of the active learning algorithm to deal with
the imbalanced issue [42] or use focal loss function to mitigate
against this problem [43].

3.2. Molecule-based input data and feature preprocessing for DDIs
prediction

Usually, DDIs studies utilize chemical, molecular, and pharma-
cological properties information to elucidate drug interactions
insights. In detail, the chemical properties of drugs are typically
described via the simplified molecular-input line-entry system
(SMILES). This flexible chemical notation allows the generation of
computer-feedable input [44]. These SMILES structural representa-
tions of drugs are post-processed to capture features of drug pairs
associated with DDIs events [45]. Moreover, pharmacological prop-
erties such as targets [8,46], enzymes, transporters, genes and pro-



Table 1
Input data type of all papers reviewed in this study.

No. Method Authors Year Input data Algorithm Performance

1 TML Cheng et al. [6] 2014 structure SVM AUC � 0.565 to 0.666
2 Hunta et al. [54] 2017 structure SVM AUC = 0.901
3 Deepika et al. [81] 2018 structure meta classifier F1-score = 0.909
4 Dhami et al. [51] 2018 structure kernel learning Accuracy > 0.7
5 Mahadevan et al. [48] 2019 structure ensemble learning Accuracy > 0.9
6 Zhang et al. [70] 2019 structure ensemble learning AUC = 0.9951
7 Song et al. [84] 2019 structure SVM AUC > 0.97
8 Qian et al. [60] 2019 structure gradient boosting AUC = 0.689
9 Wang et al. [85] 2020 structure SVM AUC = 0.985
10 Rohani et al. [79] 2020 structure integrated similarity-constrained matrix factorization F1-score = 0.885
11 Zhan et al. [92] 2020 structure Bayesian networks coupled with level-wise algorithm Precision = 0.5445
12 Huang et al. [141] 2020 structure Chemical Sequential Pattern Mining AUC = 0.91
13 Hung et al. [94] 2021 structure ensemble learning Accuracy = 0.7
14 Dang et al. [49] 2021 structure XGBoost F1-score = 0.65
15 Patrick et al. [72] 2021 structure ensemble learning AUC > 0.9
16 Dewulf et al. [142] 2021 structure combined multi-regression AUC = 0.843
17 Mei et al. [83] 2021 structure L2-regularized logistic regression AUC = 0.9884
18 Thomas et al. [17] 2011 text ensemble learning F1-score = 0.657
19 Minard et al. [143] 2011 text SVM F1-score = 0.5965
20 Garcia-Blasco et al. [16] 2011 text RF F1-score = 0.6341
21 Boyce et al. [87] 2012 text SVM F1-score = 0.859
22 Zhang et al. [89] 2012 text single kernel AUC = 0.924
23 Hailu et al. [19] 2013 text SVM F1-score = 0.5
24 Bjorne et al. [18] 2013 text Turku Event Extraction System F1-score = 0.59
25 Bobic et al. [95] 2013 text LibLINEAR, perceptron Naïve Bayes F1-score = 0.704
26 Yan et al. [73] 2013 text Drug-Entity-Topic AUC = 0.96
27 Zhang et al.[90] 2015 text Label Propagation AUC = 0.864
28 Ben Abacha A et al.[38] 2015 text Hybrid CRF based F1-score = 0.6398
29 Bokharaeian et al. [31] 2016 text bag of word kernel sign test p-value < 0.0001
30 Mahendran et al. [144] 2016 text bag of word F1-score = 0.769
31 Zhang et al. [28] 2017 text ensemble learning –
32 Celebi et al. [75] 2019 text RF AUC = 0.91
33 Javed et al. [82] 2021 text RF Accuracy = 0.954
34 Xie et al. [42] 2021 text LR Precision = 0.9
35 DL Polak et al. [59] 2005 structure ANN AUC = 0.82
36 Herrero-Zazo et al. [53] 2016 structure ANN F1-score = 0.64
37 Ryu et al. [7] 2018 structure DNN Accuracy = 0.924
38 Lee et al. [55] 2018 structure RWR coupled with KNN AUC = 0.67
39 Karim et al. [145] 2019 structure Graph Auto-Encoders AUC = 0.98
40 Rohani et al. [77] 2019 structure ANN AUC from 0.954 to 0.994
41 Lee et al. [80] 2019 structure auto-encoder coupled with a deep feed-forward network Accuracy > 0.95
42 Hou et al. [45] 2019 structure DNN AUC = 0.942
43 Liu et al. [146] 2019 structure multilayer bidirectional LSTM F1-score = 0.7243
44 Karim et al. [66] 2019 structure Convolutional-LSTM network F1-score = 0.92
45 Shukla et al. [97] 2019 structure convolutional mixture density RNN Accuracy = 0.982
46 Deng et al. [50] 2020 structure Multi DNN F1-score = 0.7585
47 Lin et al. [68] 2020 structure Knowledge Graph Neural Network AUC = 0.9912
48 Zhang et al. [62] 2020 structure multi-modal deep auto-encoders F1-score = 0.8498
49 Feng et al. [52] 2020 structure GCN-DNN F1-score = 0.84
50 Shankar et al. [71] 2020 structure ANN AUC = 0.69
51 Masumshah et al. [102] 2021 structure ANN F1-score = 0.936
52 Zitnik et al. [74] 2021 structure spectral convolution AUC = 0.928
53 Lin et al. [56] 2021 structure CNNs, auto-encoders with Siamese network F1-score = 0.9117
54 Schwarz et al. [61] 2021 structure multi-modal neural network AUPRC from 0.77 to 0.92
55 Luo et al. [57] 2021 structure graph convolutional auto-encoder network –
56 Nyamabo et al. [65] 2021 structure graph neural network AUC = 0.9838
57 Chen et al. [107] 2021 structure integrated modules neural network AUC = 0.9994
58 Pathak et al. [29] 2013 text Linked Data –
59 Zhao et al. [34] 2016 text Syntax CNN F1-score = 0.686
60 Liu et al. [41] 2016 text CNN F1-score = 0.6975
61 Quan et al. [109] 2016 text multichannel CNN F1-score = 0.702
62 Zhang et al. [24] 2016 text SVM F1-score = 0.8497
63 Suárez-Paniagua et al. [105] 2017 text CNN F1-score = 0.6198
64 Zheng et al. [130] 2017 text RNN with LSTM units F1-score = 0.773
65 Kavuluru et al. [123] 2017 text character-level RNNs F1-score = 0.7081
66 Wang et al. [147] 2017 text RNN with LSTM and an attention mechanism F1-score = 0.715
67 Yi et al. [129] 2017 text RNN F1-score = 0.722
68 Jiang et al. [127] 2017 text skeleton-LSTM F1-score = 0.714
69 Li et al. [96] 2017 text relation classification framework based on topic modeling F1-score = 0.48
70 Wang et al. [120] 2017 text LSTM F1-score = 0.72
71 Zhang et al. [33] 2017 text hierarchical RNN F1-score = 0.729
72 Xu et al. [26] 2018 text bidirectional LSTM network F1-score = 0.7115
73 Sun et al. [112] 2018 text Deep CNN F1-score = 0.845
74 Lim et al. [21] 2018 text recursive neural network F1-score = 0.838

(continued on next page)
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Table 1 (continued)

No. Method Authors Year Input data Algorithm Performance

75 Zhou et al. [126] 2018 text BiLSTM F1-score = 0.7299
76 Zhang et al. [20] 2018 text RNN-CNN F1-score = 0.648
77 Zitnik et al. [113] 2018 text spectral convolution AUC = 0.928
78 Paniagua et al. [104] 2018 text CNN F1-score = 0.6456
79 Hou et al. [100] 2018 text LSTM- DNN F1-score = 0.875
80 Sahu et al. [119] 2018 text LSTM F1-score = 0.6939
81 Zhang et al. [93] 2019 text variational autoencoder F1-score = 0.579
82 Xiong et al. [114] 2019 text combined GCNN and BiLSTM F1-score = 0.77
83 Liu et al. [146] 2019 text non-linear unsupervised neural network + RF F1-score = 0.8498
84 Sun et al. [43] 2019 text recurrent hybrid CNN F1-score = 0.7548
85 Shtar et al. [101] 2019 text ensemble-based classifier AUC 0.807 to 0.990
86 Xu et al. [25] 2019 text full-attention network F1-score = 0.712
87 Wu et al. [108] 2020 text stacked bidirectional GRU + CNN F1-score = 0.75
88 Zhu et al. [36] 2020 text bidirectional transformer + BiGRU F1-score = 0.809
89 Liu et al. [27] 2020 text stacked autoencoders + weighted SVM –
90 Park et al. [32] 2020 text Attention-based Graph Convolutional Networks F1-score = 0.7686
91 Zaikis et al. [128] 2020 text stacked Bi-LSTM + CNN –
92 Allahgholi et al. [23] 2020 text ANN Accuracy = 0.954
93 Warikoo et al. [35] 2020 text Lexically-aware Transformer-based BERT F1-score = 0.645
94 Fatehifar et al. [40] 2021 text LSTM F1-score = 0.783

TML: traditional machine learning, DL: deep learning, ’-’the information was not reported in the original paper.
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teins [6,47], interaction pathways like enzymes and transporters
[48-61] can also be manipulated to represent drugs features
through a set of descriptors. Network interaction mining [62-64]
and molecular graph representations have also been used to
describe substructures of drugs that come in distinctive shapes
and sizes or the structural relations between entities [65-68]. Addi-
tionally, to overcome the lack of data overlap between chemical
content and biological characteristics, the combined structure-
based input that includes both chemical and biological data by
hybridizing cheminformatics and bioinformatics techniques to link
all chemical information and biological effects have also been
applied to serve as a meaningful method for DDIs discovery in
many studies [69-71].

Many techniques have also been applied to cover multi phar-
macological facets of DDI by admitting heterogeneous characteri-
zations from various data sources that represent different drug
characteristics and physiological effects [72-74]. The knowledge
graphs (KGs)–based features integrated from multiple sources
such as DrugBank, PharmGKB, and KEGG drugs [75] were used to
overcome the limited information issue in single-source methods.
Along with this, some efforts have been made to address the prob-
lem of increased noise in the integrated similarity. The similarity
selection heuristic process ranks matrices based on the entropy
calculated in each matrix and calculates their pair-wise distance
for the final selection based on redundancy minimization [76,77].

The classification feature constructing step usually requires the
similarity analysis of paired drugs. In most studies, the chemical
structural similarity was measured using the structures of the
compound of drugs on DrugBank represented by their SMILES
[6]. Structural representation of the drugs can be constructed using
different molecular fingerprints generation techniques. The princi-
ple of this technique is to represent a molecule as a bit vector that
codes the attendance or non-attendance of specifically assigned bit
position structural features. Similarity measurements between
molecular fingerprints are calculated using different methods;
one commonly applied technique uses the Tanimoto coefficient
[8,48,78]. Besides, many studies combine various drug-drug simi-
larity measures representing relations between chemical, molecu-
lar physiological, or target pathways of drugs for the DDIs
prediction task to gain more helpful information about DDIs
[79,80]. On the other hand, the network-based features processing
method exploits the topological properties of the DDI network.
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Node2vec for Feature Network (FN) construction was used in
[81] to present drug features as low-dimensional feature vectors.
4. Conventional ML-based prediction models of DDIs

Given the advanced computer science development and grow-
ing network pharmacology approaches, the development of a tra-
ditional ML-based model using multi-dimensional drug
properties has been widely applied as a promising strategy to pre-
dict unknown DDIs [82,83].
4.1. Single ML algorithm-based predictive model

Support vector machine (SVM) was a common algorithm used
to predict DDIs due to its high performance with a broad range
AUC value of 0.565 – 0.985 [6,19,54,84-87]. Indeed, the number
of recruiting features has a certain role in the predictive model,
e.g., a study applied the features reducing method and achieved
an increase of 0.02 in the F-measure score (0.5786 vs 0.5965) of
the predictive model [86]. Kernel machines are a class of algo-
rithms for pattern analysis whose best-known member is the
SVM. Kernel classifiers were used for classifying the drug pairs,
including all-paths graph (APG), k-band shortest path spectrum
(kBSPS), and the shallow linguistic (SL) kernel [17,31,88,89]. Note-
worthy, Thomas et al. [17] showed that SL and APG outperformed
other methods, such as case-based reasoning and ensemble learn-
ing based on F1-score (0.606 vs. 0.416 and 0.583, respectively).
Also, Zhang et al. [90] used the label propagation algorithms to
work with the scenario where only a small portion of nodes in
the undirected weighted network being labeled. In the meantime,
logistic regression (LR) algorithm has been less used to establish
DDIs prediction model. Xie et al. [91] integrated active learning,
random negative sampling, and uncertainty sampling in clinical
safety DDI information retrieval (DDI-IR) analysis using SVM and
LR. In addition, Drug-Entity-Topic (DET) model following Bayes-
rules was an example in leveraging augmented text-mining fea-
tures to improve prediction performance in terms of discrimina-
tion and calibration [73]. Due to the growing demand for adverse
DDIs (ADDIs) signal detection, Bayesian network framework and
domain knowledge were combined to identify direct associations
between a combination of medicines and the target ADEs [92]. Fur-



Fig. 2. Overall workflow of traditional ML and DL for DDIs prediction.
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thermore, gradient boosting-based algorithm XGBoost was
employed to achieve robust DDI prediction even for drugs whose
interaction profiles were completely unseen during training [60].
XGBoost performed better or comparable to other algorithms, such
as SVM, random forest, and the standard gradient boosting in
terms of predictive performance and speed in DDIs prediction
[49,60].

4.2. Ensemble learning predictive model

Ensemble methods use multiple learning algorithms to obtain
better predictive performance than separate models in DDIs pre-
diction [17,33,48,72,93,94]. Combined ML algorithms using Lib-
LINEAR, which consists of linear SVM, Naïve Bayes, and Voting
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Perceptron classifiers, outperformed the original (unbalanced)
train corpora model based on F-score (70.4% vs. 69.0%)[95]. Simi-
larly, a heterogeneous network-assisted inference (HNAI) frame-
work consisting of five different ML algorithms, including Naive
Bayes (NB), decision tree (DT), k-nearest neighbors (k-NN), LR,
and SVM, was proposed to detect the unknown DDIs with AUC of
0.67, higher than that of separated algorithms (NB:0.66,
DT:0.565, k-NN:0.6, LR:0.655, and SVM:0.666) [6]. Other ensemble
methods including genetic algorithm and LR in classifier ensemble
rule for DDIs prediction could obtain AUC value up to 1 and accu-
racy>90%, regardless of approved and unproved drug pairs being
selected [48]. One of the significant concerns for developing a
high-accuracy DDIs prediction model is integrating heterogeneous
drug features. Thus, Zhang et al. [62] proposed a multi-modal deep



Fig. 3. Evolution of DDI prediction models separated by different input data and
algorithms.
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auto-encoders based drug representation learning method (DDI-
MDAE) to predict DDIs from large-scale, noisy and sparse data.
DDI-MDAE encompasses RF classifier in the positive-unlabeled
learning setting. Another computational experiment established a
sparse feature learning ensemble method with linear neighbor-
hood regularization (SFLLN) to predict DDIs, even unknown DDIs.
Although SFLLN presented high accuracy and outperformed bench-
mark methods, it costs a reasonable amount of running time [70].
5. Deep learning-based prediction model of DDIs

As many as the number of drugs have entered the market over
the past decades, the deep and complex interactions between
drugs can go far beyond the capacity of simple traditional ML algo-
rithms [96]. Therefore, DL, with multiple processing layers-
concepts, is applied in DDIs prediction due to its ability to deal
with complex relations [97]. Inspired by the architecture of human
brains [98], the superior performance of DL in classification tasks
over conventional methods leverages its growing application in
DDIs prediction. Unlike the traditional ML method, which depends
on hand-crafted features engineering, DL performed the data rep-
resentation and prediction in a joint task. In a complex, ill-
defined, and highly nonlinear problem as DDIs prediction, DL
emerges as a suitable approach for solving these stochastic issues.
DL can be seen as representation learning, in which the machine,
which involves multiple sequential layers, can develop its feature
representations [99]. We devoted this section to describing all
leading DL frameworks in the DDIs extraction and prediction tasks
since DL entered the field.
5.1. Artificial neural network (ANN)

ANN is a data-driven algorithm that seeks hidden functional
relations from the dataset. In ANN, many neurons are connected
in complex interconnections to solve linear or nonlinear problems.
Previous studies have successfully manipulated ANN models for
DDIs prediction tasks [100,101]. The two layers ANN model has
been used in the study of Rohani et al. [77] to work on a feature
set of different similarity matrices collected from five different
data sources. Masumshah et al. [102] used a feed-forward neural
network with fully connected layers and the ReLU activation func-
tion was used between layers of the model as a sigmoid activation
function for the output layer. Additionally, Shtar et al. [101]
applied the ANN and propagation method over DDI graph nodes
represented by an adjacency matrix. They used an XGBoost classi-
fier for the DDIs classification, which output a binary value repre-
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senting whether there is an interaction between the drug pairs or
not.

5.2. Convolutional neural network (CNN)

CNN, which was inspired by the pattern of the animal Visual
Cortex [103], has been introduced as an effective approach to deal
with data with a grid pattern. The main goal of CNN is to transform
the input into an easy-to-process form without compromising the
prediction power. This characteristic makes CNN a potential candi-
date for the DDIs extraction task [104,105] that requires valuable
feature learning aspects and massive datasets scalability. The cen-
tral concept of CNNs utilizes hidden convolution and pooling layers
to identify spatially localized features via a set of receptive fields in
kernel form. Usually, a CNN architecture consists of convolution,
pooling, and fully connected layers. According to the task, it is also
essential to have a suitable activation function. For example, a sig-
moid function is often used in binary classification, while the soft-
max function is often applied in multiclass classification [106].
Different forms of CNN have been proposed for DDI prediction as
follows.

5.2.1. Conventional CNN
Chen et al. [107] used the CNN in the feature fusion module of

their model, which was designed using a bi-level strategy with
cross-and-scalar-level units. The CNN was used to learn the local
and global features in the cross-level unit. The element-wise pro-
duct was used in the scalar-level unit to get the fine-grained inter-
active feature between two features. These features will be
concatenated to predict DDIs in the classifier module. The method
proposed by Wu et al. [108] adopted two CNNs and the maximum
pooling operation to extract features in the two location features
from the word features preprocessed by the attention mechanism
with a recurrent neural network (RNN). These features were then
before fed into a softmax function to get the normalized probabil-
ity score for each class. The model of Quan et al. [109] takes a DDIs
instance represented by the word embedding and feeds them into
the convolutional layer to get the filtered features. Then, the max-
pooling layer extracts the essential local features; this layer also
helps reduce the complexity of the model by reducing the feature
dimension. Finally, in this model, a softmax layer is used for clas-
sifying DDIs types.

5.2.2. Dependency-based CNN
The process of feeding local information into convolution oper-

ation in traditional CNN is not practical considering the case of
long-distance relationships between words in candidate DDIs
instances. Attempts to enlarge the window can lead to the data
sparsity problem. Therefore, the dependency-based convolutional
model (Dep-CNN) has been applied to capture long-distance
dependencies between words of a sentence and extract DDIs from
candidate instances. Dep-CNN performs convolution operation on
adjacent words in word sentences and dependency parsing trees
of candidate DDIs instances. In the model proposed by Liu et al.
[110], they first generate a dependency parsing tree where each
node corresponds to a word in the instance and syntactic depen-
dency between two words denoted by the directed edge. Their
Dep-CNN model is a four-layer neural network, consisting of a
look-up table layer, a convolutional layer, a max-pooling layer,
and a softmax progressing layer to feed the feature vector to a fully
connected neural network for classification.

5.2.3. Deep CNN
Considering various properties in texts, the successful applica-

tion of Deep CNN (DCNN) in identifying complex patterns of image
and video in computer vision [111] suggested its application in
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DDIs extraction task. Sun et al. [112] proposed a DCNN model
which utilized a small convolution architecture to operate directly
at the word level of the raw biomedical text input to get the
embedding-based convolutional features. Then, the softmax classi-
fier will be used to operate these features and extract DDIs from
biomedical literature.

5.3. Graph convolutional neural network (GCNN)

In many DDIs prediction approaches, the molecular structure of
drugs has been extensively exploited to extract the characteristics
of the drug that link to the DDIs events. In non-Euclidean domains,
where complex relationships and interdependencies between
molecular structure representation of drugs or interactions
between drug targets betokened as graphs [113], the application
of GCNN in DDIs prediction was introduced. The most fundamental
part of a GCNN is a graph, a data structure consisting of two com-
ponents: nodes and edges [101]. The nodes usually represent the
drug and edges are associated with interactions between nodes
[114]. The first graph convolutional network was proposed by
Bruna et al. [115] for applying neural networks to graph-
structured data. Also, a model called SC-DDIS was introduced by
Liu et al. [74] can learn the final embedding of drugs via a graph
spectral CNN. Besides, it deals with the multiple complex struc-
tured entities that consist of two graph types: local graph for struc-
tured entities and global graph to capture structured entities’
interactions. Wang et al. [85] proposed a graph to GCNN model
called GoGNN to extract features in both graphs in a hierarchical
fashion to leverage the DDIs prediction performance.

5.4. Recurrent neural network

RNN is highly manipulated in NLP [116,117] and it mainly deals
with sequential data. What makes RNNs differ from CNNs is their
memory mechanism that gets information for the prior inputs to
influence the current input and output. The DDIs extraction task
is considered a relation extraction task in NLP. Many have utilized
the long short term memory (LSTM) network to extract DDIs from
literature [118-120]. Even though Char-RNNs are more common
for modeling morphologically richer languages [121] and were
introduced for text classification [122]. Kavuluru et al. [123] has
also considered the role of character-level embedding in DDIs
extraction, and they used an LSTM on the character embedding
to extract the word vectors.

Luo et al. [57] presented a model that used an LSTM model for
DDIs prediction in diabetes using the embedded drug-induced
transcriptome data. The LSTM is a typical RNN architecture intro-
duced by Hochreiter and Schmidhuber [124] to deal with the prob-
lem of long-term dependencies. In LSTM, cells in the hidden layers
contain an input gate, an output gate, and a forget gate to control
the flow of information required for the Prediction. Also, the gated
recurrent units (GRU) was introduced to address the short-term
memory problem of the RNNs model [125]. However, unlike the
LTSM, GRUs use hidden states and two gates: reset and update gate
to control the information to retain for the prediction.

For the DDIs extraction task, a hierarchical RNN was introduced
by Zhang et al. [33]. This model framework considers the shortest
dependency path (SDP) between two entities and uses the RNN
to learn the feature representation of sentence sequence and SDP
for extracting DDIs. Zhou et al. [126] introduced an attention-
based BiLSTM model to encode biomedical text sentences.

Besides, considering the difference between DDIs instance and
typical sentence, Jiang et al. [127] used a skeleton structure to rep-
resent the DDIs instances and the LSTM model to work with the
structure (skeleton-LSTM). In their framework, a sentence is first
tokenized into token units followed by a corresponding skeleton
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unit, distance to the first drug, and distance to the second drug.
These units are input to the embedding layer of the skeleton-LSTM.

However, traditional Encoder-Decoder architecture using RNN
or LSTM remained several drawbacks as it can cause the informa-
tion loss problem, especially in the case of long sentences. Atten-
tion mechanism has been applied to deal with the problem
mentioned above [128]. The model proposed by Yi et al. [129] used
a bidirectional RNN layer to generate a sentence matrix as the
word’s semantic representation. Then, the attention layer is
applied to create the final representation by combining several rel-
evant sentences of the same drug pairs. The softmax classifier was
used to classify specific DDIs. Zheng et al. [130] also introduced a
model to classify DDIs from texts using a combined attention
mechanism and an RNN with LSTM units.
6. Interpretability methods in XAI and XAI in DDIs prediction

The surge in the predictive performance of AI tools is achieved
by increasing model complexity. This turns these models into
black-box systems and causes uncertainty regarding their opera-
tion mechanism. This ambiguity hinders the wide adaptation of
AI models in critical domains like healthcare. As a result, eXplain-
able Artificial Intelligence (XAI) focuses on understanding behind
the prediction of AI models to accommodate the demand for trans-
parency in AI tools. Interpretability methods of AI models can be
classified based on the type of algorithms, the interpretation scale,
and the data type [131]. Additionally, based on the purposes of
interpretability, approaches can be categorized as white-box mod-
els creation, black-box models explanation, enhancement of model
fairness and predictive sensitivity testing [132].

In terms of methods to explain DL models, the gradient-based
attribution method [133] attempts to explain the prediction by
attributing them to the network’s input features. This method is
often applied when predictions are made from a DNN system
and therefore, can be potential approach for some black-box
DNN models in DDIs prediction like [110,112]. Moreover, the
DeepLIFT is a popular algorithm applied on top of DNNmodels that
showed considerable advantages compared to gradient-based
methods [134]. On the other hand, Guided BackPropagation
method can be applied to network structures [135]. Under this, a
convolutional layer with improved stride can replace max-
pooling in CNN to deal with accuracy loss. This approach suggests
a potential application in some CNN-based DDIs prediction such as
[111]. On top of this, the [136] was proposed in NLP-based neural
networks. This method used rationales (small pieces of input text)
and tried to produce the same prediction as the full-text input
type. Under this method, the architecture consists of two compo-
nents, generator and encoder, to look for text subsets highly
related to the prediction result. Since the DDIs extraction task is
conducted via NLP-based models [109,114], the above methods
should be considered for application to promote the clarity of these
models.

Apart from this, methods to create white-box models such as
linear, decision tree, rule-based models, or sophisticated yet trans-
parent models have also been proposed in XAI. However, due to the
limited predictive power, especially in the NLP-based domain as in
the DDIs extraction task, these approaches are given less interest.
Additionally, various methods have been proposed to tackle fair-
ness in AI. Nevertheless, a minimal number of these scientific
pieces of literature considered fairness in non-tabular data such
as text-based information for DDIs extraction. While many DDIs
studies applied the word embedding method [62,109], it was
revealed that vectorized representing of text data could carry
strong bias [137]. Therefore, methods to assure fairness should
be taken into more consideration in DDIs studies. Furthermore,



Thanh Hoa Vo, Ngan Thi Kim Nguyen, Quang Hien Kha et al. Computational and Structural Biotechnology Journal 20 (2022) 2112–2123
somemethods aim to analyze the sensitivity of AI models to ensure
the reliability of those tools. In the Adversarial Example-based Sen-
sitivity Analysis, Zugner et al. [138] used this approach to study the
graph-structured data. This method considers modifying node con-
nections or node features to attack node classification models.
Since graph-based methods are widely applied in DDIs studies
[67,68], approaches as in the above research suggest potential
application in DDIs prediction model. Also, using perturbations to
the word embeddings [139] in RNN should also be considered. Sig-
nificantly, the input reduction method in the study of Feng et al.
[140] to reveal oversensitivity in NLP models can be a possible
approach in DDIs extracting studies. Literature regarding the
explosion of the weakness of DL models in NLP-tasks is complete;
however, applications in DDIs- NLP models are still limited.

In the DDIs study of Schwarz et al. [61], an attempt has been
made to offer their model interpretability using the Attention
scores computed at all layers of modeling. Using these scores, the
contribution of the similarity matrices to the drug representation
vectors is determined and the drug characteristics that lead to bet-
ter encoding are selected. This approach leverages information that
passes through all layers of the network.
7. Challenges and opportunities

Though traditional ML performed effectively in extracting DDIs,
even from the unstructured package insert (aka drug product label)
[87], conventional ML-based methods still have several drawbacks.
ML-based models are learned from positive and negative data,
making it difficult in real-world domains due to the lack of true
negative DDIs or a ‘‘gold standard” non-DDI. Therefore, it is neces-
sary to identify positive data from many unlabeled data containing
positive and negative samples and avoid biased sampling by ran-
dom negative sampling and validation set updating. Additionally,
it is unknown whether there is DDI between two drugs in a nega-
tive class dataset because some new DDIs drug pairs may not be
reported yet. Another issue is different types of DDI data, such as
clinical drug safety and pharmacokinetic data with different tar-
geted samples and proportions in DDI-relevant databases or arti-
cles. Also, it is more time-consuming to accomplish the
annotated corpora and determine optimal parameters in tradi-
tional ML-based methods. Hence, DNN models, including CNN
and sequential neural networks such as RNN, have been referred
to as an optimal resolution for feature selection and DDIs extrac-
tion without complicated feature engineering [120]. However, we
assumed that several paths should be investigated in future work.
First, drug-related textual data sources, such as patent information,
are essential. Second, it is unknown how to use drug domain
knowledge or semi-structured drugs, such as paragraph that
describes the pharmacodynamics or mechanism of action, protein
binding, or experimental properties of a drug in building up predic-
tive models.

In addition, DL with superior performance and capability to
automatically generate hierarchical input for the classification
tasks has gained huge research attention in DDIs prediction
domain. Still, these DL methods are neither easily explainable
nor commonly trusted by medical staff because of their explain-
ability deficiency. In the DDIs prediction field, only a few studies
have considered the explainable aspect of their models, which
leaves plenty of room to improve, innovate, and ensure predictive
performance and model interpretability in ML-based DDIs predic-
tion models. We, therefore, think that either approaches to explain
black-box models, methods to create high-accuracy white-box
models, strategies to ensure models fairness, or strict sensitivity
analyses of models in DDIs prediction should be given more con-
sideration in the coming years to produce trust and fairness in
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these models’ performance and bring them closer to clinical appli-
cation. Since XAI aims to explain the machine learning models, its
application does not lead to less accuracy in current models. Also,
further studies can show the potential of XAI in sacrificing accuracy
in the field of DDIs extraction task (NLP) if text based approach is
usually used for replenishment of databases and one can refine
the found dependencies in the initial sources. Addressing it may
open a new road in the application of XAI in DDI prediction in
the future, especially for DDI extraction task using NLP.
8. Conclusion

The management of DDIs, which can cause ADEs and affect
patients’ health, plays a crucial role in pharmacovigilance and
medical practice. The main contribution of this study is the estab-
lishment of detailed taxonomy of existing models for predicting
DDIs. Given remarkable breakthroughs in DDIs prediction over
the past years, weakness in terms of model interpretability
exposed considerable limits. We, therefore, believe that XAI in
DDIs prediction still holds many potential aspects to unlock in
future studies.
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