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Abstract: Feature extraction is one of the challenging problems in fault diagnosis, and it has a
direct bearing on the accuracy of fault diagnosis. Therefore, in this paper, a new method based
on ensemble empirical mode decomposition (EEMD), wavelet semi-soft threshold (WSST) signal
reconstruction, and multi-scale entropy (MSE) is proposed. First, the EEMD method is applied to
decompose the vibration signal into intrinsic mode functions (IMFs), and then, the high-frequency
IMFs, which contain more noise information, are screened by the Pearson correlation coefficient.
Then, the WSST method is applied for denoising the high-frequency part of the signal to reconstruct
the signal. Secondly, the MSE method is applied for calculating the MSE values of the reconstructed
signal, to construct an eigenvector with the complexity measure. Finally, the eigenvector is input to a
support vector machine (SVM) to find the fault diagnosis results. The experimental results prove that
the proposed method, with a better classification performance, can better solve the problem of the
effective signal and noise mixed in high-frequency signals. Based on the proposed method, the fault
types can be accurately identified with an average classification accuracy of 100%.
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1. Introduction

Rolling bearing plays an important role in the rotating machinery as it has a pointedly effect on its
service life. Among the causes of abnormalities in rotating machinery, 30% of abnormalities are caused
by bearing failure. Hence, the way for quick and effective fault diagnosis has been one of the emphases
of research among scholars worldwide. When a rolling bearing failure occurs, its vibration signal
changes, and its fault information is contained in these changed vibration signals. Under increasingly
complex working conditions for rotating machinery, it is difficult to diagnose faults in rolling bearing
with only individual subjective experiences. Hence, signal analysis is a necessarily process for accurate
fault diagnosis. Meanwhile, the vibration signal of bearings often contains abundant noise signals
due to the complex working conditions, which adds a great deal of difficulties to the failure form and
performance prediction of rolling bearings, affecting the accuracy of judgment. Hence, noise reduction
is quite vital and meaningful before the diagnosis [1].

In addition to the frequently-used time domain [2] and frequency domain analysis [3], current
signal denoising methods have also developed some very advanced time-frequency analysis methods,
such as empirical mode decomposition (EMD) [4], blind source separation (BSS) [5], energy entropy [6],
variational mode decomposition (VMD) [7], wavelet transformation (WT) [8], approximate entropy
(ApEn) [9], etc. Nonlinear and nonstationary signals can be decomposed into multiple intrinsic mode

Entropy 2020, 22, 290; doi:10.3390/e22030290 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/22/3/290?type=check_update&version=1
http://dx.doi.org/10.3390/e22030290
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 290 2 of 28

functions (IMFs) by EMD [10]. Aiming at the shortcomings of the EMD, such as modal mixture and end
effect, which affect the accuracy of signal decomposition [11], Wu et al. [12] improved the EMD method
with auxiliary noise and proposed the ensemble empirical mode decomposition (EEMD) method.

The EEMD method results in signal decomposition with anti-noise characteristics, reduces
reconstruction errors, and improves the quality of IMFs by adding Gaussian white noise to the original
signal. Therefore, the EEMD method is widely used in signal processing and fault diagnosis [13].
However, when the EEMD method is applied independently for decomposing signals and reducing
noise, the information in the high-frequency components is also lost as some IMFs are discarded [14].
The WT method has a good performance on the suppression of random noise by having the properties
of multi-scale, low entropy, and decorrelation [15]. Jumah et al. [16] proposed a method using wavelet
transform and various thresholding techniques, which has a good effect on removing one-dimensional
Gaussian white noise. However, there is no uniform standard for the operation of the wavelet threshold
method, which has a greater impact on the final result. The wavelet hard threshold denoising method
generates discontinuous points and loses some vital information [17]. The wavelet soft threshold
denoising method causes distortion phenomena, such as edge blur effect [18].

Although the wavelet threshold denoising method effectively removes noise from high-frequency
signals, the effect is not ideal, and the useful signals still mix with noise signals. Nevertheless, the
wavelet semi-soft threshold with the advantages of the hard and soft threshold can not only preserve
the integrity of the signal but also ensure the accuracy of noise reduction [19]. However, the bearing
vibration signals are usually complexity and non-stationarity due to the genesis of failures. Therefore,
the single time-frequency analysis method is restricted in extracting the features. The extracted features
are not ideal for distinguishing bearing fault types.

Aiming at the problem that the bearing features masked in the nonlinear signals cannot be
effectively extracted, to ensure accurate fault diagnosis, we need to research from the perspective of
signal complexity. So far, many scholars have proposed many methods to characterize the complexity
of signals, and entropy theory is one of them [20]. Entropy theory has been applied for mechanical
fault diagnosis by resorting to effectively extracting the fault features masked in the nonlinear vibration
signal [21].

Costa et al. [22] proposed the concept of the multi-scale entropy (MSE) method. The MSE method
can measure the complexity of signals from the perspective of the similarity of the data and the
self-correlation of the time series. Therefore, the MSE method is employed to extract features and
analyze the irregular degree of the signal on different time scales. Zheng et al. [23] proposed a method,
which uses MSE to measure the complexity of rotor fault signals for fault feature extraction and to
accurately extract the difference information from different fault signals.

Tiwari et al. [24] proposed a method combining multi-scale permutation entropy (MPE) with the
adaptive neural fuzzy classifier (ANFC), which can diagnose bearing fault information and predict
early bearing failure. Rodriguez et al. [25] proposed a method with multi-scale wavelet entropy (MWE)
combined with the kernel limit learning machine (KELM); however, they only considered experimental
data and did not verify more complex practical data pretreatment.

With the increasing complexity of today’s mechanical equipment and working environments,
where rolling bearings work under hostile conditions, the vibration signals are often more complex
and irregular. Therefore, it is difficult to directly use the entropy methods to extract fault features
that can effectively distinguish fault types. For this problem, some scholars preprocessed the original
vibration signals before using entropy theory for feature extraction. Hsieh et al. [26] utilized the EMD
and the MSE for high-speed spindle fault diagnosis. Their conclusion illustrates not only that MSE
can accurately distinguish the fault types of high-speed spindles but also that the noise reduction
performance of EMD still needs to be improved.

Aouabdi et al. [27] used MSE and principal component analysis (PCA) to analyze current signals
to monitor and diagnose the degradation of the gear. Their conclusion illustrates that this method
can detect gear tooth erosion better. However, there is a deviation in the evaluation of the complexity
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of the sampled signal, and PCA cannot well retain the real information of the original signal. Ge et
al. [28] employed multi-scale displacement entropy (MDE) and robust PCA for rolling bearing fault
diagnosis, which can effectively locate and diagnose bearing faults. However, the feature components
of the acquired signal are more complex than the analog signals, and the noise reduction performance
requires improvement.

In summary, to obtain higher accuracy in rolling bearing fault diagnosis under complex working
conditions, a method based on signal reconstruction and the MSE is presented in this paper. First,
the EEMD is applied to decompose the vibration signal. Secondly, the WSST is used to denoise the
modal components in the high-frequency signal filtered by correlation analysis, to reconstruct the
signal. By using the EEMD-WSST method, the shortcoming of EEMD can be avoided and all the
advantages of these two methods can be preserved. Different from the conventional signal processing
method, the noise in the reconstructed signal is expertly filtered on the basis of ensuring the integrity
of the effective part in the high-frequency signal, and this improves the efficiency of the noise reduction
method. Finally, based on the effectively denoising, the MSE method is used for calculating the MSE
values of the reconstructed signal. To distinguish the fault types of bearings, the calculated sample
entropy is input as a rolling bearing fault feature into an SVM model, which is more suitable for
training small sample data [27]. Compared with the conventional entropy methods for rolling bearing
fault diagnosis, the proposed method is more stable and suitable for practical engineering applications.

The remainder of this paper is organized as follows: Section 2 introduces the signal reconstruction
method based on the EEMD and WSST. Section 3 provides the feature extraction steps of MSE. Section 4
illustrates the detailed steps of the proposed method. Section 5 shows the contrast experiments of the
proposed method. The conclusion is reached in Section 6.

2. Signal Reconstruction

2.1. The Basic Principles of the EEMD

The EMD decomposition is to process the signal smoothly to obtain multiple data sequences
under different characteristic scales. These data sequences are called IMFs. Any signal can be regarded
as a combination of several IMFs, and the IMFs obey the following two conditions: (1) the number of
local extrema and the number of the zero-crossing points are equal or of only one difference in the
whole time; (2) at any time, the two envelopes determined by the local maximum point and local
minimum point have an average value of 0.

The EEMD method is essentially an improved EMD method. It adds white noise into the signal
mainly according to the characteristic that the mean value of white noise is zero and still decomposes the
signals with EMD and averages the decomposition result. The more average processing times, the less
impact of noise on the decomposition result. The EEMD is to perform multiple EMD decompositions
on the signal added Gaussian white noise. The EEMD is to resort the statistical properties of the
even distribution of the frequency of the Gaussian white noise to ensure the noise-added signal has
continuity on different frequency scales, thereby reducing the mode mixing degree of the IMFs.

The EEMD method equalizes noise based on the distribution characteristics of white noise
spectral equalization, to make the frequency distribution tend to be uniform. Mode mixing is caused
by the distribution points of the amplitude of different signals with white noise added. By using
the characteristics of the EEMD method, the high-frequency modulation information is adaptively
separated. This method not only weakens the mode mixing effect of the EMD method but also
reduces the error caused by the central frequency band and filter band selection error in resonance
demodulation. Let the signal be x(t). The specific decomposition steps are as follows:

Step 1. Set the average processing times of x(t) to M. Initial i = 1, 2, . . .M.
Step 2. Add random white noise ni(t) with a certain amplitude into x(t) to form a new series

of signals.
xi(t) = x(t) + ni(t) i = 1, 2, . . .M (1)
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Step 3. Decompose the new signal sequence x(t) using the EMD method.

xi(t) =
J∑

j=1

ci j(t) + ri j(t) (2)

where ci j(t) denotes the j-th IMF in the i-th decomposition, and ri j(t) denotes the residue of the i-th
decomposition.

Step 4. Sum and average the corresponding IMFs obtained by the M-th decomposition to offset
the noise and get the final IMFs.

c j(t) =
1
M

M∑
i=1

ci j(t) (3)

where c j(t) denotes the j-th IMF obtained by the EEMD method, j = 1, 2, · · · , J.
Step 5. The final result of the x(t) decomposed by the EEMD method is as follows:

x(t) =
J∑

j=1

c j(t) + r(t) (4)

where r(t) denotes the final residue of signal decomposed by the EEMD method.

2.2. Signal Reconstruction Based on EEMD and WSST

The EMD and EEMD methods are essentially signal decomposition methods and do not have the
function of removing or reducing noise compositions. These two methods decompose the original
signal into multiple basic modal components, directly remove the basic modal components with higher
noise components, and reconstruct the remaining basic modal components to realize the denoising
process. However, these two methods will cause the loss of value signal information in high-frequency
signals. The EEMD can better remove the background noise; however, it will cause the loss of the
effective information in the high-frequency signal. Compared with EEMD, although wavelet denoising
can better retain the effective information in the signal, its threshold influences the original signal
denoising. Therefore, based on the wavelet denoising, the threshold function of wavelet denoising is
improved, and a denoising method combining EEMD and improved wavelet denoising is applied to
reduce the noise in the bearing signals.

Wavelet transform is suitable for nonlinear signal processing. Wavelet threshold denoising can
perform noise reduction processing on the signal according to the different amplitude–frequency
characteristics of the signal and has a strong ability to inhibit white noise. Therefore, wavelet threshold
denoising is introduced into the noise reduction processing of the high-frequency signal to reconstruct
the original signal. The most widely used wavelet transform in the signal denoising field is the wavelet
threshold denoising. This is used, essentially, to filter the signal. The wavelet threshold method is to
transform the signal to the wavelet domain; then obtain the wavelet coefficients and filter out noise;
and finally, reconstruct the signal. The wavelet threshold function mainly includes the soft threshold
as shown in Equation (5) and the hard threshold as shown in Equation (6).

η(w) = (w− sgn(w)T)I(|w| > T) (5)

η(w) = wI(|w| > T) (6)

As shown in Equation (6), the treatment method of the hard threshold is to keep the wavelet
coefficients above the threshold unchanged and change the wavelet coefficients below the threshold to
0. However, this “guillotine” method will cause changes in the wavelet domain and lead to sudden
local changes in the noise reduction results. The treatment method of the commonly used soft threshold
is to change all the wavelet coefficients less than 3σ to 0 and, in a unified way, subtract 3σ from the
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wavelet coefficients greater than 3σ to make the wavelet coefficients smooth in the wavelet domain.
Although this will cause some loss of useful information in the high-frequency signal, it eliminates the
local concussion caused by the hard threshold function.

The two traditional threshold acquisition methods each have advantages but also have damage
to the signal. The hard threshold method provides better protection for the edge information of
the original signal, while the soft threshold method smooths the signal edge after noise reduction.
The disadvantage is that the soft threshold method causes a certain degree of distortion. It is obvious
that the selection of wavelet threshold plays a decisive role in the whole wavelet threshold denoising
process and determines the final effect of the signal denoising method. Therefore, a method is proposed
to improve the above defects; this expression is as shown in Equation (7), where 0 <T1 < T2.

The wavelet semi-soft threshold function combines the advantages of the two methods while
cleverly avoiding their defects. The images of the three threshold functions are shown in Figure 1. All
the abscissas represent the wavelet coefficients of the original signal, and the ordinates represent the
wavelet coefficients subjected to thresholding. They are all dimensionless parameters.

η(w) = sgn(w)
T2(|w| − T1)

T2 − T1
I(T1 < |w| < T2) + wI(|w| > T2) (7)
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In the vibration signal, noise mostly exists in the high-frequency band. How to screen the IMF with
high noise content from multiple IMFs is very important for the subsequent denoising process. Although
EEMD can decompose signals by modal and effectively suppress mode mixing compared to EMD, there
is no explicit method to determine the demarcation point of EEMD signal-to-noise components, and it
is necessary to further distinguish between signal components and noise components. The function
characteristics of the autocorrelation function of each modal component roughly determine the
signal-to-noise demarcation point of the input signal. Then, the improved method is used to denoise
the noise components after separation. Finally, the signal after denoising is recombined with the
remaining components to obtain the final denoising result.

This method retains the advantages of EEMD in effectively eliminating the background noise and
overcoming the shortcomings of wavelet threshold denoising, which cannot completely eliminate the
background noise. It also retains the advantages that wavelet threshold denoising can well retain the
useful signals in the original signal and overcomes the shortcomings of EEMD forced denoising and
loss of useful signals. The combination of the two achieves a better denoising effect by determining
the noise component through the autocorrelation function. In this section, the Pearson correlation
coefficient is used to analyze the correlation between the IMF component and the original signal to
screen the IMF component.
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The Pearson correlation coefficient is one of the indexes that can describe the degree of correlation
between two random variables; therefore, it can be used as a standard that can accurately measure the
correlation between two signals. Assume that for two random signals, X and Y, the Pearson correlation
coefficient can be expressed as

u =

∑n
i=1 (xi−x)(yi − y)√∑n
i=1 (xi−x)2(yi − y)2

(8)

As shown in Equation (8), if the value of the Pearson correlation coefficient u is larger, this indicates
that the degree of similarity is greater between the two random signals X and Y. Conversely, if the value
of the Pearson correlation coefficient u is smaller, this indicates that the similarity is smaller between
the two random signals X and Y. The division of strong or weak relations of the Pearson correlation
coefficient is shown in Table 1.

Table 1. Correlation degree based on Pearson correlation coefficients.

Pearson Correlation Coefficient Correlation Degree

0.7–1.0 strong linear correlation
0.4–0.7 significant correlation
0–0.4 weak linear correlation

The linear relationship between the two signals in the high-noise components can be divided into
the following three kinds: if 0 < |u| < 0.4, the linear relationship between the two signals is a weak
linear correlation; if 0.4 ≤ |u| < 0.7, the linear relationship s is a significant correlation; if 0.7 ≤ |u| < 1,
the linear relationship is a strong linear correlation, and the IMFs in this frequency band have a higher
noise content. Therefore, the components in multiple IMFs that have a significant correlation and
strong linear correlation with the original signal are subjected to secondary noise reduction to improve
the signal-to-noise ratio (SNR) of the signal. By calculating the correlation coefficient between each
IMF and the original signal, the IMFs with high noise components are picked for noise reduction to
avoid the problem of effective signal loss during the mode decomposition and denoising.

To quantitatively evaluate the performance of the denoising method, the indexes for measuring
the denoising effect generally include the SNR and the root mean squared error (RMSE). The SNR
reflects the energy relationship between the signal and the noise, and the RMSE reflects the magnitude
of the average energy of the noise. Generally, the method with a high SNR and a low RMSE is better
than the method with a low SNR and high RMSE. The mathematical expressions of the SNR and the
RMSE are expressed as Equations (9) and (10), respectively.

SNR = 10lg
((∑N

t=1
s2(t)

)
/
∑N

t=1
[s(t) − x(t)]2

)
(9)

RMSE =
1
N

∑N

t=1
[s(t) − x(t)]2 (10)

where N denotes the sampling number, s(t) denotes the noiseless original signal, and x(t) denotes the
signal after denoising.

The EEMD-WSST signal reconstruction method can be briefly summarized as follows:
Step 1. Decompose the original signal into the IMFs and residual components by EEMD.
Step 2. Obtain corresponding high-frequency noisy IMFs by Pearson correlation coefficient

analysis and perform wavelet semi-soft threshold denoising on the high-frequency noisy IMFs.
Step 3. Perform signal reconstruction on the noiseless IMFs, other IMFs, and residual components.
This method reflects the advantages that the wavelet denoising method has for multi-resolution

applications. EEMD adaptively decomposes the signals based on the original signal and, meanwhile,
avoids the defects in practical applications, inhibits the mode mixing, and improves the denoising
effect while ensuring signal integrity.
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2.3. Analysis of Simulating Bearing Fault Signals

To verify the feasibility and effectiveness of the EEMD-WSST signal reconstruction method, a
simulating rolling bearing signal is constructed. It can be described by Equation (11).

s(t) = y0e−2π fn gt sin
(
2π fn

√
1− g2t

)
+ n(t) (11)

where s(t) denotes the noise-added rolling bearing simulation signal, y0 is the displacement constant,
fn is the natural frequency of the rolling bearing, t is the sampling time, g is the damping coefficient,
and n(t) is the Gaussian white noise that tends to be real noise. Here, we set y0 = 3, fn = 3000 Hz,
g = 0.09.

When s(t)− n(t), the simulated signal is pure and noiseless; the amplitude and spectrum diagrams
of the noiseless simulated signal are presented in Figure 2. The time domain and frequency domain
chart of the simulated signal after adding Gaussian white noise are given in Figure 3.
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Figure 3 shows that the time-domain waveform becomes more confusing after adding white noise.
In the frequency waveform, due to simulating a strong noise background, higher amplitudes appear
at certain frequencies. It is significant to be able to extract the required information in a high-noise
background; extracting useful information in a Gaussian-noise background is a technical problem.
Therefore, we use this simulated signal to verify the superiority of the denoising method we proposed
and show the robustness of this denoising method.

To verify that the proposed method has a better noise reduction effect compared with other
traditional methods, the following methods are compared experimentally: EEMD forced denoising,
wavelet threshold denoising, EEMD combined with wavelet hard threshold (EEMD-WHT), EEMD
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combined with wavelet soft threshold (EEMD-WST), EMD combined with wavelet semi-soft threshold
(EMD-WSST), and EEMD-WSST.

Figure 4 presents the noiseless simulated signal decomposed by the EEMD. Figure 5 presents the
noise-added simulated signal decomposed by the EEMD. As can be seen in Figures 4 and 5, although
the EEMD can adaptively decompose the original signal into multiple IMFs at different frequencies,
there exists the problem of mode mixing.

Entropy 2020, 22, x FOR PEER REVIEW 8 of 28 

 

high-noise background; extracting useful information in a Gaussian-noise background is a technical 
problem. Therefore, we use this simulated signal to verify the superiority of the denoising method 
we proposed and show the robustness of this denoising method. 

To verify that the proposed method has a better noise reduction effect compared with other 
traditional methods, the following methods are compared experimentally: EEMD forced denoising, 
wavelet threshold denoising, EEMD combined with wavelet hard threshold (EEMD-WHT), EEMD 
combined with wavelet soft threshold (EEMD-WST), EMD combined with wavelet semi-soft 
threshold (EMD-WSST), and EEMD-WSST. 

Figure 4 presents the noiseless simulated signal decomposed by the EEMD. Figure 5 presents 
the noise-added simulated signal decomposed by the EEMD. As can be seen in Figures 4 and 5, 
although the EEMD can adaptively decompose the original signal into multiple IMFs at different 
frequencies, there exists the problem of mode mixing. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1
0
1
2

im
f1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.5

0

0.5

im
f2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.2
0

0.2

im
f3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.1
0

0.1

im
f4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.05
0

0.05

im
f5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.04
-0.02

0
0.02
0.04

im
f6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.04
0.02

0
0.02
0.04

im
f7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.01

0
0.01

im
f8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

2
0
2

im
f9

10-3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5
0
5

10

im
f1

0 10-4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
7

8

im
f1

1 10-3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.011
0.0112
0.0114

im
f1

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
3.6
3.8

4

re
s.

10-4

-

-

-

-
-

-

 
Figure 4. Decomposition result of the noiseless simulated signal. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-2

0

2

im
f1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-1
0
1

im
f2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.5
0

0.5

im
f3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.5

0

0.5

im
f4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.2
0

0.2

im
f5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.2

0

0.2

im
f6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.1

0

0.1

im
f7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.05

0

0.05

im
f8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
- 0.04
- 0.02

0
0.02

im
f9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.02

0
0.02

im
f1

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.025
0.03

0.035
0.04

im
f1

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1.8

2

2.2

re
c.

10-3

 

Figure 5. Decomposition result of the noise-added simulated signal. 

The time domain and frequency domain chart of the simulated signal, after EEMD forced 
denoising, are presented in Figure 6. It can be seen from the frequency waveform that the EEMD 
forced denoising will cause the loss of high-frequency signals. The high-frequency part of the 

Figure 4. Decomposition result of the noiseless simulated signal.

Entropy 2020, 22, x FOR PEER REVIEW 8 of 28 

 

high-noise background; extracting useful information in a Gaussian-noise background is a technical 
problem. Therefore, we use this simulated signal to verify the superiority of the denoising method 
we proposed and show the robustness of this denoising method. 

To verify that the proposed method has a better noise reduction effect compared with other 
traditional methods, the following methods are compared experimentally: EEMD forced denoising, 
wavelet threshold denoising, EEMD combined with wavelet hard threshold (EEMD-WHT), EEMD 
combined with wavelet soft threshold (EEMD-WST), EMD combined with wavelet semi-soft 
threshold (EMD-WSST), and EEMD-WSST. 

Figure 4 presents the noiseless simulated signal decomposed by the EEMD. Figure 5 presents 
the noise-added simulated signal decomposed by the EEMD. As can be seen in Figures 4 and 5, 
although the EEMD can adaptively decompose the original signal into multiple IMFs at different 
frequencies, there exists the problem of mode mixing. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1
0
1
2

im
f1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.5

0

0.5

im
f2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.2
0

0.2

im
f3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.1
0

0.1

im
f4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.05
0

0.05

im
f5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.04
-0.02

0
0.02
0.04

im
f6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.04
0.02

0
0.02
0.04

im
f7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.01

0
0.01

im
f8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

2
0
2

im
f9

10-3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5
0
5

10

im
f1

0 10-4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
7

8

im
f1

1 10-3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.011
0.0112
0.0114

im
f1

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
3.6
3.8

4

re
s.

10-4

-

-

-

-
-

-

 
Figure 4. Decomposition result of the noiseless simulated signal. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-2

0

2

im
f1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-1
0
1

im
f2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.5
0

0.5

im
f3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.5

0

0.5

im
f4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.2
0

0.2

im
f5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.2

0

0.2

im
f6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.1

0

0.1

im
f7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.05

0

0.05

im
f8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
- 0.04
- 0.02

0
0.02

im
f9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.02

0
0.02

im
f1

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.025
0.03

0.035
0.04

im
f1

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1.8

2

2.2

re
c.

10-3

 

Figure 5. Decomposition result of the noise-added simulated signal. 

The time domain and frequency domain chart of the simulated signal, after EEMD forced 
denoising, are presented in Figure 6. It can be seen from the frequency waveform that the EEMD 
forced denoising will cause the loss of high-frequency signals. The high-frequency part of the 
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The time domain and frequency domain chart of the simulated signal, after EEMD forced denoising,
are presented in Figure 6. It can be seen from the frequency waveform that the EEMD forced denoising
will cause the loss of high-frequency signals. The high-frequency part of the frequency waveform is
almost zero. This denoising method will cause signal distortion to some extent.
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Figure 6. The time domain and frequency domain chart of simulated signal after ensemble empirical
mode decomposition (EEMD) forced denoising.

The time domain and frequency domain chart of the simulated signal after wavelet threshold
denoising are presented in Figure 7. In this simulation analysis, the basis function used for wavelet
threshold noise reduction is db3, and the decomposition level is 3. From Figure 7, we can observe
that the effect of wavelet threshold denoising is not ideal, as the wavelet threshold denoising requires
artificial selection of the wavelet base function and the number of decomposition layers. The default
threshold is not a suitable selection, as it causes the signals with frequencies higher than 2000 HZ to be
almost filtered out and also filters out the important part of the signal.
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The EEMD-WSST signal reconstruction method is based on correlation analysis. Pearson correlation
analysis is performed on the original signal and the IMFs obtained by EEMD, and the wavelet threshold
denoising is performed on IMF with the Pearson correlation coefficient greater than 0.7. Then,
we reconstruct the signal. The correlation analysis results are shown in Table 2.

Table 2. The correlation analysis results of intrinsic mode functions (IMFs).

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11/Rec. Rec.

EMD correlation
coefficient 0.7612 0.5694 0.3336 0.2584 0.1726 0.1319 0.092 0.0483 0.0261 0.0310 0.0204 0.0157

EEMD correlation
coefficient 0.7142 0.531 0.2981 0.1891 0.1469 0.1026 0.0806 0.0387 0.0151 0.0217 0.0112
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In the EEMD-WSST, the IMFs with a Pearson correlation coefficient greater than 0.7 are selected
for wavelet semi-soft threshold denoising. Therefore, IMF1 and IMF2 are selected.

The time domain and frequency domain chart of the simulated signal after denoising by
EEMD-WHT are shown in Figure 8. It can be seen that the EEMD-WHT can filter noisy signals
to a certain extent, but the effect is not ideal. Figure 9 presents the time domain and frequency domain
chart of the simulated signal after denoising by the EEMD-WST. Compared to the EEMD-WHT, the
time-domain waveform obtained by the EEMD-WST is more concise. However, the EEMD-WST will
cause the lower amplitude of the high-frequency part of the frequency waveform, which may submerge
the effective information.
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soft threshold (WST).

In Figure 10, the time domain and frequency domain charts of the simulated signal denoised by the
EMD-WSST are shown. In Figure 11, the time domain and frequency domain charts of the simulated
signal denoised by EEMD-WSST are presented. We can observe from the time domain waveform
in Figures 10 and 11, at the 400–5000 HZ section, the denoising performance of the EEMD-WSST
is better than the EMD-WSST. The former is closer to a pure and noiseless simulated signal at the
400–5000 HZ section.
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As shown in Figure 8, Figure 9, and Figure 11, the signals are decomposed by EEMD and then
respectively denoised by wavelet hard threshold (WHT), wavelet soft threshold (WST), and WSST. The
wavelet semi-soft threshold denoising has the most significant effect on reducing the noise in mid and
high frequencies and highest retention of the form of the original signal. Generally, the high SNR and
the low RMSE are used as evaluation criteria for the denoising effect. The correlation coefficient is
mainly used to distinguish the correlation between each IMF and the original signal, the larger the value,
the more correlative components about the original signal that are contained in the corresponding
IMF. When the correlation coefficient is above 0.7, the similarity between the denoised signal and the
original signal is higher. The evaluation results of the denoising methods are given in Table 3.

Table 3. The evaluation results of the denoising methods.

Wavelet
Denoising

EMD Forced
Denoising

EEMD Forced
Denoising EEMD-WHT EEMD-WST EMD-WSST EEMD-WSST

RMSE 1.7239 1.3685 1.3560 1.5656 1.5738 1.2203 1.1196
SNR 0.6290 2.6342 2.7145 1.4655 1.4206 3.6300 4.3782

The results show that after denoising by the EEMD-WSST, the SNR of the signal is 4.3782, and the
RMSE is 1.1196. Compared with wavelet threshold denoising, EMD forced denoising, EEMD forced
denoising, EEMD-WHT, and EEMD-WST, the SNR of the signal is higher, and the RMSE is smaller.
This shows that the EEMD-WSST signal reconstruction method can achieve a better denoising effect.



Entropy 2020, 22, 290 12 of 28

3. Feature Extraction Based on Multi-Scale Entropy

3.1. Calculation Process of Feature Extraction Based on Multi-Scale Entropy

The feature extraction based on multi-scale entropy is to calculate the sample entropy values of
the coarse-grained vectors on multiple time scales, which is obtained from the reconstructed signal.
The specific calculation steps are as follows:

Step 1. Build coarse-grained vectors. According to the EEMD-WSST signal reconstruction
method, the reconstructed signal is x(t) = {x1, x2, · · ·xN}, and the data length is N. According to the
values of pre-given similarity tolerance r and embedding dimension m, the coarse-grained vectors are
constructed, as shown in Equation (12).

yτi =
1
τ

jτ∑
i=( j−1)τ

xi, 1 ≤ j ≤
N
τ

(12)

where τ denotes the scale factor, when τ = 1 and yτi = y1
i , that is, the original time series. For the

coarse-grained time series of τ > 1, the length of each segment is N′ = N
τ .

The process of coarsening is equivalent to using a sliding window of length τ to calculate the
average value of the time series in the sliding window in a non-overlapping way, which is equivalent
to using an average filter to remove the high-frequency components of the original time series. The
coarse granulation method well reflects the complexity of each scale and can effectively measure the
complexity of the time series from multiple scales. The coarse-graining process of the time series at
τ = 2 and τ = 3 are presented in Figure 12.
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Step 2. Calculate the distance between Y(τ)(i) and Y(τ)( j). The absolute value of the
maximum Chebyshev distance of the corresponding elements under the scale factor τ is defined as
d(τ)[Y(τ)(i), Y(τ)( j)] between Y(τ)(i) and Y(τ)( j). This can be described by Equation (13).

d(τ)[Y(τ)(i), Y(τ)( j)] = max
∣∣∣y(τ)(i + k) − y(τ)( j + k)

∣∣∣ (13)

where k is the integer between 0 ∼ m− 1, i , j.
Step 3. Calculate Cτ,m

k (r) and its average value Cτ,m
k (r). For the pre-given similarity tolerance r,

count the number of d(τ)[Y(τ)(i), Y(τ)( j)] < r and calculate the ratio of this value to the total number of
distances N′ −m, marked as Cτ,m

k (r). Then, calculating the average of Cτ,m
k (r), marked as Cτ,m

k (r). This
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can be expressed as Equations (14) and (15). Finally, repeat Step 3 for the m-1-dimensional vector to
get the Cτ,m+1

k (r) of the m-1-dimensional.

Cτ,m
k (r) =

1
N′ −m

num
[
d(τ)[Y(τ)(i), Y(τ)( j)] < r

]
(14)

where i, j = 1, 2, · · · , N′ −m + 1; i , j.

Cτ,m(r) =
1

N′ −m + 1

N−m+1∑
i=1

Cτ,m
k (r) (15)

Step 4. Calculate the MSE. MSE is defined as the sample entropy at different time scales τ. For each
coarse-grained vector, the calculation process of the corresponding sample entropy can be expressed as
Equation (16).

SEτ(m, r) =

∣∣∣∣∣∣− ln
Cτ,m(r)

Cτ,m+1(r)

∣∣∣∣∣∣ (16)

For signal data with length N, its MSE value is presented in Equation (17).

MSE = [SE1, SE2, · · · , SEτ]. (17)

3.2. Influence of MSE Calculation Parameters

The main parameters affecting MSE are embedding dimension m, similarity tolerance r, and scale
factor t. The data length N is determined according to the actual length of the collected data, and these
parameters need to be determined according to the characteristics and uses of the actual collected data.

(1) The embedding dimension m will affect the amount of information after coarse granulation of
the data. The larger the value of m, the greater computational complexity, and the longer the calculation
time, the greater requirement of the original data length N. Usually the original data length N needs to
be satisfied with N = 10m

∼ 30m. Therefore, generally taking m = 2 or m = 3.
(2) The similarity tolerance r will affect the sensitivity of sample entropy to the noise in the

reconstructed signal. If r is too small, it will increase the sensitivity of the estimation result to the noise
in the reconstructed signal. If r is too large, it will lose a lot of fault information in the time series.
The value of r is generally taken as 0.1–0.25 times the standard deviation of the original time series.

(3) The scale factor τ will affect the length of the coarse-grained vectors. It can be seen in
Equation (12) that the original multi-scaling process depends more on the data length, and when τ is
larger, the coarse-grained sequences are shorter, which will lead to entropy deviation. The selection
of τ needs to be adjusted according to the actual situation. When τ is too large, it will lead to the
inability to obtain important information such as fault features in the time series, which will increase
the difficulty of calculation. When τ is too small, it does not grasp well the time series as a whole nor
express the complexity of the time series. Therefore, it should be selected according to the multi-scale
entropy curve, and when the curve gradually tends to be stationary, it should show that the scale factor
τ is suitable.

4. Fault Diagnosis Model for Rolling Bearings

Based on the advantages of signal reconstruction, the MSE feature extraction technique can retain
the signal integrity to the maximum extent on the basis of filtering the high-frequency signal noise and
can effectively reflect the complexity of the internal information of the rolling bearing. SVM has the
advantages of being able to deal with small samples, non-linear characteristics, and fast classification
speed. Therefore, SVM is used to test the classification performance and verify the effect of signal
reconstruction and feature extraction methods in this paper. The fault diagnosis model of rolling
bearings is as follows:
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Step 1. Decompose the signal s(t) by EEMD to obtain the IMFs from high frequency to low
frequency. The signal s(t) denotes the vibration signals of different fault types or different degrees of
rolling bearings.

Step 2. Perform the Pearson correlation analysis on each IMF to obtain the Pearson correlation
coefficient of each IMF u = [u1, u2, · · · , un], and then, perform the wavelet semi-soft threshold denoising
on the high-frequency IMFs with the Pearson correlation coefficient |u| ≥ 0.7 for denoising.

Step 3. Reconstruct a new eigenvector; x(t) =
∑n

k=1 IMFK(t) + b(t) is reconstructed based on n
IMFs after denoising.

Step 4. Perform coarse-graining on the eigenvector x(t) =
∑n

k=1 IMFK(t) + b(t) after signal

reconstruction and obtain the coarse-grained vectors, yτi = 1
τ

jτ∑
i=( j−1)τ

xi, 1 ≤ j ≤ N
τ , under the different

scale factors, τ. The length of the sample subsequence after coarsening is M = N
τ .

Step 5. Determine the embedding dimension m and similarity tolerance r and calculate the
sample entropy of each coarse-grained vector, respectively. Then, obtain the MSE of the eigenvector
MSE = [SE1, SE2, · · · , SEτ].

Step 6. Input the obtained MSE into the SVM model to distinguish the fault types of the
rolling bearings.

The flow of the presented model is presented in Figure 13.
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5. Experimental Verification and Result Analysis

5.1. Case 1

The experimental data for rolling bearings analyzed in this study were provided by the Case
Western Reserve University Bearing Data Center [29]. The test bearing was a drive-end bearing 6205SKF.
The motor speed was 1797 rpm, the faulty diameter of the point faults was 0.021 inches, and the
sampling frequency was 12 kHz. In this study, the vibration signals were collected from the inner
race fault case, outer race fault case, normal case, and the rolling element fault case, which included
four working conditions, one normal case, and three fault cases. Each working condition consists of
50 samples, and each sample had 1024 data points. Among these samples, 40 samples were randomly
set as the training data, and the remaining samples were used as test data. The details of the specific
data samples are given in Table 4. The obtained time-domain and frequency waveform are presented
in Figures 14 and 15.
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Table 4. The details of the four conditions.

Working
Condition

Defect Size
(Inches)

Number of
Training Data

Points

Number of
Testing Data

Points

Label of
Classification

Normal 0 40 10 1
Inner race 0.021 40 10 2
Outer race 0.021 40 10 3

Rolling element 0.021 40 10 4
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Figure 14. Vibration signal time diagram of the SKF6203 bearing. (a) Amplitude of vibration 
acceleration of the original signal, (b) amplitude of vibration acceleration of the inner race fault 
signal, (c) amplitude of vibration acceleration of the outer race fault signal, (d) amplitude of vibration 
acceleration of the rolling element fault signal. 

The rotation frequency corresponding to each type of fault and its fault frequency can be 
clearly observed from the frequency waveform of Figure 15. According to the bearing fault 

Figure 14. Vibration signal time diagram of the SKF6203 bearing. (a) Amplitude of vibration acceleration
of the original signal, (b) amplitude of vibration acceleration of the inner race fault signal, (c) amplitude
of vibration acceleration of the outer race fault signal, (d) amplitude of vibration acceleration of the
rolling element fault signal.

The rotation frequency corresponding to each type of fault and its fault frequency can be clearly
observed from the frequency waveform of Figure 15. According to the bearing fault frequency formula,
the rotation frequency fr was 29.95 Hz, the inner race fault frequency fi was 159.72 Hz, the outer race
fault frequency fo was 109.83 Hz, and the rolling element fault frequency fb was 78.14 Hz. The basis
function selected for wavelet semi-soft threshold denoising was db1. Each sample signal was first
decomposed by EEMD. Then the noise in the high frequency of the important IMF, which contains the
main fault information, was reduced by wavelet semi-soft threshold denoising. The denoised IMFs
were reconstructed to obtain the eigenvector.
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and Figure 16h shows that the rolling element fault frequency is 83.08 Hz. It can be seen that the 
actual fault frequency is basically consistent with the theoretical calculation frequency. The 
EEMD-WSST has an obvious denoising effect on the high-frequency part of the signal and can 
effectively remove the noise in the high-frequency part. The proposed method has more advantages 
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components according to the characteristics of the original signal, and the running speed is faster. 

Figure 15. Vibration signal Spectrum diagram of the SKF6203 bearing. (a) Spectrum of the raw signal,
(b) spectrum of the inner race fault signal, (c) spectrum of the outer race fault signal, (d) spectrum of
the ball fault signal.

Time-domain and frequency waveforms of the reconstructed signals of different fault types
after denoising are shown in Figure 16. The correlation analysis method is used to evaluate the
correlation between each IMF and the original signal. When the correlation coefficient is greater than
0.7, the similarity between the two signals is higher. After screening, the first two IMFs need to be
denoised by the wavelet semi-soft threshold denoising. We can see from Figure 16e that half time
rotation frequency, one time rotation frequency, three times rotation frequency, six times rotation
frequency, and one time rotation frequency is 31.03 Hz. Figure 16f shows that the inner race fault
frequency is 163.16 Hz; Figure 16g shows that the outer race fault frequency is 110.11 Hz, and Figure 16h
shows that the rolling element fault frequency is 83.08 Hz. It can be seen that the actual fault frequency
is basically consistent with the theoretical calculation frequency. The EEMD-WSST has an obvious
denoising effect on the high-frequency part of the signal and can effectively remove the noise in
the high-frequency part. The proposed method has more advantages in signal decomposition and
can adaptively decompose the signal into an appropriate number of components according to the
characteristics of the original signal, and the running speed is faster.
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Figure 16. Time-domain and frequency waveform of different signals obtained by EEMD-WSST. (a) 
Amplitude of vibration acceleration of the original signal, (b) amplitude of vibration acceleration of 
the inner race fault signal, (c) amplitude of vibration acceleration of the outer race fault signal, (d) 
amplitude of vibration acceleration of the ball fault signal, (e) spectrum of the raw signal, (f) 
spectrum of the inner race fault signal, (g) spectrum of the outer race fault signal, (h) spectrum of the 
ball fault signal. 

The MSE of the four bearing fault types was respectively calculated, and the scale factor was 
set as 6. It is unreliable to identify different bearing fault types from the time-domain waveform. 
Figure 17 presents the MSE curves and scatter diagrams obtained by the EEMD combined with 

Figure 16. Time-domain and frequency waveform of different signals obtained by EEMD-WSST.
(a) Amplitude of vibration acceleration of the original signal, (b) amplitude of vibration acceleration
of the inner race fault signal, (c) amplitude of vibration acceleration of the outer race fault signal,
(d) amplitude of vibration acceleration of the ball fault signal, (e) spectrum of the raw signal, (f)
spectrum of the inner race fault signal, (g) spectrum of the outer race fault signal, (h) spectrum of the
ball fault signal.

The MSE of the four bearing fault types was respectively calculated, and the scale factor was
set as 6. It is unreliable to identify different bearing fault types from the time-domain waveform.
Figure 17 presents the MSE curves and scatter diagrams obtained by the EEMD combined with MSE
(MSE-EEMD) analysis and the EEMD-WSST combined with MSE (MSE-EEMD-WSST) analysis. Four
fault types can be roughly identified from the different MSE values. Figure 17a shows the MSE curves
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of the reconstructed signal denoised by the EEMD. The rolling element fault case, inner race fault
case, and outer race fault case can be clearly distinguished, but the MSE curve of the normal case
crosses other MSE curves. Figure 17b shows the MSE curves of the reconstructed signal denoised by
the EEMD-WSST.

The different fault types are easy to distinguish, and the four MSE value curves overlap only at
the beginning. Figure 17c shows that, although the fault feature extraction based on the MSE-EEMD is
better than the traditional MSE feature extraction, the inner race fault, outer race fault, and normal case
cannot be distinguished accurately when the scale factor is low, and the clustering of each fault type is
disperse. From Figure 17d, we can see that there is aliasing between the curves of the inner race fault
and the outer race fault. However, the clustering of each fault type is relatively concentrated, which
means that different fault types can be more easily classified by the EEMD-WSST signal reconstructed
combined with MSE feature extraction.
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Figure 17. The results of the MSE analysis. (a) MSE curve of the MSE-EEMD, (b) MSE curve of the 
MSE-EEMD-WSST, (c) MSE scatter diagrams of the MSE-EEMD, (d) MSE scatter diagrams of the 
MSE-EEMD-WSST. 
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accuracy has been improved, the classification results fluctuate greatly. Figure 18c shows the 

Figure 17. The results of the MSE analysis. (a) MSE curve of the MSE-EEMD, (b) MSE curve of
the MSE-EEMD-WSST, (c) MSE scatter diagrams of the MSE-EEMD, (d) MSE scatter diagrams of
the MSE-EEMD-WSST.

A total test dataset composed of 200 groups of four rolling bearing fault types was collected by
the accelerometer, and the collected vibration signal data were intercepted in segments. The sample
length of each group was 1024. The statistical results obtained from 10 experiments are presented in
Figure 18. To verify the validity of the proposed method, the fault features extracted by six different
feature extraction methods are input respectively into an SVM classifier for comparative analysis.
Figure 18a shows the classification results of the combination of original fault signals and sample
entropy (SE-OFS). The classification accuracy is between 75% and 82.5%, which is lower.

Figure 18b presents the classification results of the EMD combined with sample entropy (SE-EMD).
The classification accuracy is between 80% and 95%. Although the classification accuracy has been
improved, the classification results fluctuate greatly. Figure 18c shows the classification results of
the EEMD combined with sample entropy (SE-EEMD). The classification accuracy is between 97.5%
and 100%. The classification accuracy has tended to be stable, but there still exist classification errors.
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However, Figure 18d shows the classification result of the combination of original fault signals and
MSE (MSE-OFS), and the classification accuracy is between 95% and 100%.

Compared with SE-OFS, the classification accuracy has been greatly improved. Figure 18e shows
the classification result of the EMD combined with MSE (MSE-EMD). The classification accuracy is
between 97.5% and 100%, which is almost the same as the SE-EEMD. Figure 18f shows the classification
result of the EEMD-WSST combined with MSE (MSE-EEMD-WSST), which has a high classification
accuracy of 100%. The overall classification accuracy of using MSE is significantly higher than using
SE. Therefore, the fault diagnosis method based on EEMD-WSST signal reconstruction and MSE has
good classification results and good generalization.
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Figure 18. Classification results of fault identification with different characteristics of case 1.
(a) Classification result of the original fault signals and sample entropy (SE-OFS), (b) classification
result of the SE-EMD, (c) classification result of the SE-EEMD, (d) classification result of the MSE-OFS,
(e) classification result of the MSE-EMD, (f) Classification result of the MSE-EEMD-WSST.

The average classification accuracy of different methods is given in Table 5. The misclassification
of six types of feature sets under 10 statistical results are given in Table 5. Among the 400 samples in
SE-OFS, 79 samples are misclassified. In particular, the classification error rate of inner race fault is the
highest, and the average classification accuracy is only 80.25%. SE-EMD has a total of 52 misclassified
samples, and the number of misclassified samples in both normal and outer race fault is 25. Although
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the number of misclassified samples is reduced compared with SE-OF, the average classification
accuracy is still low, at 86.75%.

SE-EEMD has a total of five misclassified samples, and the average classification accuracy is
98.75%, which is greatly improved compared with the former two, indicating that the EEMD plays
an important role in improving the classification accuracy. MSE-OF has a total of seven misclassified
samples, which are distributed in inner race fault and outer race fault. The average classification
accuracy is 98.25%, and the number of misclassified samples is nearly 11 times less than the SE-OF.
There are only three misclassified samples in MSE-EMD, and only inner race fault is misclassified.
The average classification accuracy is 99.25%, which is slightly higher than when using only the
SE method.

MSE combined with EEMD-WSST is the proposed method, as the number of misclassified samples
is zero, and the average classification accuracy is 100%. According to the statistical results, it can be
found that the average classification accuracy of the SE method is significantly lower than the MSE
method, and single-scale SE method is not enough for distinguishing different fault types. Relative to
the single-scale method, MSE method has better classification performance. In particular, the proposed
method can achieve 100% accuracy. With the proposed method, the noisy signals are eliminated
by signal reconstruction, and then the SE values are calculated on multiple scales to obtain better
classification results.

Table 5. Fault identification results of different feature extraction methods.

Feature Set Total

Normal Inner Race Fault Outer Race Fault Rolling Element
Fault

Average
Classification

Accuracy
(%)

Misclassification
Number

Misclassification
Number

Misclassification
Number

Misclassification
Number

SE-OFS 79 4 75 0 0 80.25%
SE-EMD 52 25 1 25 1 86.75%

SE-EEMD 5 0 5 0 0 98.75%
MSE-OFS 7 0 3 4 0 98.25%
MSE-EMD 3 0 3 0 0 99.25%

MSE-EEMD-WSST 0 0 0 0 0 100%

Taking into account the results of other techniques tested on the same vibrations signals, the method
proposed in this paper is either better than or comparable to other available techniques that usually
deploy much more complex algorithms, as can be seen from Table 6.

Table 6. Comparison between a number of other techniques. Support vector machine (SVM), higher
order statistics analysis (HOSA), principal components analysis (PCA), artificial neural networks (ANN),
ensemble empirical mode decomposition (EEMD), inter-cluster distance (ICD), multiscale permutation
entropy (MPE), stacked sparse denoising autoencoder (SSDAE), fault diagnosis model based on
ensemble deep neural network and convolution neural networks (CNNEPDNN), Feature-to-Feature-
and Feature-to-Category- Maximum Information Coefficient (FF-FC-MIC), Hilbert-Huang transform
(HHT), window marginal spectrum clustering (WMSC).

Reference Feature Extraction Classification Accuracy (%)

[30] HOSA + PCA “one-against all” SVM 96.98
[31] Time–frequency domain ANN 93.00

[32] Time- and
frequency-domains SVM 98.70

[33] IMFs decomposed by EEMD SVM with parameter optimized
by ICD 97.91

[34] EEMD-MPE SSDAE 99.60
[35] CNNEPDNN CNNEPDNN 98.10
[36] FF_FC_MIC SVM 99.17
[37] HHT-WMSC SVM 100
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5.2. Case 2

To verify the effect of the proposed method in bearing fault diagnosis under the actual working
conditions, the bearing fault simulation experiment is carried out using the rotating machinery test
bed. The test bed mainly includes a SGM7J-04AFC6S servo motor with a rated output of 400 W, rated
current of 2.5 A, rated torque of 1.27 N, and rated speed of 3000 RPM; YMC122A100 accelerometer with
a frequency range of 0.310 kHz; POD-0.6 Kg magnetic powder brake with a rated voltage of 24 V, rated
current of 0.81 A, rated torque of 6 N·m, speed at 2000 r/min; plum coupling base and bearing chock,
connectors, and fasteners; COCO80 data collector, etc. The test bearing is the 7204C/P5 bearing, and
the sampling frequency is 1024 Hz. The specific parameters are shown in Table 7. The experiment uses
200 groups of experimental data, four kinds of bearing states, and 50 groups of each type. The specific
structure of the test bed is shown in Figure 19.

Table 7. The specific parameters of the 7204C/P5 bearing.

Outer
Diameter/

mm

Inner
Diameter/

mm

Pitch
Diameter/

mm

Ball
Number

Ball
Diameter/

mm

Contact
Angle/◦

Rotation
Frequency/

Hz

Inner Race
Fault

Frequency/Hz

Outer Race
Fault

Frequency/Hz

Rolling
Element Fault
Frequency/Hz

20 47 33.5 10 7.4 15 33.33 202.207 131.092 72.01
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The time domain and frequency domain chart of four rolling bearing fault types are presented 
in Figure 20. Figure 20a shows the vibration signal of the rolling bearing under the normal 
condition. Figure 20b–d shows, respectively, the vibration signals under the inner race fault, outer 
race fault, and the rolling element fault. We can see in Figure 20e the one-time rotation frequency, 
three-times rotation frequency, four-times rotation frequency, five-times rotation frequency, and 
eight-times rotation frequency. The one-time rotation frequency is consistent with the theoretical 
calculation of rotation frequency, which is 33.03 HZ. The fault frequency of the inner race fault is 
200.20 Hz in Figure 20f, the fault frequency of the outer race fault is 133.13 Hz in Figure 20g, and the 
fault frequency of the rolling element fault is 75.07 Hz in Figure 20h. The actual bearing fault 
frequency is almost consistent with the theoretical calculation frequency, but there is still residual 
noise in the high-frequency part of the signal.  

Figure 19. The rotating machinery test bed.

The time domain and frequency domain chart of four rolling bearing fault types are presented in
Figure 20. Figure 20a shows the vibration signal of the rolling bearing under the normal condition.
Figure 20b–d shows, respectively, the vibration signals under the inner race fault, outer race fault,
and the rolling element fault. We can see in Figure 20e the one-time rotation frequency, three-times
rotation frequency, four-times rotation frequency, five-times rotation frequency, and eight-times rotation
frequency. The one-time rotation frequency is consistent with the theoretical calculation of rotation
frequency, which is 33.03 HZ. The fault frequency of the inner race fault is 200.20 Hz in Figure 20f,
the fault frequency of the outer race fault is 133.13 Hz in Figure 20g, and the fault frequency of the
rolling element fault is 75.07 Hz in Figure 20h. The actual bearing fault frequency is almost consistent
with the theoretical calculation frequency, but there is still residual noise in the high-frequency part of
the signal.

The time domain and frequency domain chart of the reconstructed signal under different fault
cases after denoising by the EEMD-WSST are presented in Figure 21. The normalization method is
used to normalize the sample to the range of [0, 1], and the normalized vibration signal is denoised by
EEMD-WSST. In Figure 21e, we can see the one-time rotation frequency and the three-times rotation
frequency of the normal case. Figure 21f shows the one–time rotation frequency, three-times rotation
frequency, and the fault frequency of the inner race fault case. Figure 21g shows the one-time rotation
frequency, three-times rotation frequency, five-times rotation frequency, and the fault frequency of the
outer race fault case. Figure 21h shows the one-time rotation frequency, three-times rotation frequency,
one-third times rolling element failure frequency, and one-time rolling element fault frequency. After
the EEMD-WSST signal reconstruction, the signal has lost the high-frequency noise and retains the
low-frequency useful information. The MSE values of the four fault cases are calculated, respectively,
and the fault is distinguished by the SVM classifier.
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Figure 20. The waveform of the vibration of different fault types. (a) Amplitude of vibration 
acceleration of the original signal, (b) amplitude of vibration acceleration of the inner race fault 
signal, (c) amplitude of vibration acceleration of the outer race fault signal, (d) amplitude of vibration 
acceleration of the rolling element fault signal, (e) spectrum of the original signal, (f) spectrum of the 
inner race fault signal, (g) spectrum of the outer race fault signal, (h) spectrum of the rolling element 
fault signal. 

The time domain and frequency domain chart of the reconstructed signal under different fault 
cases after denoising by the EEMD-WSST are presented in Figure 21. The normalization method is 
used to normalize the sample to the range of [0, 1], and the normalized vibration signal is denoised 
by EEMD-WSST. In Figure 21e, we can see the one-time rotation frequency and the three-times 
rotation frequency of the normal case. Figure 21f shows the one--time rotation frequency, 
three-times rotation frequency, and the fault frequency of the inner race fault case. Figure 21g 
shows the one-time rotation frequency, three-times rotation frequency, five-times rotation 

Figure 20. The waveform of the vibration of different fault types. (a) Amplitude of vibration acceleration
of the original signal, (b) amplitude of vibration acceleration of the inner race fault signal, (c) amplitude
of vibration acceleration of the outer race fault signal, (d) amplitude of vibration acceleration of the
rolling element fault signal, (e) spectrum of the original signal, (f) spectrum of the inner race fault
signal, (g) spectrum of the outer race fault signal, (h) spectrum of the rolling element fault signal.
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Figure 21. Time-domain and frequency waveform of different signals obtained by EEMD-WSST. (a) 
Amplitude of vibration acceleration of original signal, (b) amplitude of vibration acceleration of the 
inner race fault signal, (c) amplitude of vibration acceleration of the outer race fault signal, (d) 
amplitude of vibration acceleration of the rolling element fault signal, (e) spectrum of the original 

Figure 21. Time-domain and frequency waveform of different signals obtained by EEMD-WSST.
(a) Amplitude of vibration acceleration of original signal, (b) amplitude of vibration acceleration
of the inner race fault signal, (c) amplitude of vibration acceleration of the outer race fault signal,
(d) amplitude of vibration acceleration of the rolling element fault signal, (e) spectrum of the original
signal, (f) spectrum of the inner race fault signal, (g) spectrum of the outer race fault signal, (h) spectrum
of the rolling element fault signal.

From Figure 22, the four faults can be roughly identified from different MSE values. In these
four cases, Figure 22a shows that the MSE is used to distinguish the different fault types of bearings
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after denoising by the EMD. The faults of rolling element, inner race, and outer race can be clearly
distinguished in the early stage; however, all kinds of faults overlap in the later stage. Figure 22b shows
the MSE curves of the reconstructed signal after denoising by the EEMD-WSST. It can be seen that the
outer race fault can be easily distinguished from the other fault cases, and the four MSE curves have
less intersection and overlap on different scales, which improves the accuracy of fault classification.
Figure 22c shows that the clustering of different fault cases is scattered when EMD is combined with
the MSE to extract fault features. Figure 22d shows that the clustering of each fault type is relatively
concentrated in different bearing states, and the combination of the EEMD signal reconstruction and
the MSE feature extraction is more accurate for different fault cases.
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Figure 22. The result of MSE analysis. (a) MSE curve of the MSE-EEMD. (b) MSE curve of the 
MSE-EEMD-WSST. (c) MSE scatter diagrams of the MSE-EEMD. (d) MSE scatter diagrams of the 
MSE-EEMD-WSST. 

A total of 200 groups of test data of rolling bearing fault state are collected by accelerometer, 
the collected vibration signal data are intercepted in segments, and the sample length of each group 
is 1024 points. The fault features extracted by six different feature extraction methods are 
respectively input to the SVM classifier for comparative analysis, and the results are given in Figure 
23. Figure 23a shows the classification results of the SE-OFS. The classification accuracy is between 
82.5% and 92.5%, which is lower. Figure 23b shows the classification result of the SE-EMD. The 
classification accuracy is between 85% and 92.5%. Compared with the former, the number of 
misclassification errors is reduced.  

Figure 22. The result of MSE analysis. (a) MSE curve of the MSE-EEMD. (b) MSE curve of
the MSE-EEMD-WSST. (c) MSE scatter diagrams of the MSE-EEMD. (d) MSE scatter diagrams of
the MSE-EEMD-WSST.

A total of 200 groups of test data of rolling bearing fault state are collected by accelerometer, the
collected vibration signal data are intercepted in segments, and the sample length of each group is
1024 points. The fault features extracted by six different feature extraction methods are respectively
input to the SVM classifier for comparative analysis, and the results are given in Figure 23. Figure 23a
shows the classification results of the SE-OFS. The classification accuracy is between 82.5% and 92.5%,
which is lower. Figure 23b shows the classification result of the SE-EMD. The classification accuracy is
between 85% and 92.5%. Compared with the former, the number of misclassification errors is reduced.
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Figure 23. Classification results of fault identification with different characteristics of case 2.
(a) Classification result of the SE-OFS, (b) classification result of the SE-EMD, (c) classification result
of the SE-EEMD, (d) classification result of the MSE-OFS, (e) classification result of the MSE-EMD,
(f) classification result of the MSE-EEMD-WSST.

Figure 23c shows the classification result of the SE-EEMD. The classification accuracy is between
87.5% and 97.5%, and the classification accuracy is slightly improved compared with the former.
Figure 23d shows the classification result of MSE-OFS. The classification accuracy is between 97.5%
and 100%. Compared with the classification accuracy of using SE, the classification accuracy is
greatly improved. Figure 23e shows the classification result the MSE-EMD. The classification accuracy
is between 97.5% and 100%. Although the classification accuracy is the same as the former, the
overall classification accuracy has been improved. Figure 23f shows the classification result of the
MSE-EEMD-WSST, which has a high classification accuracy of 100%. It can be observed from the
statistical chart that the classification accuracy based on MSE feature extraction is significantly higher
than that of SE.

The average classification accuracy of different methods is given in Table 8. The misclassification
of six types of feature sets under 10 statistical results can be seen from Table 8. SE-OFS has a total
of 45 misclassified samples, and the misclassified samples were in the inner race fault case, with an
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average classification accuracy of 88.75%. SE-EMD has a total of 42 misclassified samples, and there
are more misclassified samples in the normal case and rolling element fault case. Compared with
SE-OF, the average classification accuracy is slightly improved, which is 89.5%.

Table 8. Classification results of fault cases under different methods in case 2.

Feature Set Total

Normal Inner Race Fault Outer Race Fault Rolling Element
Fault

Average
Classification

Accuracy
(%)

Misclassification
Number

Misclassification
Number

Misclassification
Number

Misclassification
Number

SE-OFS 45 0 45 0 0 88.75%
SE-EMD 42 19 2 0 21 89.50%

SE-EEMD 26 0 26 0 0 93.50%
MSE-OFS 3 0 3 0 0 98.75%
MSE-EMD 2 1 1 0 0 99. 05%

MSE-EEMD-WSST 0 0 0 0 0 100%

SE-EEMD has a total of 26 misclassified samples, and the average classification accuracy is 93.5%.
Compared with the former two, the number of misclassified samples is significantly reduced. MSE-OFS
has a total of three misclassified samples, and the misclassified samples are only in the inner race
fault case. The average classification accuracy achieves 98.25%, which is 10% higher than SE-OFS.
MSE-EMD has a total of two misclassified samples, which are in the normal case and inner race
fault case. The average classification accuracy is 99.05%. Compared with the method using SE, the
overall classification accuracy is significantly improved. MSE combined with the EEMD-WSST signal
reconstruction is the proposed method, the number of misclassified samples is zero, and the average
classification accuracy is 100%.

5.3. Discussion

The experimental results indicate that the proposed method is reliable and effective. In comparison
to the traditional methods, the EEMD-WSST signal reconstruction has more advantages in
distinguishing the different rolling bearing fault types under different conditions. MSE can effectively
measure the complexity of signals and had a better performance in our experiments. In comparison to
the SE, MSE has better performance on extracting the nonlinear fault features of the vibrational signals.
The experimental results show that the classification accuracy is improved upon using MSE values of
the vibrational signals after signal reconstruction, compared to directly using the MSE values of the
original vibrational signals. Especially for combining with the EEMD-WSST signal reconstruction, the
classification accuracy is higher than combining with other signal reconstruction methods. The results
of two cases support this analysis.

6. Conclusions

For better feature extraction of the bearing and more accurate identification of the bearing fault
types, a method based on the EEMD-WSST signal reconstruction combined with the MSE feature
extraction is proposed in this paper. The nonlinear and non-stationary fault signals of bearings are
decomposed by the EEMD method, and the IMFs in each state are obtained. The IMFs containing rich
fault information are screened by correlation analysis, and the reconstructed signals are obtained after
denoising by the WSST denoising. The simulation results indicate that the noise can be effectively
filtered by the EEMD-WSST.

The eigenvectors are obtained by calculating the complexity of the reconstructed signal on multiple
time scales by MSE, and the eigenvectors are input into the SVM classifier model to identify fault
types. Through the verification of the two groups of experiments, we compared the SE and the MSE
and, respectively, combined the original fault signal, EEMD, and the EEMD-WSST. The experimental
results, which used CWRU datasets and the measurement dataset from laboratory, show that the signal
reconstructed by the EEMD-WSST signal reconstruction can better express the fault information of
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the rolling bearing. When the basis function and layer numbers of WSST were wrongly chosen, the
diagnosis accuracy would to become lower. Meanwhile, compared with the SE, the MSE can better
extract and reflect nonlinear fault features. Relative to the MSE of the original vibration signal, the
MSE of the reconstructed signal can better suppress the random noise and ensure the integrity of the
original signal and accurately measure the complexity of the rolling bearing signal under different time
scales. Therefore, the fault diagnosis method based on EEMD-WSST signal reconstruction and the
MSE has a better classification performance and has prospects for application in the field of rotating
machinery. We intend to apply the method to other datasets collected in the project to further verify the
effectiveness and generalization ability of this method. In our future work, we will focus on researching
more effective and high-performance fault diagnosis methods for rolling bearings.
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