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Abstract

ADP-dependent glucokinases represent a unique family of kinases that belong to the ribokinase superfamily, being present
mainly in hyperthermophilic archaea. For these enzymes there is no agreement about the magnitude of the structural
transitions associated with ligand binding and whether they are meaningful to the function of the enzyme. We used the
ADP-dependent glucokinase from Termococcus litoralis as a model to investigate the conformational changes observed in X-
ray crystallographic structures upon substrate binding and to compare them with those determined in solution in order to
understand their interplay with the glucokinase function. Initial velocity studies indicate that catalysis follows a sequential
ordered mechanism that correlates with the structural transitions experienced by the enzyme in solution and in the crystal
state. The combined data allowed us to resolve the open-closed conformational transition that accounts for the complete
reaction cycle and to identify the corresponding clusters of aminoacids residues responsible for it. These results provide
molecular bases for a general mechanism conserved across the ADP-dependent kinase family.
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Introduction

The Embden–Meyerhof pathway is the most common route

for the degradation of glucose. Although this metabolic pathway

is generally highly conserved between different organisms,

several archaea of the Euryarchaeota have evolved major

modifications with only four of the classical enzymes present

in the canonical pathway. One of these major differences is the

presence of ADP-dependent glucokinases (GKs) and phospho-

fructokinases (PFKs), instead of the classical ATP-dependent

kinases [1,2]. Although some authors have attributed the

presence of ADP-dependent enzymes to a matter of metabolic

adaptation to high temperatures and to starvation conditions,

several facts indicate that the presence of these proteins in the

central metabolism of archaea is not related to the hyperther-

mophilic life style [3]. Even though these ADP-dependent

kinases show no sequence similarity to ATP-dependent enzymes

known to date, the determination of their three dimensional

structures allowed their reliable classification as members of the

ribokinase superfamily. Structurally, these enzymes share a

common Rossmann-like fold characterized by a a/b/a topol-

ogy, which constitutes the large domain. In addition to this core

ribokinase-like fold; other members of this superfamily have an

extra small domain, which in the case of the ADP-dependent

kinases is formed by a five stranded b-sheet with some a-helical

insertions, the active site lying between the two domains. The

small domain, which could function as an active-site lid to

protect substrates from hydrolysis, has been proposed as a

phylogenetic marker for the evolution of this superfamily [4].

To date the crystal structures of three ADP-dependent GKs

are known [5–7]. These structures come from different

organisms and were crystallized under experimental conditions

that are not directly comparable. For example, Ito et al. [5]

reported the first structure of an ADP-dependent kinase, the

glucokinase from T. litoralis (TlGK) complexed with ADP. These

authors found no evidence for a conformational change induced

by ADP by comparing the ADP complex with the structure of

the apo-TlGK, prepared by soaking a holo crystal in ADP-free

solution, thereby raising the question as to whether an induced

fit mechanism was required for catalysis. Later, Tsuge et al. [6]
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determined the crystal structure of apo-GK from Pyrococcus

horikoshii (PhGK) at 2.0 Å resolution; when the structure of apo-

PhGK was superimposed onto that of TlGK?ADP, a displace-

ment by .5 Å of the small domain was observed, that led the

authors to suggest that this large conformational change could

take place during catalysis. Finally, the crystal structure of an

ADP-GK from Pyrococcus furiosus (PfGK), complexed with

ADPbS and glucose was reported, and the authors stressed

the importance of glucose binding to achieve the closed

conformation. They referred to the apo and ADP complexed

forms as more open and open conformations [7].

Binding of ligands to proteins can trigger conformational

changes, and conformational changes of proteins can increase

binding affinity. The interplay between conformational changes

and ligand binding is usually described in terms of induced fit or

conformational selection models. The classical view corresponds to

the work of Koshland and establishes an induced fit mechanism

whereby ligand binding provokes a conformational change in the

protein [8]. The other view, which has become more popular in

recent years, suggests that the protein exists as an ensemble of

conformations, a fraction of which is able to recognize and bind a

particular ligand, favored by the intrinsic dynamics of the protein

(conformational selection) [9,10]. However, as reviewed by Vértessy

and Orosz [11], this concept t was first described by the

Hungarian biochemist F. B. Straub, who coined the term

‘‘fluctuation Fit’’ to hypothesize that proteins may exist in

equilibrium between several different conformations. Also, other

less used terms like ‘‘conformational selectivity’’, ‘‘stabilization of

conformational ensembles’’, ‘‘population shift’’, ‘‘selected fit’’ and

‘‘pre-existing equilibrium’’ have been used to describe this

phenomenon. To date, many studies show an even more complex

interplay between intrinsic dynamics and ligand-induced motions

[12,13]. Recently, Vogt and Di Cera have offered an explanation

for the apparent infrequency reporting cases of conformational

selection in the literature [14].

Since the crystal structures provide only static pictures defining

snapshots along the catalytic cycle while necessarily missing about

the dynamics and timing of the domain movements that occur in

solution, it is necessary to assess whether the different conforma-

tions observed in the crystalline state are relevant to catalysis and

related to the conformational behavior of the enzyme in solution.

To address these questions for ADP-dependent TlGK, we

employed a multidisciplinary approach combining the determina-

tion of the kinetic mechanism in order to evaluate the catalytically

relevant enzyme forms to which substrate are bound, small angle

X-ray scattering (SAXS) as a sensitive probe of the solution

conformation in the absence and presence of ligands, and finally

X-ray crystal structure determinations of the enzyme in the apo

form and as a ternary complex form; this afforded the direct

comparison of the structures of the same enzyme in all ligand

states.

Our results provide insights into determinants of the structural

changes that accompany ligand binding both in solution and in the

crystalline state. We determine the binding order of each substrate

to the active site in order to correlate the conformational changes

that the enzyme experiences on the basis of its kinetic mechanism,

with those observed by SAXS and X-ray crystallography. Detailed

inspection of conserved clusters of residues involved in the open-

closed conformational transition lead us to propose a general

mechanism for the open-closed conformational transition that is a

hallmark throughout the ADP-dependent kinases family.

Results

Kinetic Mechanism
To elucidate the order of addition of substrates and release of

products, steady-state kinetics approaches are followed to measure

initial reaction rates and to test the nature of inhibition by product

[15,16]. In order to ascertain if the kinetic mechanism proceeds

through a substituted-enzyme mechanism (ping-pong mechanism)

or ternary complex formation (sequential mechanism), we

performed initial velocity studies. TlGK presents a hyperbolic

saturation curve for both substrates, Mg?ADP and D-glucose

(Figure 1A and B). When Mg?ADP was varied at fixed D-glucose

concentration an increase in the initial velocity was observed as D-

glucose concentration was raised. The same trend was obtained

when D-glucose was varied at fixed concentrations of Mg?ADP. In

both cases, when data were analyzed using double reciprocal plots

a family of lines intersecting above the abscissa was observed

(Figure 1C and D). The observed intersection of lines is

characteristic of a sequential mechanism where a ternary central

complex must form before products are released. Table 1

summarizes the kinetic constants assuming a bi-substrate Bi-Bi

model under steady state conditions, obtained from secondary

plots of the slope and intercepts of double reciprocal plots.

To distinguish whether substrate binding to the active site was

random or ordered, we performed product inhibition studies. Our

results indicated that Mg?AMP behaves as a competitive inhibitor

of Mg?ADP and as a mixed type inhibitor with respect to D-

glucose; the other product, D-glucose-6-P presents a mixed type

inhibition versus either Mg?ADP or D-glucose (Figure 2). These

patterns of inhibition are consistent with an ordered sequential

mechanism in which Mg?ADP is the first substrate to bind to the

catalytic site and Mg?AMP the last product to be released.

Replotting of the slopes and intercepts of the double reciprocal

plots obtained by product inhibition showed a linear dependence

of the slopes and intercepts with the inhibitor concentration (not

shown) indicating the existence of a single product inhibition

without the formation of dead end complexes. Our results fully

agree with a reaction pathway involving the formation of a ternary

complex as a compulsory step, which strongly support an ordered

sequential. Table S1 summarizes the inhibition constants obtained

from fitting the data to an ordered sequential mechanism, where

substrate A is Mg?ADP and B is D-glucose (Figure 3).

Ligand-induced Structural Transitions Observed by SAXS
In order to correlate catalytically relevant binding of substrates

determined through the kinetic studies with the putative structural

transitions induced by them, and to understand their interplay

with the GK function we used solution small X-ray scattering

(SAXS). This technique provides a sensitive probe of the

macromolecular conformation in solution and has been applied

to answer questions about conformation and conformational

changes in several molecular systems [17].

Scattering curves for TlGK in solution demonstrated that the

molecule changes its shape upon binding of the substrates,

especially at angles q ,0.15 Å21. The shape of the scattering

curves for the apo form as well as in the presence of D-glucose

were almost identical, the only difference between them being a

decrease in the dispersion of the data at angles q .0.2 Å21 when

D-glucose was present (Figure 4A). However, in the presence of

Mg?ADP the scattering curve exhibited a dramatic change. The

dispersion decreased and the slope of the scattering curve became

clearly different, especially at angles q ,0.1 Å21 and at high

angles q .0.2 Å21 (Figure 4A). To obtain structural information

of the ternary complex we used ADPbS as a nonhydrolyzable

Kinetically Relevant Domain Movements in ADP-GKs
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ADP analog, which binds to the active site but cannot participate

as a substrate for the transfer reaction (data not shown). The

scattering curve of the Mg?ADPbS?D-glucose complex, analogous

to the ternary complex, had an even lower dispersion and the slope

of the curve at high angles was similar to the one obtained for

Mg?ADP, whereas at intermediate angles (q<0.1 Å21) a slope

difference was observed (Figure 4A).

Analysis of the pair distance distribution functions P(r) revealed

the conformational changes triggered by ligands. The radius of

gyration (Rg) of the apo-enzyme was 29.0 Å while in the presence

of Mg?ADP was reduced to 25.9 Å, confirming the formation of

the E?A complex (Figure 4B). However, in the presence of D-

glucose the measured Rg was 30.0 Å (Figure 4B), which is almost

identical to the one obtained for the apo-enzyme (Table 2),

indicating the absence of complex formation in the presence of

glucose only. Other experimental approaches support the ligand

binding events that were derived by kinetic and SAXS experi-

ments. For example, isothermal titration calorimetry experiments

demonstrated binding of MgADP to the enzyme in the absence of

D-glucose, with dissociation constant close to the Km value for this

substrate (data not shown). Using the same strategy, we were

unable to detect the formation of a TlGK?D-glucose complex. In

the ternary complex, Rg further decreased to 24.0 Å (Table 2 and

Figure 4B), indicating that the total conformational change was

attained only after E?A?B complex formation. Similarly, fluores-

cent measurements following the Tryptophan signal from the

TlGK shows an increase in intensity upon binding of glucose only

in the presence of a ADP analog (AlF3-AMP) (data not shown).

Thus, SAXS data suggest that changes in enzyme compactness

recapitulated the sequential substrate binding events; binding of

both substrates to the active site triggered a full domain closure

involving a 5.0 Å reduction in Rg (Figure 4B and Table 2).

Ab initio models built using the P(r) curves for each condition

suggest that the relative position of the mass centers of the two

domains changes as a function of the ligands added to the solution.

For example, in the model built for the apo and the Mg?ADP

conditions, the active-site cleft between the small and large

domains is respectively widely or moderately open (Figure 5A and

5B), whereas in the presence of Mg?ADPbS?D-glucose, the small

domain has moved toward the large domain to occupy a position

that occludes the active site, suggesting that the enzyme has

transitioned toward a fully closed state (Figure 5C).

Figure 1. Initial velocity patterns for TlGK with D-glucose and MgADP as variable substrates. (A) Saturation curves for Mg?ADP at
different constant concentrations of D-glucose. The fixed initial D-glucose concentrations were: 30 mM (.), 50 mM (,), 100 mM (&), 150 mM (%),
200 mM (N), 250 mM (m), 500 (n) and 1000 mM (#). (B) Saturation curves for D-glucose at different constant MgADP concentrations; 10 mM (&),
30 mM (%), 50 mM (N), 100 mM (e), 300 mM (n) and 1000 mM (#)MgADP. (C) Double reciprocal plots of curves shown in A. For clarity only four
concentrations are depicted: 100, 150, 200 and 1000 mM D-glucose. (D) Double reciprocal plots of curves shown in B. For clarity only four
concentrations are shown: 10, 30, 50 and 1000 mM Mg?ADP.
doi:10.1371/journal.pone.0066687.g001

Table 1. Kinetic parameters for ADP-dependent glucokinase
from T. litoralis.

KM
`(mM) Vmax

`(mmol?mg21?min21)

MgADP 8.6 67.8

D-glucose 218.5 67.8

`Values obtained from fitting the data to the linear expression of bi-substrate
ordered sequential model.
doi:10.1371/journal.pone.0066687.t001

Kinetically Relevant Domain Movements in ADP-GKs
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Structure Determination of the apo and holo forms of
TlGK

To gain insight into the structural basis of TlGK catalysis,

binding of substrates and associated conformational changes, we

sought to obtain high-resolution crystal structures of this enzyme

under different conditions. We determined the crystal structures of

TlGK in its apo form (absence of ligands) and holo form, in the

presence of D-glucose and the nonhydrolyzable ADP analog

ADPbS (ternary complex, ADPbS?D-glucose). Both structures

were obtained by molecular replacement, and refined to 2.05 and

2.58 Å resolution, respectively. X-ray data collection and

refinement statistics for each structure are summarized in Table 3.

The overall structure of TlGK in both states (apo-enzyme and

ternary complex) shows the same two domains organization

described previously [5]; the large domain harbors a Rossmann

fold (a/b/a) architecture with a central twelve stranded b-sheet

surrounded by thirteen a-helices and three 310 helices, and the

small inserted domain consisting of five b-strands and four a-

helices. The active site is located in a cleft between the two

domains. The insertion of the small domain between strand 2 and

helix 8 of the large domain at the farthest end of the active site

cavity provides a physical basis for ligand-mediated communica-

tion between the two domains (Figure 6).

Figure 2. Product inhibition patterns for TlGK. (A) Inhibition by Mg?AMP with Mg?ADP as variable substrate. Measurements were assayed at
fixed Mg?AMP concentrations: 100 mM (%), 200 mM (n), 600 mM (e) and 1000 mM (,). Control curve in absence of product (#) was also included in
the graph. (B) Inhibition by Mg?AMP with D-glucose as variable substrate. Measurements were assayed at fixed concentrations of Mg?AMP: 435 mM
(%), 858 mM (n), 1738 mM (e) and 3657 mM (,). Control curve in the absence of product (#) was also included in the graph. (C) Product inhibition
by glucose-6-P with Mg?ADP as variable substrate. Measurements were assayed at fixed glucose-6-P concentrations: 100 mM (%), 500 mM (n),
1000 mM (e) and 2000 mM (,). Control without the product was included (#). (D) Product inhibition by D-glucose-6-P with D-glucose as variable
substrate. Measurements were assayed at fixed glucose-6-P concentrations: 500 mM (%) and 2000 mM (n). Control curve without the presence of
product was included (#). Inset of all figures show the non-linear fit of the total data.
doi:10.1371/journal.pone.0066687.g002

Figure 3. Sequential ordered Bi-Bi mechanisms for the reaction
catalyzed by TlGK. Arrows indicate the entry and release of
substrate and products.
doi:10.1371/journal.pone.0066687.g003

Kinetically Relevant Domain Movements in ADP-GKs
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The spatial disposition of the two domains was different when

comparing the structures of the apo-enzyme and the ternary

complex (Figure 6). In the absence of ligands, the mass centers of

the small and large domain were separated by 29.4 Å, but when

Mg?ADPbS and D-glucose were simultaneously bound to the

active site, the two domains underwent conformational changes

causing the inter-domain distance to shrink by nearly 3 Å, that to

26.5 Å (Table 2). In the structure of TlGK?Mg?ADP reported

previously [5], the distance between domains is 28.1 Å. Therefore,

after binding of the first substrate (Mg?ADP) the distance between

domains shrank by only 1.3 Å, whereas in the ternary complex, the

inter-domain distance diminishes by an additional 1.6 Å, to

complete a 2.9 Å closure movement (Figure 6C).

The conformational changes that occur upon sequential

substrate binding can be explained by an almost pure rotation

(or a rotation plus a translation) facilitated by residues in the

flexible inter-domain connection. Structural changes that accom-

pany binding of the first substrate (Mg?ADP) include a small

relative rotation (4.8u) between the two domains plus additional

movements that do not completely occlude the active site cavity.

Accordingly, TlGK?Mg?ADP structure has been previously

described as an ‘‘open’’ structure [5]. In contrast, the crystal

structure of the ternary complex TlGK?Mg?ADPbS?D-glucose

exhibits an 11.8u relative rotation with respect to the apo-TlGK

structure and corresponds to a fully closed conformation that

entraps both substrates in a Michaelis-Menten-like complex. This

series of rotations recapitulate the sequential binding of substrates:

binding of Mg?ADP leading to a 4.8u rotation, the second

substrate causing a 7.2u rotation (TlGK?Mg?ADPbS?D-glucose

versus TlGK?Mg?ADP). Thus, the total rotation to complete the

active site closure is 11.7u (TlGK?Mg?ADPbS?D-glucose versus

apo TlGK) (Figure S1). All these translational and rotational

movements are accompanied by several charge distribution

rearrangements at the inner space of the active site, which

facilitate domain closure (Figure S2).

A full description of the interactions present at both binding sites

(Mg?ADP and D-glucose) is illustrated in Supporting Information

(Figure S3 and Figure S4).

Inspection of the TlGK?Mg?ADPbS?D-glucose structure reveals

five clusters of interactions formed by residues from the large and

the small domain that could mediate the transition from the open

to the closed conformation (see below). Three of these clusters

involve attractive interactions governed by hydrogen (H) bonds, a

fourth one is an electrostatic attraction involving a cation-p
interaction, and the fifth cluster, which consists of an intrinsically

destabilizing interaction (an electrostatic repulsion), could play a

regulatory role during domain opening by counteracting the net

attractive interaction of the other four clusters (Figure 7).

Cluster 1 is formed by Glu188 (from the small domain) and

residues Thr446 and Val447 (both from the large domain). In the

open conformation, these residues are too far apart to interact, but

when Mg?ADPbS?D-glucose is bound to the active site, the greater

proximity between these residues afforded by the conformational

change facilitates the formation of two H-bonds between the

Glu188 side chain and the hydroxyl group of Thr446 and two

other H-bonds with the backbone amide groups of Thr446 and

Val447 (Figure 7, cluster 1).

Cluster 2 involves Arg202 (small domain) and Tyr354 (large

domain). In the ternary complex, the guanidinium group of

Arg202, relocates on top of the Tyr354 phenol side chain (large

domain), establishing a new p-p cation interaction. The distance

between the two side-chain groups is reduced from 12.0 Å in the

apo-enzyme to only 3.4 Å in the ternary complex (Figure 7, cluster

2).

In Cluster 3, Arg117 from the small domain only can interact in

the closed conformation with residues Gly386 and Ser445, both

Figure 4. Scattering curves and pair distance distribution functions P(r). (A) Scattering patterns for the different conditions explored:
apoenzyme (%), enzyme-D-glucose (&), enzyme-Mg?ADP (#) and in the presence of Mg?ADPbS and glucose (N). The curves were normalized to
unity at their maximum value for comparison purposes. (B) P(r) graphs for each condition calculated by Fourier transformation using GNOM (28). The
graphs were normalized to unity at their maximum value for comparison purposes.
doi:10.1371/journal.pone.0066687.g004

Table 2. TlGK radius of gyration (Rg) and distance between
the small and large domains under different conditions.

Apo-enzyme D-Glucose Mg?ADP Mg?ADPbS?Glc

Rgj (Å) 29.060.1 30.060.1 25.960.1 24.060.1

Rg" (Å) 24.1 N.A. 23.7 23.1

D{ (Å) 29.4 N.A. 28.1 26.5

Rgj radius of gyration calculated using probability density function graphs. Rg"

theoretical radius of gyration calculated with the software CRYSOL [48], using
crystallographic data. D{ distance between the small and large domain
calculate from crystal structures. For the apo-enzyme and the ternary ADPbS?D-
glucose complex, we used the PDB structures solved in this work, whereas for
the ADP complex the coordinates available from the PDB (1GC5) were used. N.
A., not applicable.
doi:10.1371/journal.pone.0066687.t002

Kinetically Relevant Domain Movements in ADP-GKs
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from the large domain. In the small domain, Tyr46 establishes an

H bond with Glu115, which in turn accepts two H-bonds from

Arg117. Therefore, the spatial location and polarity of Arg117 is

highly influenced by the interactions that it established. On the

other hand, Lys382 belonging to the large domain is located at 2.9

Å from Arg117 (in the ternary complex), forming three H-bonds

with residues from the same domain: Gly386, Ser445, and Val447,

which could influence the position and charge distribution of

Lys382. Considering charge, distance and the microenvironment

that surround Arg117 and Lys382 side chains, the net nature of

this interaction is likely to be attractive (Figure 7, cluster 3).

Cluster 4 includes Ala441 and Ser442 from the large domain

and Arg191 from the small domain. In the open conformation the

side chain of Arg191 is too far away from Ala441 and Ser442 to

interact, whereas in the closed conformation (ternary complex),

Arg191 can donate two new H-bonds: one to the carbonyl group

from Ala441 and another to the hydroxyl group from of Ser442

side chain (Figure 7, cluster 4).

Cluster 5 is defined by interactions between residues Lys74 and

Lys246 located in the small and large domain, respectively. In the

apo-enzyme the distance between amine groups is .8.7 Å,

whereas in the ternary complex this distance decrease to 4.0 Å,

close enough to establish a repulsive interaction between the side

chains of these Lys residues. We hypothesize that this repulsive

interaction that is formed only in the ternary complex could have a

regulatory function by favoring domain opening as soon as the

reaction products abandon the active site (Figure 7, repulsive

interaction).

Conserved Interactions Involved in the Open-closed
Transition in the ADP-dependent Kinase Family

To evaluate whether the existence of clusters of residues

involved in attractive and repulsive interactions between both

domains corresponds to a conserved strategy among the ADP-

dependent sugar kinase family, we analyzed the evolutionary

profile of this family obtained by Bayesian inference of phylogeny

the interacting residues are conserved. In the profile obtained

(Figure 8A) all the groups represented in the tree correspond to the

following archaeal orders: ADP-GKs from Thermococcales (blue),

ADP-PFKs from Thermococcales (pink), ADP-PFKs from Methano-

coccales (purple), ADP-PFKs from Methanosarcinales (green), ADP-

GKs from Methanosarcinales (cyan); except ADP-GK from Eukarya

(gray) which was used as outgroup. Analysis of both the sequences

employed to construct the tree and the equivalent structural

positions of the interactions involved in the opening/closing

domain revealed that some interactions are highly conserved

(Figure 8B and 8C). For example, in cluster 1 residues Glu188,

Thr446 and Val447 are fully conserved across the whole family.

On the other hand, residues involved in cation-p interactions

(cluster 2) are conserved in all ADP-dependent glucokinases from

hyperthermophilic organisms belonging to the Thermococcales

group. Residues from cluster 3, which participate in the attractive

interactions between Arg117 and Ser445/Gly386, are conserved

Figure 5. Comparison between SAXS envelope models and crystals structures. (A) Enzyme model obtained from the SAXS data in the
absence of substrates; (B) in the presence of Mg?ADP and (C) in the presence of Mg?ADP and D-glucose. Every model was built using GASBOR with
no symmetry constraints. (D), (E), (F) Surface representation of the enzyme’s structures in the absence of substrates; in the presence of ADP (PDB
1GC5) and in the presence of Mg?ADPbS and D-glucose, respectively.
doi:10.1371/journal.pone.0066687.g005

Kinetically Relevant Domain Movements in ADP-GKs
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in all GKs and PFKs from thermophilic archaea (Thermococcales

and Methanococcales). Interestingly, in the context of their repulsive

interaction, Arg117 and Lys382 are conserved in all the enzymes

of the thermophilic organisms analyzed in our study. Residues of

cluster 4 and 5 are only present in some sequences and therefore

are less well conserved.

Discussion

Understanding the mechanism of molecular recognition and in

particular the characteristics of the response of a macromolecule to

binding of a small molecule binding represents a challenging issue

of modern structural biology. Our studies concerning the kinetic

properties of ADP-GK in solution, along with the SAXS and X-

ray crystallographic data provide important new perspectives on

the conformational changes and dynamics of TlGK during

catalysis, which are also relevant for other ADP-dependent

hyperthermophilic kinases. The results support the idea that the

enzyme is conformationally flexible and sensitive to specific

substrate binding events. When the enzyme is in ligand-free state

(apo), the large and small domains are distant from each other and

accordingly there are no discernible interactions between residues

from either domain. In contrast, for the ternary

TlGK?Mg?ADP?D-glucose complex to become properly assem-

bled, the two domains of the holo enzyme are rearranged by a

twisting and closing motion that leads to a fully closed, catalytically

competent conformation.

Comparison of the molecular envelope calculated from the

SAXS data with those obtained from the crystal structures allows

us to identify differences between the relative positions of the small

and large domains in different ligation states (Figure 5). For the

apo-enzyme, the SAXS ab initio model suggests a more open

conformation than the one found in the crystal. Differences are

also found when comparing the ternary complex condition; in this

case the SAXS envelope suggests a more closed conformation than

the one observed in the crystalline structure. Thus, although the

crystal structure indicates that the enzyme undergoes domain

closure (Figure 6C), the SAXS results suggest that this conforma-

tional change is even more dramatic in solution; the apo form is

more open and the holo form is more closed than the ones

obtained by X-ray diffraction (Figure 5A, 5C and Table 2). In fact,

the difference between the theoretical Rg calculated for the crystal

structures of the apo and holo enzymes is only 1 Å, whereas the Rg

calculated from the P(r) indicate a domain closure of 5 Å (Table 2).

This situation could reflect the larger conformational freedom of

the enzyme in solution compared to the crystalline state. In spite of

this, the most striking structural aspect about nucleotide and D-

glucose binding to the active site is that both binding events

indicate a sequential conformational change, in complete agree-

ment with the orderly entry of substrates determined from the

kinetic mechanism. Mg?ADP triggers the first structural change

(semi-closed conformation), which favors the oncoming of the

small domain toward the large domain, followed by the entry of D-

glucose, which in turn leads to ternary complex formation and

total domain closure. This sequential conformational change is a

strong suggestion for an induced-fit mechanism [8]. In our case,

movement toward the catalytically active conformation results in

the occlusion of the active site. It has been proposed that this

mechanism would favor catalysis by precluding solvent from

competing with the catalyzed reaction but domain closure could

also impair catalysis by restricting binding of the second substrate

to this enzyme form. The latter possibility raises the question as to

whether such a situation is even compatible with a conformational

selection model since, even if the enzyme samples this semi-closed

state in solution, steric occlusion of the active-site cleft might

impede substrate binding. Moreover, Sullivan and Holyoak [18]

have proposed that enzymes with lid-gated active sites must

operate by an induced fit mechanism instead of conformational

selection, and Okazaki and Takada [12] reported that stronger

and long-range interactions favor induced fit, whereas shorter-

range interactions favor conformational selection. However,

although the preceding evidence supports an induced fit mecha-

nism, it has been stressed that both mechanisms are likely to play

important roles in molecular recognition and that these models are

not mutually exclusive.

For example, even if initial binding were achieved by a

conformational selection mechanism, it is likely that further

changes in protein structure and energy landscape must occur in

Table 3. Crystallographic data statistics and refinement.

Apo-TlGK
Holo-TlGK
(Mg?ADPbS?D-glucose)

Data collection

Beamline ID23-2 ID14-4

Wavelength (Å) 0.8726 0.9794

Space group P3221 P3221

Cell dimensions

a, b, c (Å) 109.1, 109.1, 129.6 106.5, 106.5, 130.1

a, b, c (u) 90, 90, 120 90, 90, 120

Resolution (Å) 40.0–2.05 (2.10–2.05)* 35.0–2.58 (2.65–2.58)*

Rmerge 0.089 (0.564) 0.093 (0.672)

I/sI 19.4 (3.7) 18.3 (3.5)

Total reflections 687,053 (72,183) 234,319 (33,911)

Unique reflections 56,090 (7710) 27,361 (1992)

Completeness 94.7 (99.2) 99.9 (100.0)

Redundancy 9.4 (12.2) 7.4 (7.4)

Refinement

Resolution (Å) 39.3–2.05 (2.10–2.05) 34.9–2.58 (2.65–2.58)

No. reflections 55,935 (3529) 25,931 (1402)

Rwork/Rfree 0.17/0.21 0.17/0.22

No. atoms

Proteins 3854 3810

ADPbS – 23

D-glucose – 13

Water 293 163

B-factors (Å2)

Protein 34.6 50.5

AMP – 50.2

D-glucose – 49.9

Water 44.8 47.6

R.m.s. deviations

Bond lengths (Å) 0.023 0.009

Bond angles (u) 2.058 1.360

Ramachandran plot

Favored 457(98.3%) 450(97.0%)

Allowed 7(1.5%) 11(2.6%)

Outliers 1(0.2%) 2(0.4%)

doi:10.1371/journal.pone.0066687.t003
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order to achieve optimal intermolecular interactions, which

undoubtedly constitutes an induced fit process. The co-existence

of both mechanisms is reported to exist in maltose binding protein

[19] whereas the induced fit mechanism has been proposed for

other mesophilic enzymes belonging to the superfamily, such as

ribokinase and adenosine kinase [20–22]. In the case of ribokinase,

it has been suggested that domain closing is a prerequisite for

nucleotide binding [20] whilst Ito et al [6] propose that access to

the nucleotide binding site of TlGK is more difficult after domain

closing and propose that ADP binds weakly to the open

conformation with little or absent conformational change, as

opposed to what was described in the present study.

Another important point to be considered is how the enzyme

coordinates its structural elements to assume the closed confor-

mation and how, once this conformation is stabilized. The

interaction between the large and small domain (via specific

residue clusters), could represent a successfully strategy to achieved

this goal. All the clusters described communicate both domains by

non-covalent bonds and some of them are conserved in other

enzyme homologs. Conservation analysis of cluster 1 shows that

Glu188, from the small domain, and Thr446 and Val447, both in

the large domain, are conserved across the whole family. This

feature allows us to infer that net attractive interaction network

between the GK large and small domains has been conserved

during evolution in thermophilic and mesophilic enzymes of

archaea as well as in the eukaryote domain, thereby implying that

this interaction must already be present in the last common

ancestor of the whole family.

On the other hand, the cation-p interaction between the side

chain of Arg202 and Tyr354 (cluster 2) is a very sophisticated

Figure 6. Structures of the T. litoralis glucokinase in the apo form and in the Mg?ADPbS?D-glucose ternary complex. (A) Ribbon
representation of the enzyme in the absence of substrate. The large domain is shown in white, whereas the small domain is shown in yellow. (B)
Ribbon representation of the enzyme in the presence of ADPbS and D-glucose. The large domain is shown in white and the small domain is shown in
blue. (C) Structural alignment between the apo and holo (ADPbS?D-glucose) forms.
doi:10.1371/journal.pone.0066687.g006

Figure 7. Interactions clusters between the small and large domain that mediate the transition from the open to the closed
conformation. (A) Structure of the enzyme in the apo-form and (B) structure of the ternary TlGK?Mg?ADPbS?D-glucose complex. The small domain
was colored in yellow (apo-enzyme) or blue (ternary complex) for clarity purposes. Side chains of residues are represented as sticks. The atoms
involved in H-bonds are represented as spheres. The nucleotide (ADP), the cosolvent, glycerol (GOL) and water (W) are also shown. Cluster 1 achieves
communication between the small and large domain through Glu188, Thr446 and Val447. Cluster 2 residues contribute to stabilize the ADP-induced
conformational change. In the apo-enzyme, Arg202 of the large domain is over the active-site pocket and the side chain of Tyr354 is oriented toward
the outside of the pocket. In contrast, in the TlGK?Mg?ADPbS?D-glucose ternary complex Arg202 and Tyr354 form a stacking interaction afforded by
the rotation of their side-chains so as to allow a cation-p interaction. Cluster 39s interaction network is rearranged upon ADP binding through the
formation of H-bonds between the large and small domain that generates a net attraction. In cluster 4, Arg191 from the small domain H-bonds
Ala441 and Ser442 from the small domain. The only net repulsive interaction is provided by cluster 5, involving Lys74 and Lys246; in the apo-enzyme
Glu100 is H-bonded to Lys74 thus neutralizing its net charge, but in the ternary complex this stabilizing interaction is absent and Lys74 comes closer
to Lys246 despite the associated unfavorable energy barrier.
doi:10.1371/journal.pone.0066687.g007
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strategy dedicated to stabilize the closed conformation (Figure 7).

Noticeably, as in cluster 1, these interactions are not exclusive of

the TlGK enzyme, rather they are a common feature present in all

the hyperthermophilic ADP-dependent GKs from the Thermo-

coccales group while absent in mesophilic glucokinases (Figure 8).

This class of interaction was studied by Minoux and Chipot [23],

using a molecular dynamics approach in 1718 proteins. Their

results show that p-system interactions (cation-p and p-stacking

interaction) are usually established between arginine and tyrosine

residues. Moreover, the distances between the interacting p-

systems calculated in silico by these authors (3.6 Å) are very similar

to the ones seen in the crystal structure of the ternary complex of

the TlGK (3.4Å) (Figure 7 cluster 2). In another study, Gromiha

et al. [24] suggested that in thermophilic proteins the p-system

interaction frequently employs Tyr residues, instead of other

aromatic residues such as Phe or Trp.

In the last few years there is an increasing number of reports

that highlight the relevance of cation-p interactions in biological

systems. These interactions have been demonstrated to have a

substantial impact on protein structure as well as in catalysis and

organic synthesis. For example, using a multidisciplinary approach

Pecsi et al [25] showed that elimination of the aromatic interaction

had a little effect on substrate binding but a major impact in the

catalytic efficiency of dUTPase. Based on the similar position of

these aromatic interactions in various nucleotide-hydrolyzing

enzymes, the authors proposed that this kind of interactions could

be a general component of the enzymatic catalysis of phosphate

ester hydrolysis. The biological relevance of cation-p interactions

are illustrated, among others examples, by the critical role that

they play in nicotine addiction, their prevalence at protein-protein

interfaces, and their contribution to the understanding of thermo

or psychro stabilizing interactions [26,27].

In the case of the cluster 3, residues involved in the attractive

interaction between Arg117 from the small domain and residues

Ser445 and Gly386 from the large domain (Figure 7) are

conserved in all the thermophilic PFKs and GKs, but not in the

mesophilic enzymes. The same scenario is seen with the repulsive

interaction present in the same cluster, formed by residues Arg117

and Lys382, where the interaction is conserved in all thermophilic

proteins of the family but not in the mesophillic members.

Finally, cluster 5 involves repulsive interactions between two

lysine residues; none of them are conserved in any homolog

considered in our analysis. In particular, this cluster seems to be

exclusive of TlGK. Theoretical prediction of the protonation state

of these lysine residues, using the PDB2PQR server implemented

for electrostatics calculations [28], indicate that both residues

should be positively charged at the pH employed for catalysis and

therefore repel one another, facilitating domain opening. Interac-

tions of this nature were deeply studied by Vondrášek et al. [29]

who, using an in silico approach, analyzed the lysine-lysine and

arginine-arginine ion pair. The authors compared their results

with analysis of structural databases, indicating that there is a

strong repulsive effect between the ammonium groups (NH4
+) of

lysine. This effect is due to charged ammonium ion and its almost

spherical geometry, which favors repulsive Coulomb potential.

Figure 8. Conservation of cluster residues involved in domain opening/closure across the ADP-dependent sugar kinases family. (A)
Consensus phylogenetic tree for ADP-dependent sugar kinase family determined by Bayesian inference. Groups of enzymes from archaea are shown
in color: GK from Thermococcales (blue), PFK from Thermococcales (pink), PFK from Methanococcales (purple) PFK from Methanosarcinales (dark green)
and GK from Methanosarcinales (cyan). The group of enzymes from eukaryotic organisms that were used as an outgroup to establish the tree root is
shown in gray. The posterior probability of some interesting groups is shown in its respective node. (B) Multiple sequence alignment of glucokinases
from the Thermococcales group. Residues involved in clusters described in the texts are indicated by dots; cluster 1, red (Glu188-Thr446/Val447);
cluster 2, yellow (Arg202-Tyr354); cluster 3, green (Arg117/Glu115-Gly386/Ser445) and brown (Lys382-Arg117). (C) Amino acids involved in clusters 1–
3 are shown as spheres and colored as in B.
doi:10.1371/journal.pone.0066687.g008
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In summary, the closed conformation could be stabilized by at

least four sets of attractive interactions between the small and large

domain: one cation-p (cluster 2) and three H-bonds clusters

(clusters1, 3 and 4), which in total form 7 formally attractive

interactions (considering only two H-bonds for Glu188). Cluster 5

contributes one repulsive interaction between the large and small

domain and could therefore facilitate domain opening and

product release. In total, 6 H-bonds and 1charge-charge

interaction support domain closing whereas 1 electrostatic

repulsive interaction favors the opening. Preliminary molecular

dynamics studies used to evaluate the behavior of each cluster

commented above, confirmed the attractive nature for the cluster

1, 2 and 4 and the repulsive character of clusters 3 and 5.

A similar scenario has been described for phosphoglycerate

kinase [30]. This enzyme would works as a spring, whereby the

entry of the substrate favors domain closing which, in turn, results

in the exposure of a hydrophobic patch that quickly triggers

domain opening. Also, an H-bond network that stabilizes domain

closure has been described for this enzyme [31].

Here we present an integrated approach that determines the

conformational changes experienced by a hyperthermophilic

enzyme (TlGK) in solution and in the crystalline state and their

correlation with the kinetic mechanism. The results support an

induced-fit mechanism although the participation of a conforma-

tional selection mechanism, at least in some reaction steps, cannot

be ruled out. Also, we demonstrate the presence of conserved

cluster of residues that could be involved in the stabilization of the

closed conformation, as well as another one that could account for

domain opening. Some of these interactions are fully conserved in

the whole family of ADP-dependent kinases, hence constituting

the basis for a general mechanism involved in catalysis, which may

prove general for many other hyperthermophilic enzymes.

Materials and Methods

Purification of TlGK
The enzyme was purified as described by Merino et al, [32].

Briefly, the cells from 1L of LB broth were harvested by

centrifugation and disrupted by sonication. Enzyme purification

consisted basically in a thermal shock followed by (NH4)2SO4

precipitation and two-chromatographic steps (hydrophobic and

ionic exchange chromatography). Every step during purification

was performed in 50 mM Tris-HCl pH 7.8, and 5 mM MgCl2.

Prior to any kinetic or SAXS measurement, the buffer was

exchanged to 50 mM Hepes-NaOH pH 7.8 and 5 mM MgCl2.

Kinetic Experiments
Enzyme activity was measured spectrophotometrically by

following NAD+ reduction at 340 nm coupled with D-glucose-6-

phosphate oxidation at 40uC. Standard assay was carried out in a

final volume of 0.7 mL in the presence of 25 mM Hepes pH 7.8,

0.5 mM NAD+, 2–5 U of D-glucose-6-P dehydrogenase and the

indicated concentrations of substrates (ADP and glucose). In all

initial velocity studies performed, the concentration of free Mg2+

was kept constant.

The same spectrophotometric method was used to determine

product inhibition kinetics with Mg?AMP, whereas for glucose-6-P

a discontinuous assay was employed whereby the disappearance of

Mg?ADP is quantified by the formation of pyruvate and its

subsequent oxidation to lactate. The reaction mixture for the

discontinuous assay contains 0.2 mM NADH, 100 mM KCl, 4 U

of pyruvate kinase and 4 U of lactate dehydrogenase, in 1 mL of

reaction.

Kinetic Data Analysis
The data from initial velocity experiments were analyzed using

non-linear hyperbolic plot and double reciprocal plots, both

considering a kinetic model of a Bi-Bi ordered sequential

mechanism (Equation 1). The kinetics constants were obtained

from secondary plots of the slopes and intercepts of double

reciprocal plots. For product inhibition experiments, the inhibition

pattern and inhibition constant were analyzed by plotting the

slopes and intercepts of the primary double reciprocal plots against

product concentration. The Marquardt-Levenberg algorithm was

used for the non-linear and linear adjustment of the kinetic

parameters. The weighting system used for our fit was r2, giving

equal weight to each value included in the kinetic measurements.

Kinetic constants calculated by global fit using the program Visual

Enzymics (SoftZymics) (2010) and by linear regression of the

reciprocal plots, were essentially the same.

The nomenclature used in the initial velocity expression is

according to Cleland [33].

Equation 1

v

Vmax
~

½A�½B�
KiaKmBzKmB½A�zKmA½B�z½A�½B�

SAXS Measurements and Data Processing
All scattering data were collected in the beamline D11A-SAXS1

[34], in the National Synchrotron Light Laboratory (Campinas,

SP, Brazil). A wavelength l 1.488 Å and a sample-to-detector

distance of 1000 mm were used. The scattering data were

recorded using the photon-counting Pilatus detector. The magni-

tude of the scattering vector, defined as q = 4psinh/l (where 2h is

the scattering angle) was ranged 0.001 nm 21, q ,0.3 Å21. For

every experimental condition the temperature was maintained at

40uC and samples were irradiated for 3 or 5 min, collecting several

spectra to monitor radiation damage and beam stability. The

buffer scattering was subtracted for each condition and the

resulting curve was analyzed. For each condition employed,

several protein concentrations were assayed in order to ascertain

the influence of protein aggregation in the scattering of the sample.

TlGK at 1–6 mg?mL21 were used, observing significant changes

at low angle only when protein concentration exceeded

5 mg?mL21; hence further analyses were restricted to the

scattering data from protein samples at 4 mg?mL21. Radii of

gyration were measured using the Guinier approximation

considering angles where q ,1.3/Rg. We also evaluated the Rg

by the pair distance distribution function P(r) calculated with the

software GNOM [35]. Ab initio models of the enzyme were built

using the software GASBOR [36].

Crystallization, Data Collection and Structure Solution
TlGK was concentrated to 15 mg?mL21 in storage buffer.

Sitting-drop vapor-diffusion crystallization experiments were set

up by mixing 1 mL protein solution and 1 mL crystallization

condition over 75 mL mother liquor. Crystals of apo-TlGK were

obtained in 14% (w/v) polyethylene glycol (PEG) 6000, 0.2 M

LiSO4, 0.1 M sodium citrate pH 3.6 and 5 mM dithiothreitol

(DTT). Crystals of TlGK?Mg?ADPbS?D-glucose were obtained in

1.5 M sodium citrate pH 5.2, 5 mM DTT, 5 mM MgCl2, 6 mM

ADPbS and 30 mM D-glucose. Both apo-TlGK and

TlGK?Mg?ADPbS?D-glucose- crystals were cryo-protected by

direct addition of 20% (v/v) sterile glycerol and flash-frozen in

liquid nitrogen.
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Complete and redundant X-ray diffraction data sets were

collected at the ID23-2 (apo-TlGK, to a resolution of 2.05 Å) and

ID14-4 (TlGK?Mg?ADPbS?D-glucose-, to a resolution of 2.58 Å)

beamlines at the European Synchrotron Radiation Facility (ESRF,

Grenoble, France). Data were indexed and integrated with XDS

[37] and scaled and merged with SCALA [38] from the CCP4

software package [39]. Crystallographic data processing and

merging statistics are summarized in Table 3. The structures of

TlGK?Mg?ADPbS?D-glucose and apo-TlGK were phased by

molecular replacement with PHASER 2.5 [40] using the semi-

open structure of TlGK?Mg?ADP determined previously (PDB

1GC5) [5]. Minimally biased maps of the molecular replacement

solutions calculated before refinement showed conspicuous density

differences between the search model and the structure of

TlGK?Mg?ADPbS?D-glucose? consistent with the presence of

bound substrates and accompanied by a significant inter-domain

movement. ADPbS was modeled as AMP since electron density

for the b-phosphate was missing in the electron density maps. The

structures were iteratively built using Coot [41] and refined with

REFMAC5 [42]. Upon convergence, the Rwork/Rfree for the apo-

TlGK and TlGK?Mg?ADPbS?D-glucose structures were 0.17/

0.21 and 0.17/0.22, respectively, and both had good geometry

and stereochemistry as assessed by MolProbity [43]. Refinement

and validation statistics are summarized in Table 3. All figures of

protein structures were prepared with VMD [44].

Accession Numbers
The X-ray crystal structures have been deposited with the

Protein Data Bank with accession codes 4B8R (apo-TlGK) and

4B8S (TlGK?Mg?ADPbS?D-glucose).

Alignment and Bayesian Inference of Phylogeny
The protein sequences were extracted using the protein BLAST

Server from non-redundant protein sequence database (nr) using

the PSI-BLAST algorithm with 5 iterations, using ADP-GK from

T. litoralis, ADP-PFK from P. horokoshii and ADP-GK from H.

sapiens as templates. The multiple sequence alignment (MSA) was

constructed based on three-dimensional and secondary structure

constraints using Promals3D [45], and then misaligned positions

were corrected manually. To build an evolutionary profile of the

family, redundant sequences in eukaryotes were removed using

QR Sequence tool of Multiseq in VMD [46] with a PID 40%.

Finally gaps positions were removed using Seqverter and the MSA

was prepared for Bayesian inference of phylogeny with Mr. Bayes

version 3.1.2 [47]. For the analysis we used Cprev as the fixed rate

model, which showed a posterior probability of 1.0 in the mixed

model and gamma-shaped rate variation across site with a

proportion of invariable site. The number of generations was set

to 16106, samplefreq to 100, with 2 run with 4 chains per run and

temperature parameter set to 0.2. The average standard deviation

of the split frequencies was less than 0.01 upon convergence. The

consensus tree was calculated from 15,002 samples trees.
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Åresolution: a large conformational change in ADP-dependent glucokinase.

Protein Sci 11: 2456–2463.

7. Ito S, Fushinobu S, Jeong JJ, Yoshioda I, Koga S, et al. (2003) Crystal structure

of an ADP-dependent glucokinase from Pyrococcus furiosus: implications for a

sugar-induced conformational change in ADP-dependent kinase. J Mol Biol 33:

871–883.

8. Koshland DE (1958) Application of a Theory of Enzyme Specificity to Protein

Synthesis. Proc Nat Acad Sci (USA) 44: 98–104.

9. Berger C, Weber-Bornhauser S, Eggenberger J, Hanes J, Pluckthun A, et al.

(1999) Antigen recognition by conformational selection. FEBS Letters 450: 149–

153.

10. Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R (2000) Folding and binding

cascades: Dynamic landscapes and population shifts. Protein Sci 9: 10–19.

11. Vertessy B, Orosz F (2010) From ‘‘fluctuation fit’’ to ‘‘conformational selection’’:

Evolution, rediscovery, and integration of a concept. Bioessays 33: 30–34.

12. Okazaki K, Takada S (2008) Dynamic energy landscape view of coupled binding

and protein conformational change: Induced-fit versus population-shift mech-

anisms. Proc Natl Acad Sci (USA) 105: 11182–11187.

13. Tobi D, Bahar I (2005) Structural changes involved in protein binding correlate

with intrinsic motions of proteins in the unbound state. Proc Natl Acad Sci

(USA) 102: 18908–18913.

14. Vogt AD, Di Cera E (2012) Conformational selection or induced fit? A critical

appraisal of the kinetic mechanism. Biochemistry 51: 5894–5902.

15. Cleland W (1963) The kinetics of enzyme catalyzed reactions with two or more

substrate or products, I, II and III. Biochim. Biophys. Acta 67: 104–137, 173–

187, 188–196.

16. Cornish-Bowden A (2011) Fundamentals of enzyme kinetics Wiley-Blackwell ed.

Fourth edition.

17. Rice LM, Montabana EA, Agard DA (2008) The lattice as allosteric effector:

structural studies of ab- and g-tubulin clarify the role of GTP in microtubule

assembly. Proc Natl Aca. Sci (USA) 105: 5378–5383.

18. Sullivan SM, Holyoak T (2008) Enzymes with lid-gated active sites must operate

by an induced fit mechanism instead of conformational selection. Proc Natl

Acad Sci (USA) 105: 13829–13834.

19. Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo

maltose binding protein observed by paramagnetic NMR. Nature 449: 1078–

1082.

Kinetically Relevant Domain Movements in ADP-GKs

PLOS ONE | www.plosone.org 11 June 2013 | Volume 8 | Issue 6 | e66687



20. Sigrell JA, Cameron AD, Mowbray SL (1999) Induced fit on sugar binding

ribokinase. J Mol Biol 290: 1009–1018.
21. Reddy MC, Palaninathan SK, Shetty NS, Owen JL, Watson MD, et al. (2007)

High resolution crystal structures of Mycobacterium tuberculosis adenosine

kinase. J Biol Chem 282: 27334–27342.
22. Schumacher MA, Scott DM, Mathews I.I, Ealick SE, Roos DS, et al. (2000).

Crystal structures of Toxoplasma gondii adenosine kinase reveal a novel catalytic
mechanism and prodrug binding. J Mol Biol 296: 549–567.

23. Minoux H, Chipot C (1999) Cation-p interactions in proteins: can simple models

provide an accurate description? J Am Chem Soc 121: 10366–10372.
24. Gromiha MM, Thomas S, Santhosh C (2002) Role of cation-p interactions to

the stability of thermophilic proteins. Prep Biochem Biotechnol 32: 355–362.
25. Pecsi I, Leveles I, Harmat V, Vertessy BG, Toth J (2010) Aromatic stacking

between nucleobase and enzyme promotes phosphate ester hydrolysis in
dUTPase. Nucleic Acids Research 38: 7179–7186.

26. Dougherty DA (2012) The Cation_p Interaction. Accounts of Chemical

Research.
27. Mahadevi AS, Sastry GN (2013) Cation2p Interaction: Its Role and Relevance

in Chemistry, Biology, and Material Science. Chem. Rev. 113: 210022138.
28. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an

automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann

electrostatics calculations. Nucleic Acids Res 32: 665–667.
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