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Abstract: The discovery of a bacterium, Helicobacter
pylori, that is resident in the human stomach and causes
chronic disease (peptic ulcer and gastric cancer) was
radical on many levels. Whereas the mouth and the colon
were both known to host a large number of microorgan-
isms, collectively referred to as the microbiome, the
stomach was thought to be a virtual Sahara desert for
microbes because of its high acidity. We now know that H.
pylori is one of many species of bacteria that live in the
stomach, although H. pylori seems to dominate this
community. H. pylori does not behave as a classical
bacterial pathogen: disease is not solely mediated by
production of toxins, although certain H. pylori genes,
including those that encode exotoxins, increase the risk of
disease development. Instead, disease seems to result
from a complex interaction between the bacterium, the
host, and the environment. Furthermore, H. pylori was the
first bacterium observed to behave as a carcinogen. The
innate and adaptive immune defenses of the host,
combined with factors in the environment of the
stomach, apparently drive a continuously high rate of
genomic variation in H. pylori. Studies of this genetic
diversity in strains isolated from various locations across
the globe show that H. pylori has coevolved with humans
throughout our history. This long association has given
rise not only to disease, but also to possible protective
effects, particularly with respect to diseases of the
esophagus. Given this complex relationship with human
health, eradication of H. pylori in nonsymptomatic
individuals may not be the best course of action. The
story of H. pylori teaches us to look more deeply at our
resident microbiome and the complexity of its interac-
tions, both in this complex population and within our
own tissues, to gain a better understanding of health and
disease.

Common wisdom circa 1980 suggested that the stomach, with

its low pH, was a sterile environment. Then, endoscopy of the

stomach became common and, in 1984, pathologist Robin

Warren and gastroenterologist Barry Marshall saw an extracellu-

lar, curved bacillus, often in dense sheets, lining the stomach

epithelium of patients with gastritis (inflammation of the stomach)

and ulcer disease [1]. Soon, the medical community understood

that the gram-negative bacterium Helicobacter pylori, not stress, is

the major cause of stomach inflammation, which, in some infected

individuals, precedes peptic ulcer disease (10%–20%), distal gastric

adenocarcinoma (1%–2%), and gastric mucosal-associated lym-

phoid tissue (MALT) lymphoma (,1%) [2–5]. Thus, H. pylori

gained distinction as the only known bacterial carcinogen [6]. It is

believed that half of the world’s population is infected with H.

pylori; however, the burden of disease falls disproportionately on

less-developed countries. The incidence of infection in developed

countries has fallen dramatically, for unknown reasons, with a

corresponding decrease in gastric cancer [7]. This public health

success is tempered by the recent demonstration of an inverse

relationship between H. pylori infection and esophageal adenocar-

cinoma, Barrett’s esophagus, and reflux esophagitis [8]. H. pylori

has been with humans since our earliest days, thus it is not

surprising that its relationship is that of both a commensal

bacterium and a pathogen, causing some diseases and possibly

protecting against others. In addition, it is genetically diverse,

likely as a result of constant exposure to both environmental and

immunological selection, suggesting that genetic diversification is a

strategy for long-term colonization.

The Role of Infection in Disease Risk

H. pylori infection is generally acquired during childhood and,

without specific antibiotic treatment, can persist for the lifetime of

the host. Disease often does not develop until adulthood, after

decades of infection, and H. pylori induces variable pathologies in

the stomach. Duodenal ulcer disease is characterized by gastritis

that is largely confined to the antrum (the distal compartment of

the stomach), relatively low inflammation of the corpus (the

middle, acid-secreting compartment), and high levels of stomach

acid secretion (Figure 1A). Those with gastric ulcer or stomach

cancer have high levels of inflammation of the corpus, multifocal

gastric atrophy, and low levels of stomach acid secretion, due to

the destruction of stomach acid–secreting parietal cells (Figure 1B)

[9,10]. Some of this inflammatory response is controlled by the

cytokine IL-1b, which is induced by H. pylori infection [11] and

both elicits a proinflammatory response and inhibits secretion of

gastric acid [12]. Polymorphisms in the interleukin gene cluster,

including IL-1b, are risk factors for H. pylori–associated gastric

cancer [13,14], and studies of the transcriptional response of both

human and model hosts to H. pylori confirm induction of

transcriptional regulators of proinflammatory programs. In
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addition, transcription profiles reveal induction of several

chemokines and cytokines including those produced by nonlym-

phoid cells, and robust induction of innate immune defenses

including iron sequestration proteins and antimicrobial peptides

[15]. These studies suggest it would be wise to explore diverse

functional classes of genes for host genetic variant associations with

H. pylori disease progression. To this end, H. pylori researchers are

eagerly awaiting an unbiased genome-wide association study of

risk factors associated with progression to intestinal-type gastric

cancer or peptic ulcer disease in patients infected with H. pylori.

Such a study has been completed for sporadic diffuse-type gastric

cancer, which can be associated with H. pylori infection, revealing

two candidate loci, one that encodes a likely tumor suppressor

(prostate stem cell antigen [PSCA]) [16]. Genomic studies of this

sort will help elucidate host factors that synergize with H. pylori

infection to cause disease.

The association of H. pylori infection with gastric cancer raises

the interesting question of whether H. pylori encodes one or more

oncogenes. Oncogenic viruses initiate and promote cellular

transformation by integrating virally encoded oncogenes into the

host genome [17,18]. By contrast, H. pylori remains primarily

extracellular and does not integrate its genome into the host DNA.

The bacterium can still affect the function of host cells, however,

by translocating a bacterial protein, CagA, into host cells via a

specialized secretion system called the cag Type IV secretion

system (T4SS) [19,20]. In host cells, CagA interacts with a number

of cellular complexes implicated in oncogenesis [21,22]. Despite

elucidation of potentially transforming activities, transgenic

expression of CagA in the mouse stomach is only weakly

oncogenic [23]. As the cag T4SS also induces proinflammatory

cytokines via the intracellular bacterial peptidoglycan recognition

molecule Nod1, cancer progression may occur through synergy

with the host inflammatory response [24]. While CagA may not

promote cancer itself, exposure to CagA and inflammatory insults

may select for heritable host cell changes (genetic or epigenetic)

that together contribute to cancer progression.

H. pylori expands our view of how microbes survive at high levels

while activating inflammatory responses and shows us that microbes

may be underappreciated as an important factor in chronic disease

pathogenesis. In the case of pathogens that cause acute infections,

there is a massive inflammatory response, which often supports

bacterial replication and transmission. Alternatively, some patho-

gens, such as Mycobacterium tuberculosis, persist in the host by

manipulating the immune response to create a protected compart-

ment. H. pylori introduces a third strategy; it actively replicates and

maintains a continuous balance with the inflammatory response

over years of infection with little evidence for increased H. pylori–

related disease upon immune suppression [25]. As the role of

chronic inflammation in many diseases including cardiovascular

disease, diabetes mellitus, Alzheimer’s disease, and others is

increasingly recognized, researchers are focusing on infectious

agents as one possible source of this chronic inflammation.

Genomic Insights into the Biology of H. pylori

The study of H. pylori is strongly influenced by the genomic age.

The sequencing of its genome was completed in 1997 [26], just 13

years after Marshall and Warren reported their discovery.

However, almost a quarter (24%) of H. pylori genes have no

sequence similarity with genes available in public databases [27],

suggesting that lessons learned from well-studied bacteria like

Escherichia coli would not necessarily apply to this evolutionarily

distinct Epsilonproteobacteria. By using more advanced bioinfor-

matic approaches, researchers are now identifying some pathways

first thought absent in H. pylori. For example, H. pylori appeared to

lack the E. coli recBCD pathway, which is involved in homologous

recombination and DNA double-strand break repair. More careful

examination of conserved domains and motifs, however, identified

the H. pylori addA and addB genes, which are present in most gram-

positive and many gram-negative bacteria and whose protein

products have enzymatic functions similar to those of the recBCD

pathway [28].

By 1999, H. pylori was the first species to have complete genomes

sequenced from two different strains—an important milestone,

given its genetic diversity. Comparison of the two genomes

revealed that 6%–7% of the genes were present in one strain but

not in the other. There was also a high level of nucleotide diversity

between the two strains, with only eight genes sharing at least 98%

nucleotide identity; however, most nucleotide differences were

synonymous changes [27]. Microarrays designed upon these

sequences were then used for comparative genomic hybridization

of H. pylori strains isolated from different ethnic groups and

geographic areas [29,30]. These studies found that 25% of H. pylori

genes are variably present among strains. Such genome-wide

analyses have played an important role in dividing H. pylori genes

into two classes: variable genes that are absent in some strains and

core genes that are present in all strains analyzed. The variable

genes are likely adaptive for different environmental niches, which

for the human stomach–restricted H. pylori comprise genetically

distinct hosts. The largest annotated class of variable genes encode

proteins expressed on or that modify the bacterial cell surface

(outer membrane proteins and proteins involved in lipopolysac-

charide synthesis) [30], consistent with a function at the interface

of the bacteria and host. The core genes have diverse functions.

Some core genes are required for viability in culture. A genomic

study that utilized microarray-based mapping of a genome-

saturating transposon library (a collection of H. pylori strains that

includes transposon mutants randomly distributed throughout the

genome) revealed that 23% of the genome is required for viability

in culture because these genes could not tolerate transposon

Figure 1. Distinct pathologies of H. pylori–induced disease. (A)
Duodenal ulcer disease correlates with high inflammation in the antrum
(red bursts), lower levels of inflammation in the corpus, and high acid
secretion (+). (B) Gastric ulcer or adenocarcinoma correlates with
increased inflammation in the corpus, low acid secretion, and multifocal
atrophy (wavy lines).
doi:10.1371/journal.ppat.1000544.g001
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insertion [31]. Additional core genes are essential only in the

context of host infection and several groups have completed

screens for transposon mutants that fail to colonize animal models

of infection [32,33]. An example of such a colonization core gene

is addA, which is required for recombinational repair of DNA

double-strand breaks, presumably caused by the host inflamma-

tory response [28].

The nucleotide sequence diversity in H. pylori’s core genes can

distinguish between different ethnic and geographic human

populations, demonstrating that passage of H. pylori between

closely related humans has continued uninterrupted over tens of

thousands of years (see Box 1). Different geographic and ethnic

groups that have similar infection rates have quite varied relative

risks of H. pylori–associated diseases such as gastric cancer [34].

Thus, in addition to host genetic and environmental exposures,

differences among strains likely contribute to variation in disease

risk. Consequently, studies of pathogenesis need to be reproduced

in representative strain backgrounds to ensure that discoveries in

one strain apply in strain populations with a diverse evolutionary

history.

H. pylori Diversification during Persistent Infection

Genetic diversification can aid in the persistence of organisms

that continue to replicate during chronic infection, allowing them

to sample adaptive variants. HIV, for example, has a flexible

reverse transcriptase that makes point mutations, insertions,

deletions, transversions, and duplications that produce variants

that may have a selective advantage [35]. Genetic variation in a

microbe indicates constant selection by a dynamic environment,

and H. pylori is a very genetically diverse species of bacteria [36–

38]. Genetic diversification may help H. pylori to adapt to a new

host after transmission, to different micro-niches within a single

host, and to changing conditions in the host over time—for

example, by avoiding clearance by host defenses.

Genetic diversity arises from within-genome diversification as

well as from reassortment by recombination with DNA from other

infecting H. pylori, generating novel clones within the stomach

(Figure 2). Within-genome diversification can include point

mutations, intragenomic recombination, and slipped-strand mis-

pairing during DNA replication within repetitive sequences.

Reassortment can occur by recombination with either DNA from

a superinfecting H. pylori strain or a variant clone of the same

strain. Central to this reassortment is H. pylori’s natural

competence—the ability to take up exogenous DNA and

incorporate it into its genome. Evidence from our lab shows that

natural competence is induced by DNA damage, suggesting that

H. pylori responds to stress by diversifying its genome (MSD and

NRS, unpublished data). However, there are controls on this

rampant genetic exchange: restriction-modification systems, which

include a restriction endonuclease that cleaves a specific DNA

sequence and a DNA methyltransferase that protects the

bacterium’s own DNA from being cleaved by methylating the

target DNA sequence. Genes that encode restriction-modification

systems compose the second largest class of variably present genes

with known function, so the complement of available restriction-

modification systems varies between strains, giving a methylation

code to the DNA from each strain. This mechanism serves to limit

or prevent recombination between H. pylori strains as well as

between H. pylori and other bacteria or eukaryotic cells [39].

The H. pylori genome encodes relatively few proteins that

regulate transcription. Instead, some of the same processes that

govern the generation of genetic diversity (i.e., slipped-strand

mispairing, methyltransferase activity, and recombination) also

play an important role in varying gene expression in response to

environmental cues. There are 46 H. pylori genes that have long

repeats of one or two nucleotides that are prone to slipped-strand

mispairing during replication [26,27,40]. These genes are phase-

variable because changes in the number of repeats can shift the

reading frame of the gene, switching gene expression on or off

(Figure 2). In addition, many H. pylori promoters have mononu-

cleotide repeats that regulate gene expression by changing the

spacing between important regulatory sites in these promoters.

Orphan methyltransferases, which have lost their corresponding

restriction enzyme, may also regulate gene expression by

methylating sequences in the promoter region of genes, and some

of the methyltransferase genes are themselves subject to phase-

variable expression. Recombination regulates gene expression

through deletions and duplications that occur during gene

conversion and locus switching. These mechanisms suggest that

H. pylori survives by constantly generating variants that adapt its

physiology to new environments.

One example of how H. pylori’s genetic variability helps it adapt

to new environments involves its adhesin genes, which encode

proteins that bind to the Lewis human blood group antigens,

which are carbohydrate-based epitopes [41]. The protein encoded

by one of these adhesin genes, BabA, binds the Lewis-b antigen on

the gastric mucosa, helping the bacterium adhere to the mucosa.

The babA gene is silent in some H. pylori strains but can be

Box 1. Tracking Human Genealogy with H.
pylori Genomics

Currently, a number of companies propose to predict your
‘‘genetic genealogy’’ from the DNA in a cheek swab. They
do this by analyzing informatively variable parts of our
genomes (such as the Y chromosome or mitochondrial
DNA) that show characteristic differences between ethnic
and geographic populations; thus, they can tell if you may
be distantly related to Ghengis Khan, for example.
Unfortunately, population bottlenecks [51], small popula-
tion sizes, and long generation times have limited the
amount of genetic diversity in the human population that
can be used for these analyses. It turns out, however, that
genomic sequencing of the H. pylori strain harbored by an
individual does a better job in resolving ancestry than the
usual human genomic markers [52]. This is because of high
genetic diversity among H. pylori strains [53], a restricted
mode of transmission (primarily within families or house-
holds [54]), and the association of H. pylori with humans
throughout our evolution [55]. A major source of H. pylori’s
genetic diversity is recombination between strains [38],
which blurs signatures of descent. Despite this confounding
factor, Achtman and colleagues [53] identified evolutionary
signatures in strain sequences from diverse geographic
sources. These signatures, combined with new statistical
tools that take into account admixture and recombination
[55], have tracked ancient human migrations, such as our
emergence from Africa [55], and more recent events such as
colonization of the Pacific islands [56]. H. pylori gene
sequences can even distinguish between the Buddhist and
Muslim ethnic groups that have coexisted for at least 1,000
years in Ladakh [52]. The fact that H. pylori has maintained
evolutionarily distinct strain signatures during many gener-
ations of contact suggests either that interracial interactions
that promote transmission are very limited or that
additional mechanisms prevent strains from one ethnic
population from establishing a foothold in hosts of another
ethnic population.
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expressed if it recombines with the babB gene, an event mediated

by homologous sequences at the 59 and 39 ends of the two genes

[42]. Thus, recombination can help H. pylori alter its adherence

properties to adapt to selective pressures in the host. These

selective pressures may include variation in the host receptors

present or in conditions that favor a shift in the ratio of bacteria

adherent to the gastric cell epithelium over those swimming freely

in the mucus.

Genetic variation may also be important for the ability of H.

pylori to evade the host immune system. H. pylori further exploits

the Lewis antigen system by ‘‘camouflaging’’ its surface lipopoly-

saccharide with its own Lewis-type antigen, which mimics that of

the individual host. The bacterium adapts the spectrum of Lewis

antigens it expresses by phase variation of the genes involved in

their biosynthesis [43]. Furthermore, recombination among the

many members of the large outer membrane protein (omp) gene

family has the potential to create mosaic omp genes, generating

antigenic variation that may keep H. pylori ahead of the ability of

the host’s immune system to recognize these cell surface exposed

epitopes.

H. pylori’s Interaction with the Microbiome

H. pylori share their niche with the stomach microbiome, the

collection of microorganisms living on and in us. Study of

microorganisms was once limited to only those microbes that could

be cultured in the laboratory. Advances in sequencing technology

now allow  us  to study the collection of genes encoded by any

group of organisms—so-called metagenomics—making it possible

to characterize also the microbes that cannot be cultured but

nevertheless affect our health. Given that H. pylori engages in DNA

exchange, the metagenome may serve as a repository for novel

traits. When present, H. pylori dominates the microbiome in the

stomach [44,45], although the effect of this dominance is not

known. Perhaps H. pylori infection changes the composition of the

stomach microbiome, with unknown consequences.

Challenges for the Future

H. pylori is considered pathogenic, even carcinogenic. With this

simple view, eradication seems an obvious choice. In reality,

however, the relationship between H. pylori and disease is more

Figure 2. Mechanisms that create genetic diversity in H. pylori. Colored arrows represent different genes, and the correspondingly colored
triangles, rectangles, and circles represent the proteins encoded by these genes. Diversification mechanisms (right side of figure) include
spontaneous point mutations, slipped-strand mispairing, and intragenomic recombination. Allelic changes involving nonsynonymous point
mutations and mosaic genes resulting from intragenomic recombination can alter the function and/or the antigenic epitopes of the encoded protein.
Gene expression can also be regulated by gene conversion resulting from intragenomic recombination, and phase variation mediated by slipped-
strand mispairing. Reassortment of genes (left side of figure) by natural transformation with exogenous DNA also contributes to genetic diversity.
Natural transformation with DNA from a superinfecting strain, for example, can introduce new genes and new alleles of already present genes
(horizontal gene transfer). Similarly, natural transformation with DNA from a variant clone of the same strain can further propagate an advantageous
allele acquired by within-genome diversification.
doi:10.1371/journal.ppat.1000544.g002
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nuanced. Like the cancer risk associated with smoking, a recent

trial showed that the cancer risk from H. pylori diminished

measurably only 12 years after eradication of the infection [46].

Some studies suggest that infection may prevent diseases of the

esophagus, and there is a debate in the literature concerning a

relationship between H. pylori and childhood asthma [8,47,48].

There is clear consensus that H. pylori should be eliminated in cases

of peptic ulcer disease, gastric MALT lymphoma, early gastric

cancer, first-degree relatives of gastric cancer patients, and

uninvestigated dyspepsia in high-prevalence populations. Despite

its potential to prevent ulcer and cancer, universal eradication of

H. pylori infection has not gained wide support, because of the

mixture of positive and negative disease associations with infection,

the lack of a definitive bacterial or host molecule accounting for

disease causation, and poor success rates of treating non-ulcer

dyspepsia by clearing H. pylori infection [49,50]. Thus a more

detailed picture of this host–pathogen interaction is needed and

likely will depend upon further advances in both endoscopy and

genomics.

We have a poor understanding of the immune responses to H.

pylori and the reasons that most hosts fail to clear infection. The

host restriction of H. pylori to humans and some nonhuman

primates has hampered development of robust animal models to

study the disease process. Thus progress will require improvements

in animal models and improved access to patient samples.

Endoscopy of the upper gastrointestinal tract is an invasive

procedure, so a major limitation to research is collection of

bacterial and human tissue samples from infected people.

Available samples are biased toward patients with severe

dyspepsia, ulcer symptoms, and gastric cancer, and only a small

fraction of the stomach can be sampled. Advances in less-invasive

methods, such as capsule endoscopy, may allow increased

sampling to monitor bacterial and tissue changes during chronic

colonization, including isolation and phenotypic analysis of

immune effector cells in infected tissue. Less-invasive methods

would also provide an opportunity to study infection in

asymptomatic individuals and transmission of H. pylori infection,

conditions in which the selective pressures that drive the observed

H. pylori genetic diversification likely operate.

A major opportunity to increase our understanding of how H.

pylori causes or prevents disease arises from recent advances in

high-throughput sequencing technologies. Currently, several

platforms allow researchers to accomplish in a single experiment

sequencing or resequencing of tens of H. pylori genomes,

characterization of host immune and epithelial cell types that

change during infection with highly sensitive digital expression tag

analysis, or analysis of the microbiome present in the stomach and

esophagus through metagenomic sequencing or targeted bacterial

or fungal small ribosomal subunit DNA sequencing. The sequence

data generated by such experiments will address several important

mysteries of H. pylori biology, including the timing and extent of H.

pylori genetic diversification. While strains from unrelated

individuals show dramatic variation in gene content and gene

sequence, the extent of sequence variation among clones during

persistent infection of a single host or upon transmission has not

been adequately sampled. Whole-genome sequencing of multiple

isolates of individual patients with dense spatial and temporal

sampling would definitively establish when, where, and by what

mechanisms genetic diversity is generated. This information will

inform efforts to combat resistance to current antibiotics, to

develop vaccines, and to understand H. pylori’s coevolution with

humans. Exploration of the influence of H. pylori on the

microbiome will identify organisms that collaborate with or can

be antagonized by H. pylori. Such organisms may mediate some of

the disease risks that have been associated with H. pylori presence

and absence. Finally, the rapid pace of resequencing of H. pylori’s

human host will provide a deeper understanding of genetic

variation in the human population that may influence risk for H.

pylori–associated pathologies and which, by association, could

provide clues to the cellular pathways disrupted in disease. Thus,

genomic approaches to study host response, the human micro-

biome, bacterial genetic variation, and, perhaps most importantly,

the intersections among these components, will help researchers

determine whether eradication is appropriate for all individuals in

all populations.

Acknowledgments

We thank Olivier Humbert and Laura Sycuro for their critical comments

on the manuscript and Laura Sycuro for providing H. pylori images.

References

1. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of
patients with gastritis and peptic ulceration. Lancet 1: 1311–1315.

2. Nomura A, Stemmermann GN, Chyou P, Kato I, Perez-Perez G, et al. (1991)

Helicobacter pylori infection and gastric carcinoma among japanese americans in

Hawaii. N Engl J Med 325: 1132–1136.

3. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, et al.

(1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med

325: 1127–1131.

4. Parsonnet J, Hansen S, Rodriguez L, Gelb AB, Warnke RA, et al. (1994)
Helicobacter pylori infection and gastric lymphoma. N Engl J Med 330: 1267–1271.

5. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori

infection. Clin Microbiol Rev 19: 449–490.

6. WHO (2006) Fact sheet No. 297, Cancer. World Health Organization.

7. Peek RM Jr, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract
adenocarcinomas. Nat Rev Cancer 2: 28–37.

8. Anderson LA, Murphy SJ, Johnston BT, Watson RG, Ferguson HR, et al.

(2008) Relationship between Helicobacter pylori infection and gastric atrophy
and the stages of the oesophageal inflammation, metaplasia, adenocarcino-

ma sequence: Results from the FINBAR case-control study. Gut 57:
734–739.

9. Amieva MR, El-Omar EM (2008) Host-bacterial interactions in Helicobacter pylori

infection. Gastroenterology 134: 306–323.

10. Rubin CE (1997) Are there three types of Helicobacter pylori gastritis?
Gastroenterology 112: 2108–2110.

11. Basso D, Scrigner M, Toma A, Navaglia F, Di Mario F, et al. (1996) Helicobacter

pylori infection enhances mucosal interleukin-1 beta, interleukin-6, and the

soluble receptor of interleukin-2. Int J Clin Lab Res 26: 207–210.

12. El-Omar EM (2001) The importance of interleukin 1beta in Helicobacter pylori

associated disease. Gut 48: 743–747.

13. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, et al. (2000)
Interleukin-1 polymorphisms associated with increased risk of gastric cancer.

Nature 404: 398–402.

14. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, et al. (2002)

Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-

risk individuals for gastric carcinoma. J Natl Cancer Inst 94: 1680–1687.

15. Humbert O, Pinto-Santini DM, Salama NR (2008) Genomotyping of Helicobacter

pylori and its host: microarray-based insights on gene variation, expression and

function. In: Yamaoka Y, ed. Helicobacter pylori Molecular Genetics and Cellular

Biology. Norfolk, UK: Caister Academic Press. pp 205–244.

16. Sakamoto H, Yoshimura K, Saeki N, Katai H, Shimoda T, et al. (2008) Genetic
variation in PSCA is associated with susceptibility to diffuse-type gastric cancer.

Nat Genet 40: 730–740.

17. Maeda N, Fan H, Yoshikai Y (2008) Oncogenesis by retroviruses: Old and new

paradigms. Rev Med Virol 18: 387–405.

18. Howley PM, Livingston DM (2009) Small DNA tumor viruses: Large

contributors to biomedical sciences. Virology 384: 256–259.

19. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS (1999) Altered states:

Involvement of phosphorylated CagA in the induction of host cellular growth
changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96: 14559–14564.

20. Stein M, Rappuoli R, Covacci A (2000) Tyrosine phosphorylation of the
Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl

Acad Sci U S A 97: 1263–1268.

21. Bourzac KM, Guillemin K (2005) Helicobacter pylori-host cell interactions

mediated by type IV secretion. Cell Microbiol 7: 911–919.

Learning about Disease from H. pylori

PLoS Pathogens | www.plospathogens.org 5 October 2009 | Volume 5 | Issue 10 | e1000544



22. Hatakeyama M (2006) Helicobacter pylori CagA — A bacterial intruder conspiring

gastric carcinogenesis. Int J Cancer 119: 1217–1223.

23. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, et al. (2008) Transgenic

expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic

neoplasms in mouse. Proc Natl Acad Sci U S A 105: 1003–1008.

24. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, et al. (2004) Nod1

responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity

island. Nat Immunol 5: 1166–1174.

25. Romanelli F, Smith KM, Murphy BS (2007) Does HIV infection alter the

incidence or pathology of Helicobacter pylori infection? AIDS Patient Care STDS

21: 908–919.

26. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, et al. (1997) The

complete genome sequence of the gastric pathogen Helicobacter pylori [published

erratum appears in Nature 1997 Sep 25;389(6649):412]. Nature 388: 539–547.

27. Alm RA, Ling LS, Moir DT, King BL, Brown ED, et al. (1999) Genomic-

sequence comparison of two unrelated isolates of the human gastric pathogen

Helicobacter pylori. Nature 397: 176–180.

28. Amundsen SK, Fero J, Hansen LM, Cromie GA, Solnick JV, et al. (2008)

Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-

related DNA repair and survival during stomach colonization. Mol Microbiol

69: 994–1007.

29. Gressmann H, Linz B, Ghai R, Pleissner KP, Schlapbach R, et al. (2005) Gain

and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet

1: e43. doi:10.1371/journal.pgen.0010043.

30. Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, et al. (2000) A

whole-genome microarray reveals genetic diversity among Helicobacter pylori

strains. Proc Natl Acad Sci U S A 97: 14668–14673.

31. Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and

essential gene analysis of Helicobacter pylori. J Bacteriol 186: 7926–7935.

32. Baldwin DN, Shepherd B, Kraemer P, Hall MK, Sycuro LK, et al. (2007)

Identification of Helicobacter pylori genes that contribute to stomach colonization.

Infect Immun 75: 1005–1016.

33. Kavermann H, Burns BP, Angermuller K, Odenbreit S, Fischer W, et al. (2003)

Identification and characterization of Helicobacter pylori genes essential for gastric

colonization. J Exp Med 197: 813–822.

34. Yamaguchi N, Kakizoe T (2001) Synergistic interaction between Helicobacter

pylori gastritis and diet in gastric cancer. Lancet Oncol 2: 88–94.

35. Johnson WE, Desrosiers RC (2002) Viral persistance: HIV’s strategies of

immune system evasion. Annu Rev Med 53: 499–518.

36. Israel DA, Salama N, Krishna U, Rieger UM, Atherton JC, et al. (2001)

Helicobacter pylori genetic diversity within the gastric niche of a single human host.

Proc Natl Acad Sci U S A 98: 14625–14630.

37. Salama NR, Gonzalez-Valencia G, Deatherage B, Aviles-Jimenez F,

Atherton JC, et al. (2007) Genetic analysis of Helicobacter pylori strain populations

colonizing the stomach at different times postinfection. J Bacteriol 189:

3834–3845.

38. Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, et al. (1998) Free

recombination within Helicobacter pylori. Proc Natl Acad Sci U S A 95:

12619–12624.

39. Humbert O, Salama NR (2008) The Helicobacter pylori HpyAXII restriction-

modification system limits exogenous DNA uptake by targeting GTAC sites but
shows asymmetric conservation of the DNA methyltransferase and restriction

endonuclease components. Nucleic Acids Res 36: 6893–6906.

40. Salaun L, Linz B, Suerbaum S, Saunders NJ (2004) The diversity within an
expanded and redefined repertoire of phase-variable genes in Helicobacter pylori.

Microbiology 150: 817–830.
41. Lloyd KO (2000) The chemistry and immunochemistry of blood group A, B, H,

and Lewis antigens: Past, present and future. Glycoconj J 17: 531–541.

42. Backstrom A, Lundberg C, Kersulyte D, Berg DE, Boren T, et al. (2004)
Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b

antigen binding. Proc Natl Acad Sci U S A 101: 16923–16928.
43. Wirth HP, Yang M, Peek RM Jr, Tham KT, Blaser MJ (1997) Helicobacter pylori

Lewis expression is related to the host Lewis phenotype. Gastroenterology 113:
1091–1098.

44. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, et al. (2006) Molecular

analysis of the bacterial microbiota in the human stomach. Proc Natl Acad
Sci U S A 103: 732–737.

45. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, et al. (2008)
Comparative analysis of human gut microbiota by barcoded pyrosequencing.

PLoS ONE 3: e2836. doi:10.1371/journal.pone.0002836.

46. Mera R, Fontham ET, Bravo LE, Bravo JC, Piazuelo MB, et al. (2005) Long
term follow up of patients treated for Helicobacter pylori infection. Gut 54:

1536–1540.
47. Raj SM, Choo KE, Noorizan AM, Lee YY, Graham DY (2009) Evidence

against Helicobacter pylori being related to childhood asthma. J Infect Dis 199:
914–915; author reply 915–916.

48. Chen Y, Blaser MJ (2008) Helicobacter pylori colonization is inversely associated

with childhood asthma. J Infect Dis 198: 553–560.
49. Chey WD, Wong BC (2007) American College of Gastroenterology guideline on

the management of Helicobacter pylori infection. Am J Gastroenterol 102:
1808–1825.

50. Malfertheiner P, Megraud F, O’Morain C, Bazzoli F, El-Omar E, et al. (2007)

Current concepts in the management of Helicobacter pylori infection: The
Maastricht III Consensus Report. Gut 56: 772–781.

51. Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human
evolution. Nature 325: 31–36.

52. Wirth T, Wang X, Linz B, Novick RP, Lum JK, et al. (2004) Distinguishing
human ethnic groups by means of sequences from Helicobacter pylori: Lessons from

Ladakh. Proc Natl Acad Sci U S A 101: 4746–4751.

53. Achtman M, Azuma T, Berg DE, Ito Y, Morelli G, et al. (1999) Recombination
and clonal groupings within Helicobacter pylori from different geographical regions.

Mol Microbiol 32: 459–470.
54. Schwarz S, Morelli G, Kusecek B, Manica A, Balloux F, et al. (2008) Horizontal

versus familial transmission of Helicobacter pylori. PLoS Pathog 4: e1000180.

doi:10.1371/journal.ppat.1000180.
55. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, et al. (2003) Traces of

human migrations in Helicobacter pylori populations. Science 299: 1582–1585.
56. Moodley Y, Linz B, Yamaoka Y, Windsor HM, Breurec S, et al. (2009) The

peopling of the Pacific from a bacterial perspective. Science 323: 527–530.

Learning about Disease from H. pylori

PLoS Pathogens | www.plospathogens.org 6 October 2009 | Volume 5 | Issue 10 | e1000544


